

RCS: A COGNITIVE ARCHITECTURE
FOR INTELLIGENT MULTI-AGENT SYSTEMS

James S. Albus
Anthony J. Barbera

Intelligent Systems Division

Manufacturing Engineering Laboratory
National Institute of Standards and Technology

james.albus@nist.gov
anthony.barbera@nist.gov

Abstract: RCS (Real-time Control System) is a cognitive architecture designed to
enable any level of intelligent behavior, up to and including human levels of
performance. RCS was inspired 30 years ago by a theoretical model of the cerebellum,
the portion of the brain responsible for fine motor coordination and control of
conscious motions. It was originally designed for sensory-interactive goal-directed
control of laboratory manipulators. Over three decades, it has evolved into a real-time
control architecture for intelligent machine tools, factory automation systems, and
intelligent autonomous vehicles.

RCS consists of a multi-layered multi-resolutional hierarchy of computational agents
each containing elements of sensory processing (SP), world modeling (WM), value
judgment (VJ), behavior generation (BG), and a knowledge database (KD). At the
lower levels, these agents generate goal-seeking reactive behavior. At higher levels,
they enable decision making, planning, and deliberative behavior.

This paper is a product of U. S. Government employees in the course of their assigned
duties, and therefore not subject to copyright.

Keywords: cognitive architectures, unmanned vehicles, intelligent machines,
knowledge-based control, knowledge representation, recursive estimation, systems
engineering, image processing

1. INTRODUCTION

Interest in cognitive models and intelligent systems
has grown rapidly over the past two decades as a
result of a confluence of three important events:

1.1 The emergence of a computational theory of

intelligence

A fully developed scientific theory of intelligence
does not yet exist, but an understanding of how to
build intelligent systems is developing faster than
most people appreciate. Progress is rapid in many
different fields. Recent results from a number of
different disciplines, including the neurosciences,
cognitive psychology, artificial intelligence, robotics,
and intelligent machines, have laid the foundations
for a computational theory of intelligence (Newell &

Simon 1972, Anderson 1983, Laird et al 1987, Albus
1991, Albus and Meystel 2001).

1.2 The continued exponential growth in computing
power

The estimated computational power of the human
brain is already rivaled by existing supercomputers.
Within the next quarter century, computational
power approaching that of the human brain can be
expected from a small network of desktop machines
(Kurzweil 1999). This means that serious attempts
can be made to model the functional capabilities of
the brain in perception, cognition, and behavioral
skills. Of course, having the computational power is
only part of the challenge, the rest is making proper
use of it.

Proceedings of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, IAV 2004, Lisbon, Portugal, July 5 - 7, 2004.

1.3 Growth in user interest for military and
commercial applications

Potential applications in both civilian and military
systems have begun to emerge. In the United States,
military interest in unmanned vehicles (air, ground,
and sea) has grown rapidly as autonomous vehicle
capabilities have been demonstrated that far exceed
previous expectations (Shoemaker et al 1999). In
Japan, Europe, and the U.S., automotive companies
are actively pursuing commercial applications of
adaptive cruise control, crash warning systems, and
collision avoidance technology (Bishop 2003). The
eventual result may be the intelligent automotive
autopilot.

In subsequent sections, we will discuss the
characteristics of cognitive architectures in Section 2,
the RCS reference model in Section 3, some of the
theoretical problems of computational models in
Section 4, the RCS methodology for system design
in Section 5, some experimental results in Section 6,
and future prospects in Section 7.

2. COGNITIVE ARCHITECTURES

A cognitive architecture can be defined as the
organizational structure of functional processes and
knowledge representations that enable the modelling
of cognitive phenomena. Over the past half-century,
several cognitive architectures have been developed.
One of the earliest was the ACT architecture
(Anderson 1983). ACT grew out of research on
human memory. Over the years, ACT has evolved
into ACT* and more recently, ACT-R. ACT-R is
being used in several research projects in an
Advanced Decision Architectures Collaborative
Technology Alliance for the U.S. Army (Gonzalez
2003). ACT-R is also being used by thousands of
schools across the country as an algebra tutor – an
instructional system that supports learning-by-doing.

Another well known and widely used architecture is
Soar. Soar grew out of research on human problem
solving, and has been used for many academic and
military research projects in problem solving,
language understanding, computational linguistics,
theorem proving, and cognitive modeling (Newell
and Simon 1972, Laird et al 1987). A recent
commercial version of Soar (Tac-Air Soar1) has been
developed to address a number of simulation and
training problems for the U.S. Air Force (SoarTech
2004).

Other cognitive architectures include Prodigy,
ICARUS, IMPRINT, EPIC, and RCS. Like Soar,
Prodigy uses search through a problem space to
achieve goals cast as first-order expressions (Minton
1990). ICARUS is a reactive architecture that
encodes knowledge as reactive skills (Shapiro &

1 The name of commercial products or vendors does not
imply NIST endorsement or that this product is necessarily
the best for the purpose.

Langley 1999). IMPRINT is a task description
language designed for the Army to capture the
procedural specification of tactical behavior
scenarios. It contains a dynamic, stochastic, discrete-
event network modelling tool designed to help assess
the interaction of soldier and system performance
throughout the system lifecycle – from concept and
design through field testing and system upgrades.
IMPRINT has been integrated with ACT-R to model
military behaviors (Archer et al 2003). EPIC is an
architecture that models the detailed timing of human
perceptual, cognitive, and motor activity, including
the input/output characteristics of the nervous system
connecting the higher level cognitive functions to the
external world (Kieras and Meyer 1997). RCS is a
control system architecture inspired by a theory of
cerebellar function (Albus 1971). RCS models the
brain as a hierarchy of goal-directed sensory-
interactive intelligent control processes that
theoretically could be implemented by neural nets,
finite state automata, or production rules (Albus
1981).

