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Abstract— An iterative temporal registration algorithm is
presented in this paper1 for registering 3D range images ob-
tained from unmanned ground and aerial vehicles traversing
unstructured environments. We are primarily motivated by the
development of 3D registration algorithms to overcome both
the unavailability and unreliability of Global Positioning System
(GPS) within required accuracy bounds for Unmanned Ground
Vehicle (UGV) navigation. After suitable modifications to the
well-known Iterative Closest Point (ICP) algorithm, the modified
algorithm is shown to be robust to outliers and false matches
during the registration of successive range images obtained from
a scanning LADAR rangefinder on the UGV.

Towards registering LADAR images from the UGV with those
from an Unmanned Aerial Vehicle (UAV) that flies over the
terrain being traversed, we then propose a hybrid registration
approach. In this approach to air to ground registration to
estimate and update the position of the UGV, we register range
data from two LADARs by combining a feature-based method
with the aforementioned modified ICP algorithm. Registration of
range data guarantees an estimate of the vehicle’s position even
when only one of the vehicles has GPS information. Temporal
range registration enables position information to be continually
maintained even when both vehicles can no longer maintain GPS
contact. We present results of the registration algorithm in rugged
terrain and urban environments using real field data acquired
from two different LADARs on the UGV.

I. INTRODUCTION

The National Institute of Standards and Technology (NIST)

is developing architectures and algorithms for unmanned

vehicles with funding from the Army Research Laboratory

(ARL) and the Defense Advanced Research Projects Agency

(DARPA). The NIST Highly Mobile Multipurpose Wheeled

Vehicle (HMMWV) and an eXperimental Unmanned Vehi-

cle (XUV) developed under the Army’s Demo III program

[1] serve as test beds for this research. These vehicles are

commanded by the hierarchical, distributed, hybrid 4D/RCS

architecture [2].

The 4D/RCS architecture developed for Demo III specifies

the simultaneous representation of information about entities

and events in a hierarchical distributed knowledge database

1Commercial equipment and materials are identified in this paper in order
to adequately specify certain procedures. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.

wherein information is presented in a form that is ideally suited

for path planning and task decomposition. Maps are populated

both with knowledge from a priori sources such as digital

terrain databases, and with knowledge from sensors. The range

and resolution of maps at different levels are specified to

correspond to the range and resolution of planning algorithms.

This limits the amount of computational power required to

maintain maps and symbolic data structures with a latency

that is acceptable for planning and reactive processes at each

level.

The position estimation for the above Unmanned Ground

Vehicles (UGVs) relies on fusing Global Positioning Sys-

tem (GPS) reported estimates with other on-board navigation

sensors. The required accuracy of the GPS estimates cannot

be guaranteed for the entirety of a particular mission as the

direct line of sight to the satellites cannot be maintained at all

times. GPS can be lost due to multipathing effects and terrain

conditions, especially for on-road driving tasks. Sufficiently

accurate vehicle positions are necessary to derive correct

locations of sensed data towards accurate representations of

the world and for correctly executing planned trajectories

and missions. In order to compensate for such unavailability

and unreliability of GPS, another form of secondary position

estimation becomes inevitable.

The following reasons also warrant the need to develop

robust 3D data registration algorithms:

• Within RCS, the use of a priori maps would enhance

the scope of the world model. These maps may take

a variety of forms including survey and aerial maps

and may provide significant information about existing

topology and structures. In order to take advantage of this

knowledge, research is needed to register these a priori

maps with the sensor-centric maps. Additionally, for

incorporating a priori knowledge into the world model,

some form of weighting is required and this depends on

how well the a priori data and the sensed information are

registered.

• There is also the need to generate higher resolution

a priori terrain maps as the current survey maps are

too coarse for off-road autonomous driving and also for

maintaining up-to-date representations of the world even

if the maps are of higher resolution.



• Another potential application for registering LADAR data

is the computation of ground truth as such registration

is not dependent on time-based drift (unlike inertial

navigation systems), vehicle maneuvers and terrain of

travel.

Active range sensing has become an integral part of any

unmanned vehicle navigation system due its ability to produce

unambiguous, direct, robust, and precise images consisting

of range pixels, for example, using LAser Detection And

Ranging (LADAR) imagery. This is in direct contrast to

passive sensing where the inference of range largely remains

computationally intensive and not robust enough for use in

natural outdoor environments. Depending on the speed of

the vehicle, operating environment, and data rate, such range

images acquired from a moving platform need to be registered

to make efficient use of information contained in them for

various navigation tasks within the 4D/RCS architecture.

