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Abstract: RCS (Real-time Control System) is a cognitive architecture designed to 
enable any level of intelligent behavior, up to and including human levels of 
performance.  RCS was inspired 30 years ago by a theoretical model of the cerebellum, 
the portion of the brain responsible for fine motor coordination and control of 
conscious motions.  It was originally designed for sensory-interactive goal-directed 
control of laboratory manipulators.  Over three decades, it has evolved into a real-time 
control architecture for intelligent machine tools, factory automation systems, and 
intelligent autonomous vehicles.   
 
RCS consists of a multi-layered multi-resolutional hierarchy of computational agents 
each containing elements of sensory processing (SP), world modeling (WM), value 
judgment (VJ), behavior generation (BG), and a knowledge database (KD).  At the 
lower levels, these agents generate goal-seeking reactive behavior.  At higher levels, 
they enable decision making, planning, and deliberative behavior. 
 
This paper is a product of U. S. Government employees in the course of their assigned 
duties, and therefore not subject to copyright. 
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1. INTRODUCTION 
 
Interest in cognitive models and intelligent systems 
has grown rapidly over the past two decades as a 
result of a confluence of three important events:    
 
1.1  The emergence of a computational theory of 

intelligence 
 
A fully developed scientific theory of intelligence 
does not yet exist, but an understanding of how to 
build intelligent systems is developing faster than 
most people appreciate.  Progress is rapid in many 
different fields.  Recent results from a number of 
different disciplines, including the neurosciences, 
cognitive psychology, artificial intelligence, robotics, 
and intelligent machines, have laid the foundations 
for a computational theory of intelligence (Newell & 

Simon 1972, Anderson 1983, Laird et al 1987, Albus 
1991, Albus and Meystel 2001). 
 
1.2  The continued exponential growth in computing 
power 
 
The estimated computational power of the human 
brain is already rivaled by existing supercomputers.  
Within the next quarter century, computational 
power approaching that of the human brain can be 
expected from a small network of desktop machines  
(Kurzweil 1999). This means that serious attempts 
can be made to model the functional capabilities of 
the brain in perception, cognition, and behavioral 
skills. Of course, having the computational power is 
only part of the challenge, the rest is making proper 
use of it. 
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1.3 Growth in user interest for military and 
commercial applications  
 
Potential applications in both civilian and military 
systems have begun to emerge.  In the United States, 
military interest in unmanned vehicles (air, ground, 
and sea) has grown rapidly as autonomous vehicle 
capabilities have been demonstrated that far exceed 
previous expectations (Shoemaker et al 1999).  In 
Japan, Europe, and the U.S., automotive companies 
are actively pursuing commercial applications of 
adaptive cruise control, crash warning systems, and 
collision avoidance technology (Bishop 2003).  The 
eventual result may be the intelligent automotive 
autopilot. 
 
In subsequent sections, we will discuss the 
characteristics of cognitive architectures in Section 2, 
the RCS reference model in Section 3, some of the 
theoretical problems of computational models in 
Section 4, the RCS methodology for system design 
in Section 5, some experimental results in Section 6, 
and future prospects in Section 7. 
 
 

2. COGNITIVE ARCHITECTURES 
 
A cognitive architecture can be defined as the 
organizational structure of functional processes and 
knowledge representations that enable the modelling 
of cognitive phenomena.  Over the past half-century, 
several cognitive architectures have been developed.  
One of the earliest was the ACT architecture 
(Anderson 1983).  ACT grew out of research on 
human memory.  Over the years, ACT has evolved 
into ACT* and more recently, ACT-R. ACT-R is 
being used in several research projects in an 
Advanced Decision Architectures Collaborative 
Technology Alliance for the U.S. Army (Gonzalez 
2003).  ACT-R is also being used by thousands of 
schools across the country as an algebra tutor – an 
instructional system that supports learning-by-doing. 
 