RCS is similar to other cognitive architectures in that
it represents procedural knowledge in terms of
production rules, and represents declarative
knowledge in abstract data structures such as frames,
classes, and semantic nets. RCS differs from other
cognitive architectures in that it also includes signals,
images, and maps in its knowledge database, and
maintains a tight real-time coupling between iconic
and symbolic data structures in its world model.
RCS is also different in: a) its focus on task
decomposition as the fundamental organizing
principle; b) its level of specificity in the assignment
of duties and responsibilities to agents and units in
the behavior generating hierarchy; and c) its
emphasis on controlling real machines in real-world
environments.

RCS evolved from the bottom up as a real-time
intelligent control system for real machines operating
on real objects in the real world. The first version of
RCS was developed as an sensory-interactive goal-
directed controller for a laboratory robot (Barbera et
al 1979). Over the years, RCS has evolved into an
intelligent controller for industrial robots, machine
tools, intelligent manufacturing systems, automated
general mail facilities, automated stamp distribution
systems, automated mining equipment, unmanned
underwater vehicles, and unmanned ground vehicles
(Barbera et al 1984, Albus 1997). Throughout its
development, all symbols in the RCS world model
have been grounded to objects and states in the real
world.

The most recent version of RCS (4D/RCS) embeds
elements of Dickmanns (1992, 1999) 4-D approach
to machine vision within the RCS control
architecture. 4D/RCS was designed for the U.S.
Army Research Lab AUTONAV and Demo III
Experimental Unmanned Vehicle programs and has
been adopted by the Army Future Combat System
program for Autonomous Navigation Systems
(Albus and Meystel 2001, Albus et al 2002).

3. A REFERENCE MODEL ARCHITECTURE

A reference model architecture describes the
functions, entities, events, relationships, and
information flow that takes place within and between
functional modules. A reference model provides a
framework for the specification of functional
requirements, the design of software to meet those
requirements, and the testing of components and
systems. A block diagram of a 4D/RCS reference
model architecture is shown in Figure 1. Each node
in the architecture represents an operational unit in
an organizational hierarchy. Each node contains a
behavior generation (BG), world modelling (WM),
sensory processing (SP), and value judgment (VJ)
process together with a knowledge database (KD)
(not shown in Figure 1.)

Figure 2 shows a first level of detail in 4D/RCS
nodes. Each node contains both a deliberative and a
reactive component. Bottom-up, each node closes a
reactive control loop driven by feedback from
sensors. Top-down, each node generates and
executes plans designed to satisfy task goals,

priorities, and constraints conveyed by commands
from above. Within each node, deliberative plans are
merged with reactive behaviors (Albus et al 2002).

Each BG process accepts tasks and plans and
executes behavior designed to accomplish those
tasks. The internal structure of the BG process
consists of a planner and a set of executors (EX). At
the upper right of Figure 2, task commands from a
supervisor BG process are input. A planner module
decomposes each task into a set of coordinated plans
for subordinate BG processes. For each subordinate
there is an Executor that issues commands, monitors
progress, and compensates for errors between desired
plans and observed results. The Executors use
feedback to react quickly to emergency conditions
with reflexive actions. Predictive capabilities
provided by the WM may enable the Executors to
generate preemptive behavior.

Plans may be generated by any of a great variety of
planning algorithms, e.g., case-based reasoning,
search-based optimisation, or schema-based
scripting.

Figure 1. A 4D/RCS reference model architecture for an autonomous vehicle. Processing nodes are
organized such that the BG processes form a command tree. Information in the knowledge database is shared
between WM processes in nodes above, below, and at the same level within the same subtree. On the right, are
examples of the functional characteristics of the BG processes at each level. On the left, are examples of the
scale of maps generated by the SP processes and populated by the WM in the KD at each level. Sensory data
paths flowing up the SP hierarchy typically form a graph, not a tree. VJ processes are hidden behind WM
processes in the diagram. A control loop may be closed at every node. An operator interface may provide input
to, and obtain output from, processes in every node. (Numerical values are representative examples only.
Actual numbers depend on parameters of the specific design.)

O
PE

R
A

TO
R

 IN
TE

R
FA

C
E

SP WM BG

SP WM BG

SP WM BG

SP WM BG

Pixels

5 m
maps

50 m
maps

SP WM BG SP WM BG

SP WM BG

0.5 second plans
Steering, speed

5 second plans
Subtask on object surface
Obstacle-free paths

SP WM BGSP WM BG

SP WM BGSP WM BG SP WM BG

SERVO

PRIMITIVE

SUBSYSTEM

SURROGATE SECTION

SURROGATE PLATOON

SENSORS AND ACTUATORS

Plans for next 2 hours

Plans for next 24 hours

0.05 second plans
Actuator output

SP WM BGSP WM BG SP WM BG SP WM BG SP WM BG SP WM BG SP WM BG SP WM BG

500 m maps

LocomotionCommunication Mission Package

VEHICLE Plans for next 50 seconds
Task to be done on objects of attention

Plans for next 10 minutes
Tasks relative to nearby objects

5 km maps

50 km maps

RSTA

500 km maps SURROGATE BATTALION

Tasks relative to distant objects

Daily schedule of tasks

Whatever the methodology, alternative possible
futures are subjected to the following procedure:

While the planning period is open

{
1) the BG planner hypothesizes a

tentative_plan;
2) the WM predicts the probable_result

of the tentative_plan;
3) the VJ evaluates the

probable_result_value;
4) a plan selector within the BG planner

checks to see if the
probable_result_value is greater than
the previous probable_result_value of
the plan already in the
current_best_plan_buffer,

{
if it is, then the tentative_plan replaces the
current plan in the
current_best_plan_buffer;
else continue;

}
};

On the next execution clock cycle,

1) Move the contents of the
current_best_plan_buffer into the
executor_plan_buffers;

2) Begin replanning immediately, or
wait until the next planning cycle
triggers;

This entire process occurs at each level of the
4D/RCS hierarchy within the spatial/temporal
planning horizon imposed at that level.

The executor_plan_buffer forms an interface
between the planner and executor processes in each
node. This is the interface between deliberative
and reactive processes. The executor_plan_buffer
enables the planning process to run asynchronously
and at a slower repetition rate than the execution
cycle of the reactive control loop. As soon as new
plans are developed, they are loaded into the
executor_plan_buffers. The planner is free to run
on its own so long as the executor_plan_buffers are
kept supplied with a current_best_plan. In the
4D/RCS architecture this interface between
planners and executors exists within every node in
the computational hierarchy. Thus, the interface
between deliberative and reactive processes is not
localized to a particular level, but is distributed
throughout the 4D/RCS architecture.

