

 Int. J. Manufacturing Technology and Management, Vol. X, No. Y, XXXX 1

 Copyright © XXXX Inderscience Enterprises Ltd.

Semantic enterprise application integration
standards

Nenad Anicic* and Zoran Marjanovic
Faculty of Organizational Sciences,
University of Belgrade, Jove Ilica 154,
Belgrade 11000, Serbia-Montenegro
E-mail: anicic.nenad@fon.bg.ac.yu E-mail: zormar@fon.bg.ac.yu
Fax: +381-11-461-221
*Corresponding author

Nenad Ivezic and Albert Jones
National Institute of Standards and Technology,
100 Bureau Drive,
Gaithersburg, MD 20899, USA
E-mail: nivezic@nist.gov E-mail: ajones@nist.gov
Fax: +1-301-975-4482

Abstract: This paper investigates the potential of the Semantic Web
technologies to support a semantic-based Enterprise Application Integration
(EAI) standards architecture. We give detailed information of the support that
these technologies and the underlying Description Logics (DL) formalism
provide for the integration task. Our main aim is to assess the potential impact
of these emerging technologies on industrial interoperability efforts. In
addition to that effect, we plan to use this advanced EAI standards architecture
as an experimental framework in which the Semantic Web technologies are
evaluated on realistic enterprise integration problems. We illustrate novel
capabilities beyond the existing syntactic integration approaches when
managing multiple enterprise ontologies derived from a common ontology.

Keywords: Enterprise Application Integration (EAI); semantic technologies;
standards; e-business; Semantic Web; XML; OWL.

Reference to this paper should be made as follows: Anicic, N., Marjanovic, Z.,
Ivezic, N. and Jones, A. (XXXX) ‘Semantic enterprise application integration
standards’, Int. J. Manufacturing Technology and Management, Vol. X, No. Y,
pp.XXX–XXX.

Biographical notes: Nenad Anicic is a PhD candidate at the Faculty of
Organizational Sciences, University of Belgrade, Serbia and Montenegro.
He works as a Teaching Assistant at the Faculty of Organizational Sciences
and his main research areas are databases and advanced information systems
development.

Zoran Marjanovic, PhD, is an Associate Professor at the Faculty of
Organizational Sciences, University of Belgrade, Serbia and Montenegro.
He teaches database and information systems design courses. His main
research areas are databases and advanced information systems development.

 2 N. Anicic et al.

Nenad Ivezic, PhD, is a Guest Researcher of the Enterprise Systems Group in
the Manufacturing Systems Integration Division of the National Institute of
Standards and Technology from the Oak Ridge National Laboratory. His main
research areas are semantic software systems and interoperability.

Albert Jones, PhD, is the Leader of the Enterprise Systems Group in the
Manufacturing Systems Integration Division of the National Institute of
Standards and Technology. His main research interests are advanced enterprise
systems, interoperability, next generation control, simulation and scheduling
systems.

1 Introduction

Nowadays, the success of industry-wide enterprise integration efforts depends on the
syntactic, XML-based Enterprise Application Integration (EAI) standards (Meadows
and Seaburg, 2004; Open Applications Group (OAG), 2004; RosettaNet, 2004).
Capabilities of these standards to support application integration efforts are significantly
limited by the restricted reasoning capabilities of the syntactic formalisms (Decker
et al., 2000). For example, business document content rules that are perfectly valid
syntactically may state conflicting semantic requirements in an application integration
context.

Semantic Web formalisms allow use of computational approaches to reason about
formally expressed concepts and make inferences that are beyond the capabilities of the
syntax-based approaches. The reasoning methods, such as satisfiability and consistency
checking, may be performed to check whether two business document schemas are
compatible and whether a business document instance belongs to a specific class of
documents.

The Semantic Web technologies today enable one to draw automated inferences
about relationships between conceptual structures using a subset of the First Order Logic
formalism called Description Logics (DL) (McGuinness and Harmelen, 2004; Nardi and
Brachman, 2003). As an example, it is possible to express constraints on a document
schema (e.g. ‘The access rights element will appear only if the sensitivity type element
appears’) and to reason about possible conflicts of such a rule with other document rules
(e.g. ‘Either the access right or sensitivity type element, but not both, will appear’). These
types of reasoning are not possible using syntactic approaches, yet they are essential in
the EAI tasks.