Another well known and widely used architecture is 
Soar.  Soar grew out of research on human problem 
solving, and has been used for many academic and 
military research projects in problem solving, 
language understanding, computational linguistics, 
theorem proving, and cognitive modeling (Newell 
and Simon 1972, Laird et al 1987).  A recent 
commercial version of Soar (Tac-Air Soar1) has been 
developed to address a number of simulation and 
training problems for the U.S. Air Force (SoarTech 
2004). 
 
Other cognitive architectures include Prodigy, 
ICARUS, IMPRINT, EPIC, and RCS.  Like Soar, 
Prodigy uses search through a problem space to 
achieve goals cast as first-order expressions (Minton 
1990).  ICARUS is a reactive architecture that 
encodes knowledge as reactive skills (Shapiro & 

                                                 
1 The name of commercial products or vendors does not 
imply NIST endorsement or that this product is necessarily 
the best for the purpose. 

Langley 1999).  IMPRINT is a task description 
language designed for the Army to capture the 
procedural specification of tactical behavior 
scenarios. It contains a dynamic, stochastic, discrete-
event network modelling tool designed to help assess 
the interaction of soldier and system performance 
throughout the system lifecycle – from concept and 
design through field testing and system upgrades. 
IMPRINT has been integrated with ACT-R to model 
military behaviors (Archer et al 2003).  EPIC is an 
architecture that models the detailed timing of human 
perceptual, cognitive, and motor activity, including 
the input/output characteristics of the nervous system 
connecting the higher level cognitive functions to the 
external world (Kieras and Meyer 1997).  RCS is a 
control system architecture inspired by a theory of 
cerebellar function (Albus 1971).  RCS models the 
brain as a hierarchy of goal-directed sensory-
interactive intelligent control processes that 
theoretically could be implemented by neural nets, 
finite state automata, or production rules (Albus 
1981). 
 
RCS is similar to other cognitive architectures in that 
it represents procedural knowledge in terms of 
production rules, and represents declarative 
knowledge in abstract data structures such as frames, 
classes, and semantic nets.  RCS differs from other 
cognitive architectures in that it also includes signals, 
images, and maps in its knowledge database, and 
maintains a tight real-time coupling between iconic 
and symbolic data structures in its world model.  
RCS is also different in: a) its focus on task 
decomposition as the fundamental organizing 
principle; b) its level of specificity in the assignment 
of duties and responsibilities to agents and units in 
the behavior generating hierarchy; and c) its 
emphasis on controlling real machines in real-world 
environments. 
 
RCS evolved from the bottom up as a real-time 
intelligent control system for real machines operating 
on real objects in the real world.  The first version of 
RCS was developed as an sensory-interactive goal-
directed controller for a laboratory robot (Barbera et 
al 1979). Over the years, RCS has evolved into an 
intelligent controller for industrial robots, machine 
tools, intelligent manufacturing systems, automated 
general mail facilities, automated stamp distribution 
systems, automated mining equipment, unmanned 
underwater vehicles, and unmanned ground vehicles 
(Barbera et al 1984, Albus 1997).  Throughout its 
development, all symbols in the RCS world model 
have been grounded to objects and states in the real 
world. 
 
The most recent version of RCS (4D/RCS) embeds 
elements of Dickmanns (1992, 1999) 4-D approach 
to machine vision within the RCS control 
architecture.  4D/RCS was designed for the U.S. 
Army Research Lab AUTONAV and Demo III 
Experimental Unmanned Vehicle programs and has 
been adopted by the Army Future Combat System 
program for Autonomous Navigation Systems  
(Albus and Meystel 2001, Albus et al 2002). 



     

3.  A REFERENCE MODEL ARCHITECTURE 
 

A reference model architecture describes the 
functions, entities, events, relationships, and 
information flow that takes place within and between 
functional modules.  A reference model provides a 
framework for the specification of functional 
requirements, the design of software to meet those 
requirements, and the testing of components and 
systems.  A block diagram of a 4D/RCS reference 
model architecture is shown in Figure 1.  Each node 
in the architecture represents an operational unit in 
an organizational hierarchy.  Each node contains a 
behavior generation (BG), world modelling (WM), 
sensory processing (SP), and value judgment (VJ) 
process together with a knowledge database (KD) 
(not shown in Figure 1.)   
 