One of the following two approaches is commonly em-

ployed for matching range images to a priori maps [3]:

• Feature-based Matching: In this approach, two sets of

features, F1
i and F2

j , are extracted from two sets to

be matched and then correspondences between features,

F1
ik and F2

jk, k ∈ i, j, that are globally consistent, are

found. The displacement between the two sets can then

be computed to deduce the sensor pose.

• Point Matching: This approach directly works on two

sets of data points, P1 and P2, by minimizing a cost

function of the form F(T(P2),P1), where T(P2) is the

second set of points subjected to a transformation T.

Any sensible cost is acceptable as long as its minimum

corresponds to a best estimate of T in some sense.

Usually, the minimization leads to an iterative gradient-

like algorithm.

For example, Kanade et al. [4] compared elevation maps

obtained from 3D range images to determine vehicle location.

A similar point matching approach has also been adopted by

Shaffer [5]. Cox [6] proposes a point matching method for

an indoor robot named Blanche where scan-points from an

optical rangefinder are matched to an a priori map composed

of straight line segments. Blanche’s position estimation system

utilizes a robust matching algorithm which estimates the

precision of the corresponding match/correction that is then

optimally combined with odometric position to provide an

improved estimate of robot position. Hoffman et al. employ a

point matching algorithm for obtaining the inter-frame rotation

and translation in a vision-based rover application [7]. Lu

[8] finds corresponding points between two successive scans

to compute the relative rotation and translation. An Iterative

Dual Correspondence (IDC) algorithm is formulated based on

closest point and matching range rules.

The major drawback of the above approaches is that their

use is limited to structured office or factory environments

rather than unstructured natural environments. Straightforward

correlation-based schemes (for e.g., see [9]), in general, are

unable to handle outliers. As cross-correlation calculates the

similarity, the two scans must be similar and thus this method

cannot accommodate occlusions. This is easy to understand

since if areas visible in one scan are not visible in another

due to occlusion, then correlation of these scans may produce

arbitrarily bad pose estimates. Also correlation usually places

a high burden on computation especially when the scans are

at different orientations.

In this paper, we present algorithms for registering 3D range

images to overcome both the unavailability and unreliability

of GPS within required accuracy bounds for UGV navigation.

At the core of the registration process is a modified version

of the well-known Iterative Closest Point (ICP) algorithm.

These modifications render robustness to outliers, occlusions

and false matches/spurious points. We then propose extensions

to the ICP algorithm that make it possible to register range

images obtained from a UGV to range images obtained from

an Unmanned Aerial Vehicle (UAV). Registration of range data

guarantees an estimate of the vehicle’s position even when

only one of the vehicles has GPS information. Temporal range

registration enables position information to be continually

maintained even when both vehicles can no longer maintain

GPS contact. We present results of the registration algorithm

using real field data acquired from two different LADARs on

the UGV.

The paper is organized as follows: Section II details the ICP

algorithm with suitable modifications for robustness. Section

III presents the results of the proposed algorithm when applied

for registering consecutive range images obtained from two

LADARs mounted on a moving UGV. Section IV extends

the modified ICP algorithm for air to ground registration by

a hybrid feature-based registration approach. Section IV-A

elaborates the results of the hybrid approach when employed

for registering aerial and ground range images. Finally, Section

V provides conclusions and describes further research work.

II. ITERATIVE TEMPORAL RANGE REGISTRATION

ALGORITHM

The ICP algorithm [10] can be summarized as follows:

Given an initial motion transformation between two 3D point

sets, a set of correspondences are developed between data

points in one set and the next. For each point in the first data

set, find the point in the second that is closest to it under the

current transformation. It should be noted that correspondences

between the two points sets is initially unknown and that

point correspondences provided by sets of closest points is

a reasonable approximation to the true point correspondence.

From the set of correspondences, an incremental motion can

be computed facilitating further alignment of the data points in

one set to the other. This find correspondence/compute motion

process is iterated until a predetermined threshold termination

condition.

In its simplest form, the ICP algorithm can be described by

the following steps:

1. For each point in data set D, compute its closest point

in data set M. In this paper, this is accomplished via 3D



nearest point search from the set comprising ND data

and NM model points.

2. Compute the incremental transformation (R,T) using

Singular Value Decomposition (SVD) using correspon-

dences obtained in step 1.

3. Apply the incremental transformation from step 2. to D.

4. If relative changes in R and T are less than a threshold,

terminate. Else go to step 1.