This paper investigates the potential of the Semantic Web technologies to support a
semantic-based EAI standards architecture. We give detailed information on the support
that the Semantic Web technologies and the underlying DL formalism provide for the
EAI and validation tasks. Our main aim is to assess the potential impact of
these emerging technologies on industrial interoperability efforts. In addition to
that effect, our aim is to define a semantic-based EAI standards architecture for an
experimental framework in which Semantic Web technologies are evaluated on realistic
enterprise integration problems. While in this paper, we focus on showing formally how
Semantic Web technologies support the EAI task, a previous publication illustrates usage
of these technologies on an example application integration task and functionalities
supported by the approach (Anicic and Ivezic, 2005).

 Semantic EAI standards 3

The rest of this paper is structured as follows: Section 2 describes a specific
integration context motivating our work, a traditional EAI standards architecture and
the proposed Semantic Web-based EAI standards architecture. Section 3 gives
an overview of the Semantic Web terminology and formalism relevant to our
integration methodology. Section 4 gives illustrations of the developed integration
methodology and a detailed description of the supporting DL framework. Section 5
includes a description of the related work. Finally, Section 6 provides concluding
remarks.

2 A Semantic Web-based architecture for EAI standards

In this section, we introduce an EAI problem context that motivates this work. We then
compare a traditional and a novel semantic-based EAI standards architecture.

2.1 An EAI problem context

By integration of enterprise applications, we denote exchange of business document
instances between two enterprise applications that are based on two different business
document content models (or, equivalently, interface models) so that interoperable data
exchange is achieved. Interoperable data exchange is such an exchange of data that
preserves intended meaning of that data.

The integration context we consider is one where two industrial consortia, such
as Standards for Technology in Automotive Retail (STAR, 2004) and Automotive
Industry Action Group (AIAG, 2004), base their interface models on the same
‘horizontal’ document standard – the OAGIS Business Object Documents (BODs)
(OAG, 2004). BODs are specifications of general XML Schema components and general
aggregations that form business document content models from these components.
Each consortium independently uses the OAGIS BODs to customise their own document
content models and define usage rules for the components (e.g. mandatory and
conditional components).

Nowadays, the usage rules for the business document content models are captured
outside the XML Schema using syntactic constructs (e.g. Schematron rules)
(Jelliffe, 2004). A significant manual task is required to reconcile differences among
constraints and rules of two or more standards. We seek a semantic-based approach
to enable automated checking of compatibility among rules and constraints that
are independently developed in two or more standards groups with a common
terminology at their bases. Additionally, the semantic-based approach needs to
support interoperable data exchange among applications from independent business
contexts.

2.2 Traditional EAI standards architecture

The left portion of Figure 1 shows a traditional EAI standards architecture based on a
pure XML Schema-based integration approach. The following steps are required to
translate data from a previously developed STAR XML Schema interface model to an

 4 N. Anicic et al.

AIAG XML Schema interface model (and vice versa) and to verify the business
document translation:

• identify and resolve manually any semantic and syntactic differences for
implementations of the STAR and AIAG XML Schema interface models

• create two Extensible Stylesheet Language Transformation (XSLT) sheet
transformations from the source to the target XML Schema interface model and
vice versa

• apply translation to a business document conformant to the source XML
Schema interface model to obtain a business document conformant to the target
XML Schema interface model (based on the XSLT style sheet transformations)

• validate the translation:

– validate translated business documents with respect to the target XML
Schema interface model (using syntactic approaches such as
Schematron rules)

– validate translation using an equivalence test. The equivalence test is
between the initial source business document and the final source business
document that is obtained through a sequence of two (forward and reverse)
translations compatible with transformations in the second step above.