Figure 2 shows a first level of detail in 4D/RCS 
nodes.  Each node contains both a deliberative and a 
reactive component.  Bottom-up, each node closes a 
reactive control loop driven by feedback from 
sensors.  Top-down, each node generates and 
executes plans designed to satisfy task goals,  

priorities, and constraints conveyed by commands 
from above.  Within each node, deliberative plans are 
merged with reactive behaviors (Albus et al 2002). 
 
Each BG process accepts tasks and plans and 
executes behavior designed to accomplish those 
tasks.  The internal structure of the BG process 
consists of a planner and a set of executors (EX). At 
the upper right of Figure 2, task commands from a 
supervisor BG process are input.  A planner module 
decomposes each task into a set of coordinated plans 
for subordinate BG processes.  For each subordinate 
there is an Executor that issues commands, monitors 
progress, and compensates for errors between desired 
plans and observed results.  The Executors use 
feedback to react quickly to emergency conditions 
with reflexive actions.  Predictive capabilities 
provided by the WM may enable the Executors to 
generate preemptive behavior. 
 
Plans may be generated by any of a great variety of 
planning algorithms, e.g., case-based reasoning, 
search-based optimisation, or schema-based 
scripting.  

 
 

 
 
Figure 1.  A 4D/RCS reference model architecture for an autonomous vehicle.   Processing nodes are 
organized such that the BG processes form a command tree.  Information in the knowledge database is shared 
between WM processes in nodes above, below, and at the same level within the same subtree.  On the right, are 
examples of the functional characteristics of the BG processes at each level.  On the left, are examples of the 
scale of maps generated by the SP processes and populated by the WM in the KD at each level.   Sensory data 
paths flowing up the SP hierarchy typically form a graph, not a tree.  VJ processes are hidden behind WM 
processes in the diagram.  A control loop may be closed at every node.  An operator interface may provide input 
to, and obtain output from, processes in every node.  (Numerical values are representative examples only.  
Actual numbers depend on parameters of the specific design.) 
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Whatever the methodology, alternative possible 
futures are subjected to the following procedure: 
 
While the planning period is open 

{ 
1) the BG planner hypothesizes a 

tentative_plan;  
2)  the WM predicts the probable_result 

of the tentative_plan;  
3)  the VJ evaluates the 

probable_result_value; 
4) a plan selector within the BG planner 

checks to see if the 
probable_result_value is greater than 
the previous probable_result_value of 
the plan already in the 
current_best_plan_buffer,  

{ 
if it is, then the tentative_plan replaces the 
current plan in the 
current_best_plan_buffer;  
else continue; 

} 
}; 
 

On the next execution clock cycle, 

1) Move the contents of the 
current_best_plan_buffer into the 
executor_plan_buffers; 

2) Begin replanning immediately, or 
wait until the next planning cycle 
triggers; 

 
This entire process occurs at each level of the 
4D/RCS hierarchy within the spatial/temporal 
planning horizon imposed at that level. 
 
The executor_plan_buffer forms an interface 
between the planner and executor processes in each 
node.  This is the interface between deliberative 
and reactive processes. The executor_plan_buffer 
enables the planning process to run asynchronously 
and at a slower repetition rate than the execution 
cycle of the reactive control loop.  As soon as new 
plans are developed, they are loaded into the 
executor_plan_buffers.  The planner is free to run 
on its own so long as the executor_plan_buffers are 
kept supplied with a current_best_plan.  In the 
4D/RCS architecture this interface between 
planners and executors exists within every node in 
the computational hierarchy.  Thus, the interface 
between deliberative and reactive processes is not 
localized to a particular level, but is distributed 
throughout the 4D/RCS architecture. 
 