SP and WM processes interact to support
windowing (i.e., attention), grouping (i.e.,
segmentation), recursive estimation (e.g., Kalman
filtering), and classification (i.e., detection or
recognition). WM processes generate and update
images, maps, entities, events, attributes, and states
in the KD. Working together, BG, WM, and SP

enable deliberative, reactive, and preemptive
behavior. Coordination between subordinate BG
processes is achieved by cross-coupling among
plans and sharing of information among Executors
via the KD.

At the top, the highest level task is defined by the
highest level (i.e., mission) goal. At each
successive level in the hierarchy, commanded tasks
from above are decomposed into subtasks that are
sent to subordinates below. Finally, at the bottom,
subcommand outputs are sent to actuators to
generate forces and movements. Also at the
bottom, sensors transform energy into signals that
provide sensory input.

4. DISCUSSION

4D/RCS addresses three of the most significant
theoretical arguments raised against the possibility
of computers achieving human levels of
intelligence. These are:

4.1 Abductive inference
Abductive inference is the process of reasoning
backward from consequent to antecedent. It has
been described by Peirce (1958) as “nothing but
guessing.” The inability of local syntactical
systems to perform abductive inference is cited by
Fodor (2000) as why he believes computational
processes cannot produce true intelligence. To
Fodor, all computer operations are inherently local
and syntactic, and hence fundamentally incapable
of context sensitive logic.

But the RCS architecture is driven top-down by
high level mission goals, priorities, and constraints.
These provide global context for making gestalt
hypotheses (i.e., perceptual guesses) regarding
where to focus attention and how to group (or
segment) signals and pixels into patterns and
regions that correspond to entities and events in the
external world. At each level of sensory
processing, abductive inferences in the form of
gestalt hypotheses are used to segment signals and
images. Abductive inferences can be tested by
comparing expectations based on hypotheses
against observations from sensors. For each
hypothesized entity or event, variance between
predictions and observations provides a measure of
confidence in the hypothesis. When variance is
small, confidence is high, and vice versa. If
confidence falls below threshold, a hypothesis is
rejected and another generated. This supports
Peirces’s claims that abduction can be represented
in a “perfectly definite logical form.”

Figure 2. A typical 4D/RCS computational node. Task command input comes from a higher level BG
process in the 4D/RCS hierarchy. Each input task command is decomposed into a plan consisting of subtasks
for subordinate BG processes. A WM process maintains a KD that is the BG unit’s best estimate of the external
world. A SP process operates on input from sensors by windowing (i.e., focusing attention), grouping,
computing attributes, filtering, and recognizing entities, events, and situations. A VJ process evaluates expected
results of tentative plans. A VJ process also assigns confidence and worth to entities, events, and situations
entered into the KD.

4.2 Symbol grounding
Symbol grounding is the establishment of direct
correspondence between internal symbolic data and
external real world entities, events, and relationships.
The inability of local syntactical systems to perform
symbol grounding is cited by Searle (1992) as why
he believes computational processes can never be
really intelligent. To Searle, computer operations are
without semantic meaning because the symbols they
manipulate are never grounded in the real world.

But the 4D/RCS architecture establishes and
maintains a direct link between the internal world
model and the external real world. A RCS attention
process directs sensors toward regions of the world
that are important. A RCS segmentation process
applies context-sensitive gestalt grouping hypotheses
to patterns of signals from sensors. As a result of
segmentation, spatial and temporal groupings are
linked to named symbolic data structures (such as C
structs, or C++ objects and classes) that represent
hypothesized entities and events. Geometric and
temporal attributes of hypothesized groups are
computed, and relationships (represented as pointers)
between entities, events, and their constituent
elements are established and maintained. Finally,
entities and events are classified and recognized by
comparing observed attributes to stored attributes of
class prototypes. This entire process is repeated at
each stage of sensory processing at a rate fast enough
to capture the dynamics of the entities and events
being attended to.

This recursive two-way interaction between model-
based expectations and sensory-based observations
provides symbol grounding. Expectations based on
attributes and class membership of entities and
events in the world model are constantly compared
against observations derived from sensors monitoring
corresponding entities and events in the real world.
In this way, symbolic representations of entities,
events, and relationships in the 4D/RCS world model
are grounded to entities, events, and relationships in
the real world.
It should be noted that many other researchers in the
field of robotics and autonomous systems have begun
to address the symbol grounding problem. A recent
special edition of Robotics and Autonomous Systems
consists of a collection of articles that address the
“perceptual anchoring” of symbolic representations
to objects in the real world (Coradeschi and Saffiotti
2003).

4.3 The frame problem
The frame problem is the problem of predicting what
in the world changes as the result of an action, and
what stays the same. The frame problem results from
attempting to model the world entirely in terms of
logical propositions (Pylyshyn 1987). Many
important features about the world (in particular
geometry and dynamics) are not easily modeled by
logical propositions. For example, as I write this, I
am pondering the difficulties of using logical
propositions to model a bookcase in my office that is
filled with books, papers, boxes, folders, and assorted

Predicted
Sensory Input

PLANNER

EX

Plan

EX

Plan

EX

Plan

BG

PLANNER

EX

Plan

EX

Plan

EX

Plan

BG

PLANNER

EX

Plan

EX

Plan

EX

Plan

BG

Agent1

Subtask
Command

Output

Subtask
Command

Output

Subtask
Command

Output

WORLD
MODELING

SIMULATOR
PREDICTOR

VALUE
JUDGMENT

cost
benefit

EXECUTOR

PLAN

BEHAVIOR
GENERATION

Expected
Results

Tentative
Plans

Images
Maps

Entities
Events
States

Attributes
Predicted

States

Task
Command

Input

EXECUTOR

PLAN

EXECUTOR

PLAN

Task Decomposition
PLANNER

KD

SENSORY
PROCESSING

Classify
Filter
Compute
Group
Window

BG
WMSP

VALUE
JUDGMENT

value

confidence

Classified
Sensory Output

Observed
Sensory Input

4D/RCS Node

Variance

junk and trash. As I ponder this, a fly maneuvers at
high speed (in terms of body lengths per second)
around my bookcase without danger of collision.
Apparently, the fly’s internal model of the world
enables it to fly between shelves and stacks of books
and papers without collision, and to land on the tip of
a straw in an old soda can without difficulty. Surely
the fly’s brain does not represent my bookcase in
terms of logical propositions.