Figure 1 Traditional and Semantic Web-based EAI standards architectures

Applying the two translations in sequence (using different mechanisms) and comparing
the final source business document to the initial source business document is problematic
when using only syntax-based equivalence test. For example, despite a syntactically
different element order (in the sense of XML Schema), elements may be semantically
equivalent, if that order is not significant. In another example, an equivalent time period
can be specified either by a start date with:

1 an end date or

2 a duration of time period.

 Semantic EAI standards 5

2.3 A Semantic Web-based EAI standards architecture

The right portion of Figure 2 shows the proposed Semantic Web-based EAI standards
architecture with the Description Logics version of the OWL Web Ontology Language
(OWL-DL) employed to formally define business document content models
(McGuinness and Harmelen, 2004). This, in turn, enables us to readily use automated
reasoning methods provided by DL reasoners (e.g. Racer; Haarslev and Moller, 2001).
These reasoning methods are fundamental enablers of automated transformations (i.e.
mapping functions between OWL-DL interface models). The basic assumption is that the
interface models are independently developed but have a common base terminology.

Figure 2 Ontology creation: design time view of the semantic integration method

As in the traditional approach, we assume previously independently developed STAR
and AIAG XML Schema interface models. At this point, we assume that the OAG,
STAR and AIAG OWL-DL ontologies have been created – a step that will be discussed
in detail later.

The following steps are envisioned to translate and verify the translation in the
proposed architecture:

• perform model-based equivalence analysis of STAR and AIAG schemas. The
following steps are involved:

– create a merged ontology from independently developed STAR and
AIAG ontologies and check for unsatisfiability

– identify similarity between two schemas based on the comparison of their
semantic models using an automated inference tool

• apply semantic translation using the merged ontology and an OWL-DL
reasoner:

– translate the source (STAR) XML instance to the source (STAR) OWL
representation

– check for consistency and sufficiency with respect to the merged
(source-STAR + target-AIAG) ontology

– classify the source OWL individual into the target ontology (AIAG) and
perform validation and serialisation.

We maintain reference to two distinct parts of this proposed architecture: the ontology
creation part and the translation part.

 6 N. Anicic et al.

3 A Semantic Web terminology and formalism overview

We use the word ‘concept’ (interpreted as a set of individuals) to refer to the expressions
that define a class in the OWL-DL language and a terminology to denote a hierarchical
structure that provides a representation of the domain of interest. The key features of the
DL reside in constructs for establishing relationships between concepts. The meaning of
concepts is specified with a logical semantics. An important distinction in using logical
semantics to describe a concept meaning is between the concept description (i.e. class
with necessary conditions only) and concept definition (i.e. class with both necessary and
sufficient conditions).

The use of the DL formalism allows automated reasoning techniques to be used to
check the consistency of classes and ontologies, and to check entailment relationship.
In fact, OWL DL could be easily mapped to SHOIN(Dn) an expressive DL (Horrocks
et al., 2003), with an ontology equivalent to a DL knowledge base. An OWL essential
feature is that it uses a DL style model theory to formalise the meaning of the language.
To define formal semantics of OWL DL as a DL model, we consider the semantics of
concepts in terms of an interpretation Ι = (∆Ι, οΙ) that consists of a domain of
interpretation (nonempty set) ∆Ι and an interpretation function οΙ, which maps
every atomic concept C to a subset of ∆Ι (CΙ ⊆ ∆Ι), every atomic role R to a binary
relation RΙ ⊆ ∆Ι × ∆Ι and every named individual o to an element of ∆Ι (oΙ ∈ ∆Ι). The
interpretation function can be extended from concept names to complex concept
descriptions in an obvious way.

There are two important tasks that are fundamental to our methodology and also
enabled by the formally defined semantics of OWL DL:

• Calculating a concept satisfiability determines whether the concept description
is not contradictory with the rest of an ontology. A concept is satisfiable if it has
a model for a concept that is nonempty; otherwise the concept is unsatisfiable.

• Checking consistency of an individual (with respect to this concept description)
means determining whether the individual is an instance of a concept. A DL
knowledge base usually consists of a set of terminological axioms and a set of
assertions. An individual is an instance of a concept if and only if it satisfies all
constraints specified for the concept definition.