To deal with spurious points/false matches and to account

for occlusions and outliers, the least-squares objective function

that is to be minimized is weighted such that [11]:

min(R,T)

∑

i

wi ||Mi − (RDi + T) ||
2

(1)

where R is a 3 × 3 rotation matrix, T is a 3 × 1 translation

vector and the subscript i refers to the corresponding points

of the sets M and D.

If the Euclidean distance between a point xi in one set and

its closest point yi in the other, denoted by di
4
= d(xi, yi), is

bigger than the maximum tolerable distance threshold Dmax,

then wi is set to zero in Equation (1). This means that an

xi cannot be paired with a yi since the distance between

reasonable pairs cannot be very big. The value of Dmax is set

adaptively in a robust manner by analyzing distance statistics.

Let {xi, yi, di} be the set of original points, the set of closest

points and their distances, respectively. The mean and standard

deviation of the distances are computed as:

µ =
1

N

N
∑

i=1

di; σ =

√

√

√

√

1

N

N
∑

i=1

(di − µ)
2

where N is the total number of pairs.

The pseudo-code for the adaptive thresholding of the dis-

tance Dmax is given below:

if µ < D
Ditn

max = µ + 3σ;
elseif µ < 3D

Ditn
max = µ + 2σ;

elseif µ < 6D
Ditn

max = µ + σ;
else Ditn

max = ε;

where itn denotes the iteration number and D is a function

of the resolution of the range data.

During implementation, D was selected based on the fol-

lowing two observations: (i) If D is too small, then several

iterations are required for the algorithm to converge and

several good matches will be discarded, and (ii) if D is too

big, then the algorithm may not converge at all since many

spurious matches will be included. The interested reader is

referred to [11] for more details on the effect and selection of

D and ε on the convergence of the algorithm. At the end of this

step, two corresponding point sets, PM:{pi} and PD:{qi} are

available.

The incremental 3D transformation (rotation and transla-

tion) of step 2. is obtained as follows [12]:

• Calculate H=
∑ND

i=1(pi − pc)(qi − qc)
T ; (pc,qc) are the

centroids of the point sets (PM,PD).

• Find the Singular Value Decomposition (SVD) of H such

that H = UΩVT where U and V are unitary matrices whose

columns are the singular vectors and Ω is a diagonal matrix

containing the singular values.

• The rotation matrix relating the two point sets is given by

R = VUT .

• The translation between the two point sets is given by

T = qc − Rpc.

This process is iterated as stated in step 4. until the mean

Euclidean distance between the corresponding point sets PM

and PD is less than or equal to a predetermined distance or

until a given number of iterations is exceeded. For further

details, see [13].

III. TEMPORAL REGISTRATION OF 3D RANGE IMAGES

In this section, we present the results of the modified

iterative algorithm on two sets of LADAR data (henceforth

referred to as UGVL1 and UGVL2). Utilizing knowledge

about the LADAR mount position and calibration factors, the

range information provided by the LADARs are transformed

to cartesian coordinates.

UGVL1 data was obtained during field trials as the XUV

traversed rugged terrain with vegetation. The LADAR was

mounted on this UGV on a pan/tilt platform to increase its

narrow 20◦ field of view. The range of the tilt motion is

±30◦ resulting in an effective field of view of about 90◦.

UGVL1 provides a range image of 32 lines × 180 pixels

where each data point contains the distance to a target in the

operating environment. The angular resolution of this LADAR

is 0.658◦ × 0.5◦ in the horizontal and vertical directions,

respectively.

UGVL2 data was collected from a sensor mounted on the

HMMWV as the vehicle traversed urban environments. The

effective field of view is 80◦ × 330◦ thus providing an almost

panoramic view of the environment with an angular resolution

of 0.036◦. The scan rate of UGVL2 is 1◦/s − 15◦/s providing

10000 pts/s with range up to 800 meters thus making it much

lower than that of UGVL1 but the resulting 3D range image is

of a much higher resolution. For more details on the LADARs,

see [14].

Figures 1(a)−(b) show the results when the modified ICP

algorithm is used to register 3D range images obtained from

UGVL1 and Figures 1(c)−(d) show that for UGVL2. The

number of model (M) and data (D) points for the two

LADARs are {2857, 2878} and {125396, 123826}, respec-

tively.