SP and WM processes interact to support 
windowing (i.e., attention), grouping (i.e., 
segmentation), recursive estimation (e.g., Kalman 
filtering), and classification (i.e., detection or 
recognition).  WM processes generate and update 
images, maps, entities, events, attributes, and states 
in the KD.  Working together, BG, WM, and SP 

enable deliberative, reactive, and preemptive 
behavior.  Coordination between subordinate BG 
processes is achieved by cross-coupling among 
plans and sharing of information among Executors 
via the KD.   
 
At the top, the highest level task is defined by the 
highest level (i.e., mission) goal.  At each 
successive level in the hierarchy, commanded tasks 
from above are decomposed into subtasks that are 
sent to subordinates below.  Finally, at the bottom, 
subcommand outputs are sent to actuators to 
generate forces and movements.  Also at the 
bottom, sensors transform energy into signals that 
provide sensory input. 
 
 

4. DISCUSSION 
 
4D/RCS addresses three of the most significant 
theoretical arguments raised against the possibility 
of computers achieving human levels of 
intelligence.  These are:  
 
4.1 Abductive inference 
Abductive inference is the process of reasoning 
backward from consequent to antecedent.  It has 
been described by Peirce (1958) as “nothing but 
guessing.” The inability of local syntactical 
systems to perform abductive inference is cited by 
Fodor (2000) as why he believes computational 
processes cannot produce true intelligence.  To 
Fodor, all computer operations are inherently local 
and syntactic, and hence fundamentally incapable 
of context sensitive logic.   
 
But the RCS architecture is driven top-down by 
high level mission goals, priorities, and constraints. 
These provide global context for making gestalt 
hypotheses (i.e., perceptual guesses) regarding 
where to focus attention and how to group (or 
segment) signals and pixels into patterns and 
regions that correspond to entities and events in the 
external world.  At each level of sensory 
processing, abductive inferences in the form of 
gestalt hypotheses are used to segment signals and 
images. Abductive inferences can be tested by 
comparing expectations based on hypotheses 
against observations from sensors.  For each 
hypothesized entity or event, variance between 
predictions and observations provides a measure of 
confidence in the hypothesis. When variance is 
small, confidence is high, and vice versa. If 
confidence falls below threshold, a hypothesis is 
rejected and another generated.  This supports 
Peirces’s claims that abduction can be represented 
in a “perfectly definite logical form.” 
 
 
 
 



     

Figure 2.  A typical 4D/RCS computational node.  Task command input comes from a higher level BG 
process in the 4D/RCS hierarchy.  Each input task command is decomposed into a plan consisting of subtasks 
for subordinate BG processes.  A WM process maintains a KD that is the BG unit’s best estimate of the external 
world.  A SP process operates on input from sensors by windowing (i.e., focusing attention), grouping, 
computing attributes, filtering, and recognizing entities, events, and situations.  A VJ process evaluates expected 
results of tentative plans.  A VJ process also assigns confidence and worth to entities, events, and situations 
entered into the KD. 

 
 
4.2 Symbol grounding 
Symbol grounding is the establishment of direct 
correspondence between internal symbolic data and 
external real world entities, events, and relationships.  
The inability of local syntactical systems to perform 
symbol grounding is cited by Searle (1992) as why 
he believes computational processes can never be 
really intelligent.  To Searle, computer operations are 
without semantic meaning because the symbols they 
manipulate are never grounded in the real world.  
 
But the 4D/RCS architecture establishes and 
maintains a direct link between the internal world 
model and the external real world.  A RCS attention 
process directs sensors toward regions of the world 
that are important.  A RCS segmentation process 
applies context-sensitive gestalt grouping hypotheses 
to patterns of signals from sensors.  As a result of 
segmentation, spatial and temporal groupings are 
linked to named symbolic data structures (such as C 
structs, or C++ objects and classes) that represent 
hypothesized entities and events.  Geometric and 
temporal attributes of hypothesized groups are 
computed, and relationships (represented as pointers) 
between entities, events, and their constituent 
elements are established and maintained.  Finally, 
entities and events are classified and recognized by 
comparing observed attributes to stored attributes of 
class prototypes.  This entire process is repeated at 
each stage of sensory processing at a rate fast enough 
to capture the dynamics of the entities and events 
being attended to. 
 