To accomplish the above-mentioned two fundamental tasks, we use two basic functions
of an OWL-DL reasoner:

• subsumption computation determines whether a concept description is more
general than another one

• individual classification determines the most-specific concept for the particular
individual.

4 Semantic Web-based integration methodology

In this section, we give detailed information on the two phases of the proposed Semantic
Web-based integration methodology. Figure 2 illustrates the Ontology Creation phase
where we determine if interoperable data exchange among different adopted XML
Schemas (e.g. STAR and AIAG schemas) is possible. This phase occurs at design time.

 Semantic EAI standards 7

Figure 3 illustrates the Data Translation phase where we reason about concrete XML
instances (based on the adopted XML Schemas) to determine the possibility for
interoperable data exchange among different adopted XML Schemas using these
XML instances. This phase occurs at run time. Next, we discuss both of these phases in
detail.

Figure 3 Data translation: run time view of the semantic integration method

4.1 Apply Xsd2Owl transformation

An automated transformation was devised for the OAG XML Schema representation to
obtain an OAG OWL-based generalised ontology that contains concept descriptions only
(i.e. necessary conditions) and no definitions (i.e. sufficient and necessary conditions).
The automated transformation was possible because we took into consideration design
rules for the OAG components and document specifications. Figure 4 shows some of
these rules.

Figure 4 Example transformation rules from OAG XML Schema into OAG OWL-DL
generalised ontology

An illustration of application of the transformation from XML Schema to OWL
(Xsd2Owl) transformation rules are shown in Figures 5–6. Figure 5 shows a rendering of

 8 N. Anicic et al.

the XML Schema for the OAG aggregate component AddressBase. (The rest of this
paper uses this component to illustrate the methodology.) The AddressBase component
describes all possible elements that an OAG Address instance (that uses AddressBase)
may have. For that reason, all elements are optional in the complexType definition of the
AddressBase.

Figure 5 A rendering of the XML Schema for the OAG AddressBase component

In the AddressBase schema definition, the component ComponentIds is a named
model group definition. We can also see choice between ‘unstructured’ Line and the
‘structured Line’ including StreetName, BuldingNumber and Floor. We capture this
constraint in the resulting OWL description by using a hierarchy of properties.

Figure 6 shows a graphical representation of the OWL-DL model obtained
through the transformation of the AddressBase XML Schema. This figure shows
all property restrictions for the OWL class AddressBase including strictly specified
ranges that are extensions of other concept descriptions (e.g. Identifier and
Code classes).

Using the DL formalism, let us define terminology T as a set of axioms. Then, an
interpretation I satisfies T iff I satisfies each element of T. The generalised terminology
is such a T where all axioms are defined as inclusions. An interpretation I satisfies
an inclusion C ⊑ D if CI ⊆ DI.

 Semantic EAI standards 9

Figure 6 A graphical representation of the transformed AddressBase OWL structure

Consider a terminology T1 that contains all atomic concepts that specify aggregate
component AddressBase. The generalised terminology T1 contains basic concepts such
as UsesIdentifier, Text, Name, Country, SequenceText, and the following
complex axiom description:

AddressBase ⊑ (∀ hasId.UsesIdentifier)
⊓ (∀ hasFormatType.Text) ⊓ (≤1 hasFormatType)
⊓ (∀ hasAdressee.Text) ⊓ (∀ hasCity.Name)
⊓ (≤1 hasCity) ⊓ (∀ hasCountry.Country)
⊓ (≤1 hasCountry) ⊓ (∀ hasPostalCode.Code)
⊓ (≤1 hasPostalCode)
⊓ (∀ hasLine.SequenceText)
⊓ (∀ hasBuldingNumber.Text)
⊓ (∀ hasBuldingName.Text)
⊓ (∀ hasStreetName.Text) ⊓ (∀ hasUnit.Text)
⊓ (∀ hasFloor.Text) ⊓ (∀ hasPostBox.Text)
⊓ (¬(≥1 hasLine) ⊔ ¬(≥1 sequence63736952))
⊓ (¬ (≥1 sequence63736952)

⊔ ((≤1 hasBulidingNumber)
⊓ (≤1 hasBuildingName)
⊓ (≤1 hasStreetName) ⊓ (≤1 hasUnit)
⊓ (≤1 hasFloor) ⊓ (≤1 hasPostBox))).