In the case of UGVL2, the 3D point cloud was acquired

from two different view points whereas for UGVL1, the 3D

point cloud represents scan points that were acquired between

two consecutive vehicle locations. Additionally, for UGVL1,

range image D was also translated a meter along each of the

(x,y,z) axes in addition to the translation and rotation that

the image underwent due to the motion of the vehicle. It is



(a)
(b)

(c) (d)

Fig. 1. 3D LADAR range images before and after registration. (a) and (b) show the unregistered and registered UGVL1 range images, respectively. Here, the
data range image (D denoted by ‘◦’ in yellow) was deliberately translated 1 meter along the (x,y,z) axes in addition to the inherent translation to demonstrate
the robustness of the iterative algorithm. (c) and (d) show the unregistered and registered range images corresponding to two sets of UGVL2 range images.
In (c) and (d), the model (M) range image is shown in green, unregistered and registered data (D) range images are shown in red and white, respectively.



important to note here that even though the range image points

arrive in the same sequence for both the model and data sets,

it is not guaranteed that both sets will have the same number

of points as some facets of the LADAR data sets might return

empty values.

As can be seen from Figure 1, the images are well regis-

tered. The mean distance (m) after registration for the above

three cases are {0.11, 0.84, 0.43}, respectively.

IV. AIR TO GROUND FEATURE-BASED REGISTRATION

Another way to minimize the dependency on GPS for UGV

navigation is to use aerial survey maps constructed using a

downward-looking LADAR mounted on an Unmanned Aerial

Vehicle (UAV). If the LADAR range images from the UGV

can be registered to those from the UAV, then these results can

serve as secondary position estimates in the event of absence

or degradation of GPS.

In this section, we propose a hybrid approach by combining

the modified ICP algorithm with a feature-based method for

registering two sets of LADAR range images. The proposed

approach is conceptually similar to Hebert et al. [15] who

employ range imagery to compute vehicle displacement be-

tween two viewing positions by using a two-stage technique

(feature matching followed by point matching). The advantage

of our hybrid approach lies in the fact that the accuracy

of the point matching technique is retained while keeping

the computational burden under control as the feature-based

method provides a good initial estimate for refinement.

The value of aerial imagery obtained via active range sens-

ing for aiding ground vehicle navigation is being recognized

within the UGV community. For example, in [16], aerial

and ground views from unmanned vehicles are registered by

extracting a geometrically consistent set of correspondences

using surface signatures from which a registration transforma-

tion is estimated. It is not clear, given the computational burden

associated with the extraction of surface signatures, whether

this approach can be implemented in real-time. In [17], an

aerial vehicle, a Flying Eye (FE), flies ahead of an UGV acting

as a “scout” to detect difficult obstacles from an overhead

perspective thus benefitting ground vehicle navigation. The

above paper briefly mentions the need for registering the data

from the FE to the ground vehicle but the details of the

registration process are not presented. The hybrid approach

proposed in this paper exploits the simplicity and speed of the

iterative closest point algorithm thus lending itself to real-time

implementation.

The underlying assumption in the iterative registration al-

gorithm is that the rotation angle between the range images

that need to be registered is not too large and also that these

images are not too far apart. For the current case of UAV and

UGV LADAR data, this assumption is overly restrictive and

an aiding mechanism for the registration of the range images

becomes necessary.

The correspondence determination step is the most difficult

and computationally expensive step of the iterative algorithm.

Despite the apparent simplicity of this problem, establishing

reliable correspondences is extremely difficult as the UGV is

subjected to heavy pitching and rolling motion characteristic

of travel over undulating terrain. This is further exacerbated by

the uncertainty of the location of the sensor platform relative to

the global frame of reference. In addition to these factors, noise

inherently present in LADAR range images complicates the

process of determining reliable correspondences. One solution

to overcome the above deficiencies is to extract naturally

occurring view-invariant features, for example, corners, from

the LADAR scans. Such control points can then be used

for establishing reliable registration with the ICP algorithm

converging to the global minimum.

Towards guaranteeing robust and accurate registration, we

first obtain the z translation value by estimating the ground

z (elevation) values on the UGV and UAV LADAR data in

the vicinity of the UGV’s current location. For the UGV, the

ground values are obtained from the LADAR points that are

within a given radius immediately in front of the vehicle and

those for the UAV are obtained by finding the minimum of the

LADAR values. Then we project the UAV and UGV LADAR

data into the base ground planes as depicted in Figure 2(a)

and construct the feature planes by using the Canny edge

detector [18]. The corner features are detected based on the

intersections of lines formed by edges. The corner features

are independently extracted from both LADAR data sets by

considering those points that are above a given height from

the ground as shown in Figure 2(b).