This recursive two-way interaction between model-
based expectations and sensory-based observations 
provides symbol grounding.  Expectations based on 
attributes and class membership of entities and 
events in the world model are constantly compared 
against observations derived from sensors monitoring 
corresponding entities and events in the real world.  
In this way, symbolic representations of entities, 
events, and relationships in the 4D/RCS world model 
are grounded to entities, events, and relationships in 
the real world. 
It should be noted that many other researchers in the 
field of robotics and autonomous systems have begun 
to address the symbol grounding problem.  A recent 
special edition of Robotics and Autonomous Systems 
consists of a collection of articles that address the 
“perceptual anchoring” of symbolic representations 
to objects in the real world (Coradeschi and Saffiotti 
2003). 
 
 
4.3 The frame problem 
The frame problem is the problem of predicting what 
in the world changes as the result of an action, and 
what stays the same.  The frame problem results from 
attempting to model the world entirely in terms of 
logical propositions (Pylyshyn 1987).  Many 
important features about the world (in particular 
geometry and dynamics) are not easily modeled by 
logical propositions.  For example, as I write this, I 
am pondering the difficulties of using logical 
propositions to model a bookcase in my office that is 
filled with books, papers, boxes, folders, and assorted 
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junk and trash.  As I ponder this, a fly maneuvers at 
high speed (in terms of body lengths per second) 
around my bookcase without danger of collision.  
Apparently, the fly’s internal model of the world 
enables it to fly between shelves and stacks of books 
and papers without collision, and to land on the tip of 
a straw in an old soda can without difficulty.  Surely 
the fly’s brain does not represent my bookcase in 
terms of logical propositions.   
 
It has been said that a picture is worth a thousand 
words.  I would venture that a 4-D representation (3 
spatial + 1 temporal) of a complex scenario in a 
dynamic environment may be worth a million logical 
propositions.   
 
On the other hand, the location and direction of 
motion of objects in the world are easily represented 
in an image or map, and distinguishing what changes 
from what does not in a dynamic environment can be 
easily determined by simple comparison between one 
frame and the next.  That is why 4D/RCS 
representations include iconic formats such as visual 
images and maps in addition to symbolic data 
structures such as frames, objects, classes, and rules.  
Both iconic and symbolic formats are linked together 
by pointers in a real-time relational database that is 
updated in each node at a rate that is commensurate 
with the requirements of the planning and control 
processes within that node. 
 
At the lowest level, signals and images from sensors 
are sampled many times per second and compared 
with expectations generated from world model 
predictions.  At all levels, differences between 
observations and expectations are used to update the 
internal model by a process of recursive estimation.  
Predictions from the world model are projected back 
into sensor coordinates, overlaid on, and cross 
correlated with images and maps of the external 
world.  The result is that symbols in the world model 
are linked to, and can be projected back onto, pixels 
and regions in images and maps.  In this way, the 
internal world model is effectively servoed to the 
external real world, and symbolic data structures in 
the world model are grounded to entities and events 
in the real world.   
 

This is illustrated in Figure 3 where a thread through 
a single chain of command in the 4D/RCS hierarchy 
of Figure 1 is shown.  At each echelon of the 
behavior generation hierarchy, the range and 
resolution of knowledge about the world is defined 
by the requirements of the task.  At each echelon, an 
attention process, driven by task priorities and 
differences between observations and predictions, 
selects those regions of the world that are important 
to the task.  At each echelon, the world model 
enables 4D/RCS behavior generation processes to 
plan tasks and paths that optimize a cost function that 
is defined by the global context of task goals, intent, 
priorities, and constraints. 
 