 10 N. Anicic et al.

The generalised terminology T1 also consists of a set of role axioms (a role hierarchy):

hasId ⊑ componentIds
hasLine ⊑ choice49723144
sequence63736952 ⊑ choice49723144
hasBuildingNumber ⊑ sequence63736952
hasBuildingName ⊑ sequence63736952
hasStreetName ⊑ sequence63736952
hasUnit ⊑ sequence63736952
hasFloor ⊑ sequence63736952
hasPostBox ⊑ sequence63736952

where sequence63736952 and choice49723144 are computer generated identifiers
for the role names.

4.2 Calculate concept subsumption and check satisfiability

A DL reasoner may calculate concept subsumption and check whether any concept
description is contradictory in the resulting ontology. For example, an unsatisfiable
concept is when a complexType definition is specified as a restriction of an existing
type with different cardinality constraints (e.g. an element that is mandatory in the
super-type definition is prohibited in the new definition).

Probably the most popular approach to calculate subsumption in DL is called
tableau-based algorithm (Schmidt-Schauß and Smolka, 1991). The algorithm instead of
directly testing subsumption of concept descriptions C ⊑ D, reduces to checking
unsatisfiability of axiom C ⊓ ¬ D. If the algorithm can find a finite model, then the
subsumption relationship does not hold. If the algorithm fails, then the subsumption
relationship holds. In this case, the algorithm looks for a ‘clash’ among constraints,
which would preclude a model from existing. A concept C is unsatisfiable if it is
impossible to create an individual that is an instance of C. We say that a generalised
ontology T is satisfiable if every concept in T is satisfiable.

4.3 Create regular or normalised terminologies

Once we have a satisfiable generalised terminology, every individual application
integrator may independently use the terminology to specify additional constraints and
definitions for the data entities used in a particular business context.

If a terminology T is a set of inclusion axioms that also define a set of atomic
concepts (i.e. the meaning of the name symbols is completely determined), then T′ is a
normalised terminology of T iff all concepts in T′ are defined as extensions of model T
in which all concept specifications1 agree with the atomic concept and role axioms in T.
We say that T′ is normalised terminology of T if T′ and T share the same model I. The
regular terminology is a normalised terminology T′ that contains only concept definitions
that agree with the atomic concepts and roles in T.

Terminological axioms that represent defined concepts are given in a form called
equality (≡). With such axioms, we associate the left-hand side concept name Address to
the description on right-hand side AddressBase with two cardinality constraints.
An interpretation I satisfies C ≡ D if CI = DI, that is, two sets of axioms are equivalent
if they have the same model.

 Semantic EAI standards 11

Here, Address is defined as AddressBase with mandatory properties hasCity and
hasCountry:

Address ≡ AddressBase ⊓ (≥1 hasCity) ⊓ (≥1 hasCountry)

4.4 Check satisfiability of the normalised terminologies

For a created normalised terminology, a DL reasoner will calculate a new subsumption
hierarchy. (All OAG concept descriptions (axioms) are imported into the new ontology).
In the new hierarchy, if all concepts are satisfiable (i.e. non-contradictory), then this
terminology can be used for application integration.

Let us show an example how a DL reasoner can find a contradictory concept. As we
said before, the model group concepts (e.g. choice, all and sequence) are mapped into
property hierarchies. Suppose that a logical constraint is specified for the OAG
AddressBase component to state an ‘exclusive or’ option between an unstructured
(free) text address line and a structured line (that contains hasStreetName, hasLine,
hasCity, hasCountry and other elements of address). If the integrator defines a new
address concept with mandatory properties hasStreetName (that is a part of
‘structured’ line defined via sequence63736952 super property in Section 4.1) and
hasLine using the OAG AddressBase defined above, a reasoner will find that the
concept is unsatisfiable. That is, no individual of the specified class exists such that it
satisfies all the necessary class conditions.