The two sets of the projected corner points (UAV LADAR

set: A and UGV LADAR set: G) are used to estimate a 2D

translation. Given two sets of 2D corner points:

A
4
= aj =











a1j

a2j

...

anj











; j = 1, 2, · · · n;

G
4
= gk =











g1k

g2k

...

gnk











; k = 1, 2, · · · n;

To find a translation along the x and y directions, we first

calculate the means of sets A and G:

ā =
1

n

n
∑

j=1

aj ; ḡ =
1

n

n
∑

k=1

gk;

The difference between the means of x, y and that between

the aerial and ground z values provide a rough estimate of

the required 3D translation between the two sets of LADAR

data. The 3D translational offset when applied to the UGV

range image enables the ICP algorithm to provide reliable

registration results.

A. Experimental Results for Air to Ground Registration

The UAV LADAR produces a 3D range image at up to 6000

terrain pts/s within a 100 meter scanning range. For additional



(a)

(b)

Fig. 2. Projection of LADAR data to base ground planes is shown in (a). The
extracted features (corners) from the UGV (black) and UAV (white) LADARs
are shown as white and black squares, respectively, in (b).

details, see [19], [20]. It provides an aerial survey map with

significant information about existing topology and structures.

Figure 3 shows a top view of unregistered LADAR range

images obtained from the UGV (in white) and UAV (in black)

LADARs, respectively.

Figures 4(a)−(d) depict the results of the feature-based

registration algorithm. Figure 4(a) shows a top view of the

LADAR range images after applying the translation obtained

using the corner features. Figure 4(c) shows the results of the

iterative registration algorithm applied to the LADAR range

images in (a). Figures 4(b) and (d) show a magnified view

of stages depicted in Figures 4(a) and (c), respectively. From

Figures 3 and 4, it is evident that the LADAR range images

are registered. More results are available from [21].

(a)

(b)

Fig. 3. A top view of unregistered UGV (black) and UAV (white) LADAR
range images is shown in (a). A magnified side view of (a) is shown in (b).



(a) (b)

(c) (d)

Fig. 4. A top view of the feature-based translation obtained using the extracted corners is shown in (a) and a magnified side view of the same is shown in
(b). (c) shows a top view of the registered UAV (black) and UGV (white) LADAR range images obtained by utilizing the feature-based translation results
and (d) is a magnified view of (c). See text for further details.



V. CONCLUSIONS AND FURTHER WORK

Registering 3D range images from unmanned ground and

aerial vehicles was the main theme of this paper. The need for

such registration is motivated by the requirement to continually

estimate the position of the unmanned vehicle within accuracy

bounds dictated by a particular mission even when the GPS

position estimates are unreliable or unavailable. By making

suitable modifications to the ICP algorithm it was shown that

the modified algorithm provides reliable and robust registra-

tion in rugged terrain and urban environments for registering

successive range images obtained from two different LADARs

on a UGV.

The proposed algorithm was then extended to register aerial

images obtained from a UAV with those from the UGV. A

hybrid approach was proposed to this end by combining the

modified ICP algorithm with a feature-based method. The

feature-based hybrid approach was also shown to be effective

in producing reliable registration for UGV navigation.

The results presented in the paper demonstrated the potential

of this approach lending itself to real-time implementation.

For practical purposes, the sets of LADAR data utilized in

this paper can be assumed to be of the same resolution even

though typically the aerial data tend to be of lower resolution

than that of the UGV LADAR. To address this issue, we are

currently developing schemes for use within the ICP algorithm

that will inherently account for varying resolution in data sets

that need to be registered. Towards this, we are also developing

corner detection schemes using the Harris [22] and SUSAN

corner detectors [23] on the 3D projected base ground planes.

Computing the correspondence is the most computationally

expensive part of the algorithm. kd-trees have been proposed

for faster correspondence where the complexity is reduced

from O(NDNM) −→ O(NDlogNM). We have also employed

Quaternions [24] (instead of SVD) to determine the 3D

transformation but it results only in a slight improvement in

the resultant registration for the tested field data.

The quality of the 3D registration will significantly improve

if the uncertainty of the LADAR range images are taken into

account and has been so verified for 2D laser scan registration

[25], [26]. We are currently investigating the extension of these

results to the 3D case. To quantify the accuracy of the regis-

tration results, we are investigating methods for estimating a

covariance matrix of the error function that is minimized. We

anticipate the covariance matrix to be useful when fusing the

position estimates obtained via registration with other sensors.
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