 

5.  ENGINEERING METHODOLOGY 
 
Over the past thirty five years, as many different 
applications have been implemented using the RCS 
reference model architecture, a RCS software 
engineering methodology has been developed.  
 
The RCS methodology begins with an in-depth 
analysis of the task or mission the system is intended 
to perform.  This is followed by the encoding of task 
knowledge (i.e., procedural knowledge) in the form 
of a task decomposition tree (e.g., AND/OR graph) 
that represents the decomposition of tasks into 
sequences of simpler and simpler subtasks.  This task 
decomposition framework is then mapped onto a 
hierarchy of organizational units that have the 
knowledge, skills, and abilities to perform the 
required task decomposition.  The world model 
knowledge needed to support this task decomposition 
is then determined.  Finally, the sensors and sensory 
processing capabilities required to maintain the world 
knowledge are specified.   

 
The fundamental premise is that at each point in 
time, and within each organizational unit, the state of 
the task defines the requirements for all of the 
support processing.  In particular, the task state 
determines what needs to be sensed, what world 
objects, events, and situations need to be analyzed, 
what plans need to be generated, and what task 
knowledge is required to do so (Barbera et al 2003, 
2004). 
 
 

 

 



     

 

Figure 3.  Five levels of the 4D/RCS architecture for Demo III.  On the right are Planner and Executor 
modules.  In the center-right are maps for representing terrain features, road, bridges, vehicles, friendly/enemy 
positions, and the cost and risk of traversing various regions.  On the left are Sensory Processing functions, 
symbolic representations of entities and events, and segmented images with labeled regions.  The coordinate 
transforms in the middle use range information to assign labeled regions in the entity image hierarchy on the 
center-left to locations on planning maps on the center-right.  This causes the hierarchy of entity classes on the 
left to be orthogonal to the hierarchy of planning maps used by BG processes on the right. 
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In Figure 4, an example of the RCS methodology 
for designing a control system for autonomous on-
road driving under everyday traffic conditions is 
summarized in six steps. 
  
Step 1 consists of an intensive analysis of domain 
knowledge from training manuals and subject matter 
experts.  Scenarios are developed and analyzed for 
each task and subtask.  The result of this step is a 
structuring of procedural knowledge into a task 
decomposition tree with simpler and simpler tasks at 
each echelon.  At each echelon, a vocabulary of 
commands (action verbs with goal states, parameters, 
and constraints) is defined to evoke task behavior at 
each echelon.  
 
Step 2 defines a hierarchical structure of 
organizational units that will execute the commands 
defined in step 1.   For each unit, its duties and 
responsibilities in response to each command are 
specified.  This is analogous to establishing a work 
breakdown structure for a development project, or 
defining an organizational chart for a business or 
military operation.   
 

Step 3 specifies the processing that is triggered 
within each unit upon receipt of an input command.  
For each input command, a state-graph (or state-
table or extended finite state automaton) is defined 
that provides a plan  (or procedure for making a 
plan) for accomplishing the commanded task.  The 
input command selects (or causes to be generated) 
an appropriate state-table, the execution of which 
generates a series of output commands to units at 
the next lower echelon. 
 
The library of state-tables contains a set of state-
sensitive procedural rules that identify all the task 
branching conditions and specify the corresponding 
state transition and output command parameters.   
 
The result of step 3 is that each organizational unit 
has for each input command a state-table of ordered 
production rules, each suitable for execution by an 
extended finite state automaton (FSA).  The 
sequence of output subcommands required to 
accomplish the input command is generated by 
situations (i.e., branching conditions) that cause the 
FSA to transition from one output subcommand to 
the next. 
 

 
 
 
 
Figure 4.  The six steps of the RCS methodology for knowledge acquisition and representation.
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In step 4, each of the situations that are defined in step 
3 are analyzed to reveal their dependencies on world 
and task states.  This step identifies the detailed 
relationships between entities, events, and states of the 
world that cause a particular situation to be true.  
 