It has been said that a picture is worth a thousand
words. I would venture that a 4-D representation (3
spatial + 1 temporal) of a complex scenario in a
dynamic environment may be worth a million logical
propositions.

On the other hand, the location and direction of
motion of objects in the world are easily represented
in an image or map, and distinguishing what changes
from what does not in a dynamic environment can be
easily determined by simple comparison between one
frame and the next. That is why 4D/RCS
representations include iconic formats such as visual
images and maps in addition to symbolic data
structures such as frames, objects, classes, and rules.
Both iconic and symbolic formats are linked together
by pointers in a real-time relational database that is
updated in each node at a rate that is commensurate
with the requirements of the planning and control
processes within that node.

At the lowest level, signals and images from sensors
are sampled many times per second and compared
with expectations generated from world model
predictions. At all levels, differences between
observations and expectations are used to update the
internal model by a process of recursive estimation.
Predictions from the world model are projected back
into sensor coordinates, overlaid on, and cross
correlated with images and maps of the external
world. The result is that symbols in the world model
are linked to, and can be projected back onto, pixels
and regions in images and maps. In this way, the
internal world model is effectively servoed to the
external real world, and symbolic data structures in
the world model are grounded to entities and events
in the real world.

This is illustrated in Figure 3 where a thread through
a single chain of command in the 4D/RCS hierarchy
of Figure 1 is shown. At each echelon of the
behavior generation hierarchy, the range and
resolution of knowledge about the world is defined
by the requirements of the task. At each echelon, an
attention process, driven by task priorities and
differences between observations and predictions,
selects those regions of the world that are important
to the task. At each echelon, the world model
enables 4D/RCS behavior generation processes to
plan tasks and paths that optimize a cost function that
is defined by the global context of task goals, intent,
priorities, and constraints.

5. ENGINEERING METHODOLOGY

Over the past thirty five years, as many different
applications have been implemented using the RCS
reference model architecture, a RCS software
engineering methodology has been developed.

The RCS methodology begins with an in-depth
analysis of the task or mission the system is intended
to perform. This is followed by the encoding of task
knowledge (i.e., procedural knowledge) in the form
of a task decomposition tree (e.g., AND/OR graph)
that represents the decomposition of tasks into
sequences of simpler and simpler subtasks. This task
decomposition framework is then mapped onto a
hierarchy of organizational units that have the
knowledge, skills, and abilities to perform the
required task decomposition. The world model
knowledge needed to support this task decomposition
is then determined. Finally, the sensors and sensory
processing capabilities required to maintain the world
knowledge are specified.

The fundamental premise is that at each point in
time, and within each organizational unit, the state of
the task defines the requirements for all of the
support processing. In particular, the task state
determines what needs to be sensed, what world
objects, events, and situations need to be analyzed,
what plans need to be generated, and what task
knowledge is required to do so (Barbera et al 2003,
2004).

Figure 3. Five levels of the 4D/RCS architecture for Demo III. On the right are Planner and Executor
modules. In the center-right are maps for representing terrain features, road, bridges, vehicles, friendly/enemy
positions, and the cost and risk of traversing various regions. On the left are Sensory Processing functions,
symbolic representations of entities and events, and segmented images with labeled regions. The coordinate
transforms in the middle use range information to assign labeled regions in the entity image hierarchy on the
center-left to locations on planning maps on the center-right. This causes the hierarchy of entity classes on the
left to be orthogonal to the hierarchy of planning maps used by BG processes on the right.

N

5000 m range
40 m resolution

object
image

object
image

N N

50 m range
40 cm resolution

- 1 min horizon

EXECUTOR

VEHICLE
PLANNER

500 m range
4 m resolution

object
image

object
image

1

2

6

3

54

WM
simulator

pointers
object
image

vehicle
ground

sky
tree

rock

hill

N

SP5 classification
confirm grouping

filter
compute attributes

grouping
attention

building

vehicle

5 m range
4 cm resolution

FRAMES
Entities, Events

Attributes
States

Relationships

IMAGES
Labeled Regions

Attributes

MAPS
Labeled Features

Attributes
Icons

MAPS
Cost, Risk

Plans

EXECUTOR

ACTUATORSENSORS

WORLD

SENSORY
PROCESSING

 WORLD MODELING
 VALUE JUDGMENT BEHAVIOR GENERATION

groups

objects

surfaces

features

pixel attributes

- 5 s horizon

EXECUTOR

SUBSYSTEM
PLANNER

EXECUTOR

PRIMITIVE
PLANNER

50 ms horizon

EXECUTOR

SERVO
PLANNER

 vehicle state
sensor state

SP1
actuator state

ladar
signals

stereo CCD
signals

stereo FLIR
signals

color CCD
signals

radar
signals

actuator
signals

navigational
signals

actuator
power

pixels

compute attributes, filter, classification

labeled
pixels

labeled
features

labeled
surfaces

labeled
objects

labeled
groups

WM
simulator

WM
simulator

WM
simulator

WM
simulator

N N

status

status

status

status

status

classification
confirm grouping

filter
compute attributes

grouping
attention

classification
confirm grouping

filter
compute attributes

grouping
attention

SP4 classification
confirm grouping

filter
compute attributes

grouping
attention

SP3

SP2

pointers
object
image

vehicle
ground

sky
tree

rock

hill
building

coordinate
transformations

SECTION
PLANNER

- 10 min horizon

Section Task
Command

a priori
maps

500 ms horizon

Vehicle
Task

Subsystem
Task

Primitive
Task

Servo
Task

Plan

Plan

Plan

Plan

Plan

In Figure 4, an example of the RCS methodology
for designing a control system for autonomous on-
road driving under everyday traffic conditions is
summarized in six steps.