Formally, let T be a generalised terminology that contains all OAG concept
descriptions and T′ be a regular terminology of T; then T′ is satisfiable if all concepts in
T′ are satisfiable with respect to all axioms in T and T′.

For instance, let us define a regular terminology T′ with a single axiom (refer to the
AddressBase description in Section 5.1):

Address ≡ AddressBase ⊓ (≥1 hasCity) ⊓ (≥1 hasCountry)
⊓ (≥1 hasLine) ⊓ (≥1 hasStreetName)

To check the regular terminology T′, we need to check satisfiability for every axiom in
T′. As every equality C ≡ D can be specified as two inclusion axioms (C ⊑ D and
D ⊑ C), checking satisfiability can be transformed to checking subsumptions of the two
axioms. If any of these subsumptions does not hold, the concept is unsatisfiable.

From the definition of Address we can see that for every individual that is an
instance of Address we must have a filler for each of the roles hasStreetName and
hasLine. On the other hand, the AddressBase description is defined so that if we have
hasLine we cannot have hasStreetName or any other roles that belong to
sequence63736952 (this fact is obviously defined in the role hierarchy). Then, we can
simplify the subsumption problem to check the following:

(≥1 hasLine) ⊓ (≥1 hasStreetName)
 ⇒ ¬(≥1 hasLine) ⊔ ¬ (≥1 hasStreetName)

To do this, check whether

Descr0 = (≥1 hasLine) ⊓ (≥1 hasStreetName)
 ⊓ ¬ (¬(≥1 hasLine) ⊔ ¬(≥1 hasStreetName))

is unsatisfiable, as discussed in Section 4.2.

 12 N. Anicic et al.

First, we push negation into expression using de Morgan’s rules, and we obtain:

Descr1 = (≥1 hasLine) ⊓ (≥1 hasStreetName)
 ⊓ (≥1 hasLine) ⊓ (≥1 hasStreetName)

After simplification (P ⊓ P = P) we get:

Descr2 = (≥1 hasLine) ⊓ (≥1 hasStreetName) (1)

Next, we try to find a finite interpretation I such that Descr2 ≠ ∅. The system will
generate an individual and state that it belongs to Descr2. From (1) we can infer that
there must be an individual that has fillers for both roles hasLine and hasStreetName.
At this point, we have not found a clash and we have a model – an interpretation that
satisfies the constraint. In other words, an instance of Address does not belong to
AddressBase, subsumption relationship does not hold, and the given concept is
unsatisfiable.

4.4.1 Testing integration capabilities

Once we determine satisfiability of two independently defined regular terminologies,
we may proceed to determine whether two interface models based on those ontologies
can facilitate interoperable data exchange.

The first step is to create a merged ontology from the two regular terminologies.
As both ontologies use the same generalised terminology, a new subsumption hierarchy
will be calculated and new relationships may emerge among concepts. A DL reasoner is
used to check satisfiability of each concept in the merged ontology. If there are no
contradictory concepts, then we can say that two interface models may support
interoperable data exchange. Figure 7 shows this testing step.

Figure 7 Testing for necessary integration conditions

A reasoner can calculate relationships such as subClassOf or equivalent. When the
subsumption or equivalency relationship cannot be calculated (i.e. when subClassOf or
equivalent relationships do not hold for two concepts), an individual may still be
classified to belong to either one or both of the concepts depending only on the particular
individual assertion.

The result of this satisfiability checking can be that business document content
models (i.e. interface models) are either compatible (i.e. allowing bidirectional
interoperable data exchange), incompatible, unidirectional or unknown (i.e. the reasoner
does not have enough information to make any conclusion and reasoning should include
individuals).

 Semantic EAI standards 13

If the result is unknown, a designer can provide new axioms such as conditional
equivalence relationships among concepts, as indicated in step 3 in Figure 7. New axioms
might change subsumption hierarchy, produce new relationships and may increase
compatibility between two ontologies.