In step 5, we identify and name all of the objects and 
entities together with their particular features and 
attributes that are relevant to detecting the above 
world states and situations. 
 
In step 6, we use the context of the particular task 
activities to establish the distances and, therefore, the 
resolutions at which the relevant objects and entities 
must be measured and recognized by the sensory 
processing component.  This establishes a set of 
requirements and/or specifications for the sensor 
system to support each subtask activity.  
 
 

6.  EXPERIMENTAL RESULTS 
 
Experimental validation of the 4D/RCS architecture 
has been provided by the performance of the Demo 
III experimental unmanned ground vehicles (XUVs) 
in an extended series of demonstrations and field tests 
during the winter of 2002-2003.  
 
The XUVs were equipped with an inertial reference 
system, a commercial grade GPS receiver (accurate to 
about +/- 20 m), a LADAR camera with a frame rate 
of 10 frames per second, and a variety of internal 
sensors.  The LADAR had a field of view 90 degrees 
wide and 20 degrees high with resolution of about ½ 
degree per pixel.  It was mounted on a pan/tilt head 
that enabled it to look in the direction that it planned 
to drive.  The LADAR was able to detect the ground 
out to a range of about 20 m, and detect vertical 
surfaces (such as trees) out to a range of about 60 m.  
Routes for XUV missions were laid out on a terrain 
map by trained Army scouts, and given to the XUVs 
in terms of GPS waypoints spaced more than 50 m 
apart. 
 
The XUVs operated completely autonomously until 
they got into trouble and called for help.  Typical 
reasons for calling for help were the XUV was unable 
to proceed because of some terrain condition or 
obstacle (such as soft sand on a steep slope, or dense 
woods), and was unable to find an acceptable path 
plan after several attempts at backing up and heading 
a different direction.  At such a point, an operator was 
called in to teleoperate the vehicle out of difficulty.  
During these operations, data was collected on the 
cause of the difficulty, the type of operator 
intervention required to extract the XUV, the time 
required before the XUV could be returned to 
autonomous mode, and the work load on the operator.   
 
During three major experiments designed to 
determine the technology readiness of autonomous 
driving, the Demo III experimental unmanned 
vehicles were driven a total of 550 km, over rough 

terrain: 1) in the desert; 2) in the woods, through 
rolling fields of weeds and tall grass, and on dirt 
roads and trails; and 3) through an urban environment 
with narrow streets cluttered with parked cars, 
dumpsters, culverts, telephone poles, and manikins.  
Tests were conducted under various conditions 
including night, day, clear weather, rain, and falling 
snow.  The unmanned vehicles operated over 90% of 
both time and distance without any operator 
assistance.  A detailed report of these experiments has 
been published (Camden et al 2003), along with high 
resolution ground truth data describing the terrain 
where the XUVs experienced difficulties (Witzgall et 
al 2003).  
 
It should be noted that the Demo III tests were 
performed in environments devoid of moving objects 
such as on-coming traffic, pedestrians, or other 
vehicles.  The inclusion of moving objects in the 
world model, and the development of perception, 
world modelling, and planning algorithms for 
operating in the presence of moving objects is a topic 
of current research. 
 
 

7. FUTURE PROSPECTS 
 
We believe that autonomous driving is an excellent 
topic for future research for the following reasons: 
 
First, it is a problem domain for which there is a large 
potential user base, both in the military and civilian 
sectors.  This translates into research funding. 
 
Second, it is a problem domain where physical 
actuators and power systems are readily available.  
Wheeled and tracked vehicle technology is mature, 
inexpensive, and widely deployed.   
 