Step 1 consists of an intensive analysis of domain
knowledge from training manuals and subject matter
experts. Scenarios are developed and analyzed for
each task and subtask. The result of this step is a
structuring of procedural knowledge into a task
decomposition tree with simpler and simpler tasks at
each echelon. At each echelon, a vocabulary of
commands (action verbs with goal states, parameters,
and constraints) is defined to evoke task behavior at
each echelon.

Step 2 defines a hierarchical structure of
organizational units that will execute the commands
defined in step 1. For each unit, its duties and
responsibilities in response to each command are
specified. This is analogous to establishing a work
breakdown structure for a development project, or
defining an organizational chart for a business or
military operation.

Step 3 specifies the processing that is triggered
within each unit upon receipt of an input command.
For each input command, a state-graph (or state-
table or extended finite state automaton) is defined
that provides a plan (or procedure for making a
plan) for accomplishing the commanded task. The
input command selects (or causes to be generated)
an appropriate state-table, the execution of which
generates a series of output commands to units at
the next lower echelon.

The library of state-tables contains a set of state-
sensitive procedural rules that identify all the task
branching conditions and specify the corresponding
state transition and output command parameters.

The result of step 3 is that each organizational unit
has for each input command a state-table of ordered
production rules, each suitable for execution by an
extended finite state automaton (FSA). The
sequence of output subcommands required to
accomplish the input command is generated by
situations (i.e., branching conditions) that cause the
FSA to transition from one output subcommand to
the next.

Figure 4. The six steps of the RCS methodology for knowledge acquisition and representation.

GotoDestination...

GoOn…Rd TurnRightOnto...RdTurnLeftOnto...Rd

FollowLane

DoArcPath

DriveOnTwoLaneRd PassVehInFront NegotiateLaneConstriction

ChangeToRightLaneChangeToLeftLane

GoOn…Rd GoOn…Rd

FollowLane FollowLane

DoLinePathDoArcPathDoLinePath

Turn Accelerate SlowDown

GotoDestination...

GoOn…Rd

PassVehInFront

FollowLane

DoArcPath
Vehicle

Trajectory

Destination
Manager

Driving
Behaviors

Route Segment
Manager

Elemental
Maneuvers

Turn
Steering

Servo

Accelerate

Speed
Servo

P
N
D
2
1

Task Decomposition
Tree

Hierarchical Organization of
Agent Control Modules

SENSORY
PROCESSING

KNOWLEDGE
DATABASE

BEHAVIOR
GENERATION

WORLD
MODEL

VALUE
JUDGMENT

(Executing)

(FollowLane)(Executing)

SENSORY
INPUT

(Driving Behaviors
Agent Control Module)

Select “PassVehInFront”
Plan State-Table

(PassVehInFront)

D riv eO nT wo LaneR d

Pa ss Veh In Fro nt

Pa ss VehInFront

D ri veO nTwoL an eR d

Ne go tiateLaneCon strict

.
Pas sVeh InF ron t.

BEHAVIOR
GENERATION

COMMANDED
TASK (GOAL)

STATUS

STATUS

NEXT
SUBGOAL

(PassVehInFront)

(FollowLane)

STATE-TABLES
PLAN

 S1 ConditionsGoodToPass

PLAN STATE-TABLE

PassVehInFront

 S2 ChangeToLeftLane

S2 InPassingLane S3 FollowLane

S4 ReturnedToLane S0 FollowLane
 Done

NewPlan S1 FollowLane

 S3 ClearOfPassedVehicle S4 ChangeToRightLane

ConditionsGoodToPass

BEHAVIOR
GENERATION

WORLD MODEL
KNOWLEDGE

SENSORY
PROCESSING

Input State/Situation Output Action

LegalToPass

EnvironmentSafeToPass

SituationInFrontOKtoPass

SituationInBackOKtoPass

OnComingTrafficOKtoPass

NoTransitOrSchoolBusStopping

NoBridgeInPassZone

NoRailroadXInPassZone

NoIntersectionsInPassZone

LaneMarkingsAllowPass

“NoPassZone” -

NoTollBothInPassZone

NoTunnelInPassZone

NoConstructionInPassZone

NoTransitOrSchoolBusStopping

NoBridgeInPassZone

NoIntersectionsInPassZone

LaneMarkingsAllowPass

NotInEffect

NoTollBothInPassZone

NoTunnelInPassZone

NoConstructionInPassZone

WeatherNotObscuring

WindsNotSignificant

OwnVehicleCapable
RoadSurfaceSuitable
RoadNotTooSlippery

RoadSplashNotSignifcant

NoVehicleEnteringRoad
VehInFrontNotBlockingSight

NoCurveBockingSight
NoHillBlockingSight

NoVehicleTurningLeft

NoPedestrianOnRoadSide

NoBicyclist

VehiclesDrivingNormally

NoVehiclePassing

SufficientReturnSpace

NoVehicleEnteringLane

NoPostalVehicleStopping

NoActiveEmergencyVehicles

NoDeliveryVehicleStopping

VehicleNotAttemptingToPass
VehicleNotTailgating

VehicleNotClosingRapidly
NoActiveEmergencyVehicles

DistToOnComingVehicleOK
OncomingVehiclesNormal

SituationsWorld StatesObjects & Attributes

ColorCameras LADAR
Radar Stereo FLIR Nav

Segmented Groupings

Features and Attributes
Objects and Maps

Object Groupings and
Classifications

CrossBuck(pos)

0.11 degrees @ 600 ft

15 ft

9 in

54 in

CrossBuck (pos)

Lights (pos, state)

Crossing Gate (pos)

Signs (pos, facing - dir,
text and graphics)

Tracks (pos, dir)

Train (pos, dir)

Lanes (pos, dir, width,
curvature)

MapOfPassZone (speeds,
veh-positions, accel)

DOT Driving Manuals
and Driving Laws

Domain Experts

+

1
2

3

45

6

GotoDestination...

GoOn…Rd TurnRightOnto...RdTurnLeftOnto...Rd

FollowLane

DoArcPath

DriveOnTwoLaneRd PassVehInFront NegotiateLaneConstriction

ChangeToRightLaneChangeToLeftLane

GoOn…Rd GoOn…Rd

FollowLane FollowLane

DoLinePathDoArcPathDoLinePath

Turn Accelerate SlowDown

GotoDestination...

GoOn…Rd

PassVehInFront

FollowLane

DoArcPath
Vehicle

Trajectory

Destination
Manager

Driving
Behaviors

Route Segment
Manager

Elemental
Maneuvers

Turn
Steering

Servo

Accelerate

Speed
Servo

P
N
D
2
1

Task Decomposition
Tree

Hierarchical Organization of
Agent Control Modules

SENSORY
PROCESSING

KNOWLEDGE
DATABASE

BEHAVIOR
GENERATION

WORLD
MODEL

VALUE
JUDGMENT

(Executing)

(FollowLane)(Executing)

SENSORY
INPUT

(Driving Behaviors
Agent Control Module)

Select “PassVehInFront”
Plan State-Table

(PassVehInFront)

D riv eO nT wo LaneR d

Pa ss Veh In Fro nt

Pa ss VehInFront

D ri veO nTwoL an eR d

Ne go tiateLaneCon strict

.
Pas sVeh InF ron t.

BEHAVIOR
GENERATION

COMMANDED
TASK (GOAL)

STATUS

STATUS

NEXT
SUBGOAL

(PassVehInFront)

(FollowLane)

STATE-TABLES
PLAN

 S1 ConditionsGoodToPass

PLAN STATE-TABLE

PassVehInFront

 S2 ChangeToLeftLane

S2 InPassingLane S3 FollowLane

S4 ReturnedToLane S0 FollowLane
 Done

NewPlan S1 FollowLane

 S3 ClearOfPassedVehicle S4 ChangeToRightLane

ConditionsGoodToPass

BEHAVIOR
GENERATION

WORLD MODEL
KNOWLEDGE

SENSORY
PROCESSING

Input State/Situation Output Action

LegalToPass

EnvironmentSafeToPass

SituationInFrontOKtoPass

SituationInBackOKtoPass

OnComingTrafficOKtoPass

NoTransitOrSchoolBusStopping

NoBridgeInPassZone

NoRailroadXInPassZone

NoIntersectionsInPassZone

LaneMarkingsAllowPass

“NoPassZone” -

NoTollBothInPassZone

NoTunnelInPassZone

NoConstructionInPassZone

NoTransitOrSchoolBusStopping

NoBridgeInPassZone

NoIntersectionsInPassZone

LaneMarkingsAllowPass

NotInEffect

NoTollBothInPassZone

NoTunnelInPassZone

NoConstructionInPassZone

WeatherNotObscuring

WindsNotSignificant

OwnVehicleCapable
RoadSurfaceSuitable
RoadNotTooSlippery

RoadSplashNotSignifcant

NoVehicleEnteringRoad
VehInFrontNotBlockingSight

NoCurveBockingSight
NoHillBlockingSight

NoVehicleTurningLeft

NoPedestrianOnRoadSide

NoBicyclist

VehiclesDrivingNormally

NoVehiclePassing

SufficientReturnSpace

NoVehicleEnteringLane

NoPostalVehicleStopping

NoActiveEmergencyVehicles

NoDeliveryVehicleStopping

VehicleNotAttemptingToPass
VehicleNotTailgating

VehicleNotClosingRapidly
NoActiveEmergencyVehicles

DistToOnComingVehicleOK
OncomingVehiclesNormal

SituationsWorld StatesObjects & Attributes

ColorCameras LADAR
Radar Stereo FLIR Nav

Segmented Groupings

Features and Attributes
Objects and Maps

Object Groupings and
Classifications

CrossBuck(pos)

0.11 degrees @ 600 ft

15 ft

9 in

54 in

CrossBuck (pos)

Lights (pos, state)

Crossing Gate (pos)

Signs (pos, facing - dir,
text and graphics)

Tracks (pos, dir)

Train (pos, dir)

Lanes (pos, dir, width,
curvature)

MapOfPassZone (speeds,
veh-positions, accel)

DOT Driving Manuals
and Driving Laws

Domain Experts

+

1
22

33

4455

66

In step 4, each of the situations that are defined in step
3 are analyzed to reveal their dependencies on world
and task states. This step identifies the detailed
relationships between entities, events, and states of the
world that cause a particular situation to be true.

In step 5, we identify and name all of the objects and
entities together with their particular features and
attributes that are relevant to detecting the above
world states and situations.

In step 6, we use the context of the particular task
activities to establish the distances and, therefore, the
resolutions at which the relevant objects and entities
must be measured and recognized by the sensory
processing component. This establishes a set of
requirements and/or specifications for the sensor
system to support each subtask activity.

6. EXPERIMENTAL RESULTS

Experimental validation of the 4D/RCS architecture
has been provided by the performance of the Demo
III experimental unmanned ground vehicles (XUVs)
in an extended series of demonstrations and field tests
during the winter of 2002-2003.

The XUVs were equipped with an inertial reference
system, a commercial grade GPS receiver (accurate to
about +/- 20 m), a LADAR camera with a frame rate
of 10 frames per second, and a variety of internal
sensors. The LADAR had a field of view 90 degrees
wide and 20 degrees high with resolution of about ½
degree per pixel. It was mounted on a pan/tilt head
that enabled it to look in the direction that it planned
to drive. The LADAR was able to detect the ground
out to a range of about 20 m, and detect vertical
surfaces (such as trees) out to a range of about 60 m.
Routes for XUV missions were laid out on a terrain
map by trained Army scouts, and given to the XUVs
in terms of GPS waypoints spaced more than 50 m
apart.

The XUVs operated completely autonomously until
they got into trouble and called for help. Typical
reasons for calling for help were the XUV was unable
to proceed because of some terrain condition or
obstacle (such as soft sand on a steep slope, or dense
woods), and was unable to find an acceptable path
plan after several attempts at backing up and heading
a different direction. At such a point, an operator was
called in to teleoperate the vehicle out of difficulty.
During these operations, data was collected on the
cause of the difficulty, the type of operator
intervention required to extract the XUV, the time
required before the XUV could be returned to
autonomous mode, and the work load on the operator.