Third, it is a problem domain for which the 
technology is ready.  The invention of real-time 
LADAR imaging makes it possible to capture the 3-D 
geometry and dynamics of the world.  This has 
broken the perception barrier.  The continued 
exponential growth rate in computing power per 
dollar cost has brought the necessary computational 
power within the realm of economic viability.  This 
has broken the cost barrier.  Cognitive modelling and 
intelligent control theory has advanced to the point 
where the engineering of intelligent systems is 
feasible.  This has broken the technology barrier. 
 
Finally, autonomous driving is problem domain of 
fundamental scientific interest.  Locomotion is 
perhaps the most basic of all behaviors in the 
biological world. Locomotion is essential to finding 
food and evading predators throughout the animal 
kingdom.  The brains of all animate creatures have 
evolved under the pressures of natural selection in 
rewarding successful locomotion behavior.   It is 
therefore, not unreasonable to suspect that building 
truly intelligent mobility systems will reveal 
fundamental new insights into the mysteries of how 



     

the mechanisms of brain give rise to the phenomena 
of intelligence, consciousness, and mind. 
 
Current research in our lab is focused on two aspects 
of autonomous vehicle control:   

1) autonomous driving on normal roads and 
streets, e.g., driving on country roads and 
city streets with on-coming traffic, 
negotiating intersections with traffic signals 
and pedestrians, and maneuvering in and out 
of parking spaces  

2) autonomous tactical behaviors for teams of 
real and virtual autonomous military ground 
and air vehicles, e.g., controlling the 
behavior of a platoon of scout vehicles 
consisting of ten unmanned ground vehicles 
and three unmanned air vehicles cooperating 
in the performance of a route reconnaissance 
mission prior to a troop echelon road march.  

 
We should note in closing that there remain many 
features of the 4D/RCS reference model architecture 
that have not yet been fully implemented in any 
application.  However, enough of the 4D/RCS 
reference model has been implemented to 
demonstrate that the fundamental concept is valid and 
the more advanced features are feasible.   
 
In many ways, 4D/RCS is a superset of Soar, ACT-R, 
ICARUS, IMPRINT, Dickmanns 4-D approach 
(Dickmanns 1999), and even behaviorist architectures 
such as Subsumption (Brooks 1986) and its many 
derivatives (Arkin 1998, Mataric 1993).  4D/RCS 
incorporates and integrates many different and 
diverse concepts and approaches into a harmonious 
whole.  It is hierarchical but distributed, deliberative 
yet reactive. It spans the space between the cognitive 
and reflexive, between planning and feedback control.  
It bridges the gap between spatial distances ranging 
from kilometres to millimetres, and between time 
intervals ranging from months to milliseconds.  And 
it does so in small regular steps, each of which can be 
easily understood and readily accomplished through 
well known computational processes.   
 
Each organizational unit in 4D/RCS refines tasks with 
about an order of magnitude increase in detail, and an 
order of magnitude decrease in scale, both in time and 
space.  At the upper levels, most of the computational 
power is spent on cognitive tasks, such as analyzing 
the past, understanding the present, and planning for 
the future.  At the lower levels, most of the 
computational power is spent in motor control, and 
the early stages of perception.   
 
However, at every level, the computational 
infrastructure is fundamentally the same (except for 
scale in time and space).  Computational modules 
(that theoretically could be implemented as neural 
nets, or finite state automata, or production rules) 
accept inputs and produce outputs.   Knowledge is 
represented in arrays, strings, pointers, frames, and 
rules.  At various levels and in many different ways, 

computational modules process sensory data, model 
the world, and decompose high-level intentions into 
low-level actions.  Within each module, this process 
is both limited in complexity and finite in scope.  
Perhaps most important, 4D/RCS makes the 
processes of intelligent behavior understandable in 
terms of computational theory.  Thus, it can be 
engineered into practical machines. 
 
Given the knowledge that we now have, and making 
reasonable assumptions regarding the growth of 
computational power and expected levels of funding 
over the next two decades, we believe that 
autonomous driving with safety and efficiency 
comparable to human performance will be both 
technologically and economically feasible by the year 
2025.   
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