During three major experiments designed to
determine the technology readiness of autonomous
driving, the Demo III experimental unmanned
vehicles were driven a total of 550 km, over rough

terrain: 1) in the desert; 2) in the woods, through
rolling fields of weeds and tall grass, and on dirt
roads and trails; and 3) through an urban environment
with narrow streets cluttered with parked cars,
dumpsters, culverts, telephone poles, and manikins.
Tests were conducted under various conditions
including night, day, clear weather, rain, and falling
snow. The unmanned vehicles operated over 90% of
both time and distance without any operator
assistance. A detailed report of these experiments has
been published (Camden et al 2003), along with high
resolution ground truth data describing the terrain
where the XUVs experienced difficulties (Witzgall et
al 2003).

It should be noted that the Demo III tests were
performed in environments devoid of moving objects
such as on-coming traffic, pedestrians, or other
vehicles. The inclusion of moving objects in the
world model, and the development of perception,
world modelling, and planning algorithms for
operating in the presence of moving objects is a topic
of current research.

7. FUTURE PROSPECTS

We believe that autonomous driving is an excellent
topic for future research for the following reasons:

First, it is a problem domain for which there is a large
potential user base, both in the military and civilian
sectors. This translates into research funding.

Second, it is a problem domain where physical
actuators and power systems are readily available.
Wheeled and tracked vehicle technology is mature,
inexpensive, and widely deployed.

Third, it is a problem domain for which the
technology is ready. The invention of real-time
LADAR imaging makes it possible to capture the 3-D
geometry and dynamics of the world. This has
broken the perception barrier. The continued
exponential growth rate in computing power per
dollar cost has brought the necessary computational
power within the realm of economic viability. This
has broken the cost barrier. Cognitive modelling and
intelligent control theory has advanced to the point
where the engineering of intelligent systems is
feasible. This has broken the technology barrier.

Finally, autonomous driving is problem domain of
fundamental scientific interest. Locomotion is
perhaps the most basic of all behaviors in the
biological world. Locomotion is essential to finding
food and evading predators throughout the animal
kingdom. The brains of all animate creatures have
evolved under the pressures of natural selection in
rewarding successful locomotion behavior. It is
therefore, not unreasonable to suspect that building
truly intelligent mobility systems will reveal
fundamental new insights into the mysteries of how

the mechanisms of brain give rise to the phenomena
of intelligence, consciousness, and mind.

Current research in our lab is focused on two aspects
of autonomous vehicle control:

1) autonomous driving on normal roads and
streets, e.g., driving on country roads and
city streets with on-coming traffic,
negotiating intersections with traffic signals
and pedestrians, and maneuvering in and out
of parking spaces

2) autonomous tactical behaviors for teams of
real and virtual autonomous military ground
and air vehicles, e.g., controlling the
behavior of a platoon of scout vehicles
consisting of ten unmanned ground vehicles
and three unmanned air vehicles cooperating
in the performance of a route reconnaissance
mission prior to a troop echelon road march.

We should note in closing that there remain many
features of the 4D/RCS reference model architecture
that have not yet been fully implemented in any
application. However, enough of the 4D/RCS
reference model has been implemented to
demonstrate that the fundamental concept is valid and
the more advanced features are feasible.

In many ways, 4D/RCS is a superset of Soar, ACT-R,
ICARUS, IMPRINT, Dickmanns 4-D approach
(Dickmanns 1999), and even behaviorist architectures
such as Subsumption (Brooks 1986) and its many
derivatives (Arkin 1998, Mataric 1993). 4D/RCS
incorporates and integrates many different and
diverse concepts and approaches into a harmonious
whole. It is hierarchical but distributed, deliberative
yet reactive. It spans the space between the cognitive
and reflexive, between planning and feedback control.
It bridges the gap between spatial distances ranging
from kilometres to millimetres, and between time
intervals ranging from months to milliseconds. And
it does so in small regular steps, each of which can be
easily understood and readily accomplished through
well known computational processes.

Each organizational unit in 4D/RCS refines tasks with
about an order of magnitude increase in detail, and an
order of magnitude decrease in scale, both in time and
space. At the upper levels, most of the computational
power is spent on cognitive tasks, such as analyzing
the past, understanding the present, and planning for
the future. At the lower levels, most of the
computational power is spent in motor control, and
the early stages of perception.

However, at every level, the computational
infrastructure is fundamentally the same (except for
scale in time and space). Computational modules
(that theoretically could be implemented as neural
nets, or finite state automata, or production rules)
accept inputs and produce outputs. Knowledge is
represented in arrays, strings, pointers, frames, and
rules. At various levels and in many different ways,

computational modules process sensory data, model
the world, and decompose high-level intentions into
low-level actions. Within each module, this process
is both limited in complexity and finite in scope.
Perhaps most important, 4D/RCS makes the
processes of intelligent behavior understandable in
terms of computational theory. Thus, it can be
engineered into practical machines.

Given the knowledge that we now have, and making
reasonable assumptions regarding the growth of
computational power and expected levels of funding
over the next two decades, we believe that
autonomous driving with safety and efficiency
comparable to human performance will be both
technologically and economically feasible by the year
2025.

Acknowledgements

This work was partly supported by the Army Research
Laboratory, Charles Shoemaker, Program Manager,
and by DARPA, Douglas Gage, Program Manager.
It was also supported by the Intelligent Systems
Division of NIST through funding for Research and
Engineering of Intelligent Systems.

REFERENCES

Albus, J.S. (1971), “A Theory of Cerebellar

Function”, Mathematical Biosciences, 10, pp.
25-61

Albus, J. (1981) Brains, Behavior, and Robotics,
BYTE/McGraw Hill, Peterborough, NH

Albus, J.S., (1991) “Outline for a Theory of
Intelligence,” IEEE Transactions on Systems,
Man and Cybernetics, Vol. 21, No. 3, pgs. 473-
509, May/June.

Albus, J.S. (1997) “The NIST Real-time Control
System (RCS): An approach to Intelligent
Systems Research,” Journal of Experimental and
Theoretical Artificial Intelligence 9 pp. 157-174

Albus, J., et al (2002) 4D/RCS: A Reference Model
Architecture for Unmanned Vehicle Systems,
Version 2.0, NISTIR 6910, National Institute of
Standards and Technology, Gaithersburg, MD

Albus, J. and Meystel, A. (2001) Engineering of
Mind: An Introduction to the Science of
Intelligent Systems, John Wiley & Sons, N.Y.

Anderson, J. (1983) The Architecture of Cognition,
Lawrence Erlbaum Associates, Mahwah, N.J.

Archer, R., Lebiere, C., Warwick, W., and Schunk, D.
(2003) “Integration of Task Network and
Cognitive Models to Support System Design,”
Proceedings Collaborative Technology Alliances
Conference 2003 Advanced Decision
Architectures, April 29 – May 1, College Park,
MD

Arkin, R.C. (1998) Behavior-Based Robotics, MIT
Press, Cambridge, MA.

Barbera, A.J., Albus, J.S., and Fitzgerald, M.L.
(1979) Hierarchical control of robots using

microcomputers, Proceedins of the 9th
International Symposium on Industrial Robots,
Washington, D.C.

Barbera, A.J., Fitzgerald, M.L., Albus, J.S., and
Haynes, L.S. (1984), “RCS: The NBS Real-
Time Control System,” Proceedings Robots 8
Conference and Exposition, Detroit, Michigan

Barbera, A., Horst, J., Schlenoff, C., Wallace, E.,
Aha, D. (2003) Developing World Model Data
Specifications as Metrics for Sensory Processing
for On-Road Driving Tasks, Proceedings of the
2003 PerMIS Workshop, NIST Special
Publication 990, Gaithersburg, MD

Barbera, A., Albus, J., Messina, E., Schlenoff, C.,
Horst, J. (2004) How Task Analysis Can Be
Used to Derive and Organize the Knowledge For
the Control of Autonomous Vehicles,
Proceedings of the Knowledge Representation
and Ontology for Autonomous Systems Workshop
of the 2004 AAAI Spring Symposium, Stanford
University, Palo Alto, CA

Bishop, R. (2003) “Presentation to a NIST/DARPA
Workshop on Autonomous Driving,” DARPA
Mobile Autonomous Robot Software Workshop,
Tysons Corner, VA

Brooks, R.A. (1986), “A Robust Layered Control
System for a Mobile Robot”, IEEE Journal of
Robotics and Automation, RA-2, 14-23.

Camden, R., Bodt, B., Schipani, S., Bornstein, J.,
Phelps, R., Runyon, T., French, F., and
Shoemaker, C. (2003) Autonomous Mobility
Technology Assessment: Interim Report –
February 2003, ARL-MR-565, Army Research
Laboratory, ATTN: AMSRL-WM-RP, Aberdeen
Proving Ground MD 21005-5066

Coradeschi, S. and Saffiotti, A. (Eds.) (2003) Special
Issue on Perceptual Anchoring, Robotics and
Autonomous Systems, 43. # 2-3

Dickmanns, E. D. (1992) A general dynamic vision
architecture for UGV and UAV, Journal of
Applied Intelligence, 2, 251-270

Dickmanns, E. D. (1999) An Expectation-based,
Multi-focal, Saccadic (EMS) Vision system for
Vehicle Guidance, 9th International Symposium
on Robotics Research (ISRR’99), Salt Lake City

Fodor, J. (2000) The mind doesn’t work that way,
MIT Press, Cambridge, Mass.

Gonzalez, C. (2003) ACT-R Implementation of an
Instance-Based Decision Making Theory,
Proceedings Collaborative Technology Alliances
Conference 2003 Advanced Decision
Architectures, April 29 – May 1, College Park,
MD

Kieras, D. and Meyer, D.E. (1997) An overview of
the EPIC architecture for cognition and
performance with application to human-computer
interaction. Human-Computer Interaction, 12,
391-438

Kurzweil, R. (1999) The Age of Spiritual Machines,
Penguin Books, New York, NY

Laird, J., Newell, A., and Rosenbloom, P. (1987)
SOAR: An Architecture for General Intelligence,
Artificial Intelligence, 33, pp. 1-64

Mataric, M. (1993) Designing emergent behaviors:
From local interactions to collective intelligence.
In J. A. Meyer, H. L. Roitblat and S. W. Wilson
(Eds.), From animals to animats: Proceedings of
the Second International Conference on
Simulation of Adaptive Behavior, 432-441,
Cambridge, MA: MIT Press

Minton, S. N. (1990) Quantitative results concerning
the utility of explanation-based learning.
Artificial Intelligence, 42, 363-391

Newell, A. and Simon, H. (1972) Human Problem
Solving, Prentice-Hall, Englewood Cliffs.

Peirce, Charles Sanders, (1958) Collected Papers,
Band VII, (Hrsg.) Arthur W. Burks

Pylyshyn, Z. (Ed.) (1987) The robot’s dilemma: The
frame problem in artificial intelligence, Ablex,
Norwood, N.J.

Searle, J. (1992) The Rediscovery of the Mind, MIT
Press, Cambridge, Mass.

Shapiro, D. and Langley, P. (1999) Controlling
physical agents through reactive logic
programming, Proceedings of the Third
International Conference on Autonomous Agents
386-387, ACM Press, Seattle

Shoemaker, C., Bornstein, J., Myers, S., and Brendle,
B. (1999) “Demo III: Department of Defense
testbed for unmanned ground mobility,” SPIE
Conference on Unmanned Ground Vehicle
Technology, SPIE Vol. 3693, Orlando, FA, April

SoarTech (2004)
http://www.soartech.com/htmlonly/projects.php

Witzgall, C., Cheok, G.S., Gilsinn, D.E., (2003)
Terrain Characterization from Ground-Based
LADAR, Proceedings of PerMIS ’03 Workshop,
National Institute of Standards and Technology,
Gaithersburg, MD 20899