An example of equivalence is illustrated in Figure 8. On the top we have OAG
AddressBase description. On the lower left side we can see a definition of
star:Address using only the OAG provided property and concept descriptions. The
star:Address is given as a concept equivalent to a conjunction of axioms: subclass of
AddressBase and cardinality at least 1 for properties hasCity and hasCountry.

Figure 8 Example of equivalence between a STAR and an IV&I concept

The right portion of the figure shows the AIAG Inventory Visibility and Interoperability
(IV&I) project’s definition of the ivi:Address that introduces a new property
ivi:hasCountry with range class ivi:Country. We have also defined a relationship
between the new concept and the property introduced in ivi:Address to the
corresponding OAG concept and property. While these two address definitions might
look different at first, they are equivalent.

Formally, let us define a regular terminology Tstar as an extension of the generalised
terminology Toag. The terminology Toag represents a generalised OAG ontology, which
contains AddressBase components as defined above. The name of concept is defined as
an URI reference.

Let us define Tstar terminology as following:

star:Address ≡ oag:AddressBase ⊓ (≥1 oag:hasCity)
 ⊓ (≥1 oag:hasCountry)

Let us define another regular terminology Tivi (also an extension of the generalised
terminology Toag) which contains these axioms:

ivi:Address ≡ oag:AddressBase ⊓ (≥1 oag:hasCity)
 ⊓ (≥1 ivi:hasCountry)
ivi:hasCountry ≡ oag:hasCountry

 14 N. Anicic et al.

To check compatibility between the two terminologies Tstar and Tivi is to check whether
they share the same model (i.e. every interpretation I which is model of Tstar is a model
of Tivi and vice versa). If two ontologies have a same model, then we can say they are
compatible. The compatibility level depends on inferred relationships among the
concepts in terminologies.

To check compatibility between two terminologies we define a merged ontology T′
that contains all axioms from the two terminologies. In our example, based on the
definition of the Address concept using subsumption checking we can conclude:

star:Address ≡ ivi:Address

Let us change the Tivi terminology by removing the role ivi:hasCountry. Then,
definition of ivi:Address contains ivi:hasCountry and Tivi contains only one
axiom:

ivi:Address ≡ oag:AddressBase ⊓ (≥1 oag:hasCity)

Checking subsumption between the Address axioms (in the newly merged terminology
T′), we can conclude that star:Address is subsumed by ivi:Address, while the
opposite subsumption does not hold:

star:Address ⊑ ivi:Address
In this case, the ivi:Address definition is more general than star:Address that
allows us to conclude that a unidirectional translation is possible. In other words, it may
only be possible to translate from a specific STAR message into a general IVI message
while an opposite translation is undefined. The definition of the IVI address does not
exclude usage of optional properties, which means that there may exist an individual,
which is an instance of ivi:Address with property oag:hasCountry (or
ivi:hasCountry), and that individual can be classified as star:Address (i.e. an
individual will be successfully translated into a STAR individual). This is to say that
some business document instances, because of their usage of optional properties, may
still be translated in the opposite direction.

On the basis of the equivalence testing capability illustrated above (such as between
addresses), we may recursively determine equivalence between complex components
(i.e. classes) and whole business document schemas such as OAG BODs.

4.5 Transforming source data into OWL individuals

We transform XML Schema instances into OWL-DL individuals to conform with the
assumptions used in the ontological reasoning (i.e. satisfiability checking). The
translation rules include the following:

• for every element (including root element), create an OWL individual of the
corresponding type.

• parent–child relationships are translated to class-property relationships: every
child element is a value of the respective property of its parent class.

• the text content of an element/attribute is mapped into datatype property with an
RDF (i.e. Resource Description Format)literal as a value for that property.

An individual that is created during this transformation gets a unique ID (URI) generated
by the transformation tool. Two individuals are content equivalent if they have identical
content (property values).

 Semantic EAI standards 15

According to the previously defined rules, an AddressBase XML Schema instance is
transformed in the following way, as shown in Figure 9:

• For each AddressBase element (i.e. Id, City and Country), we create an
OWL individual with generated ID and a corresponding type that was defined
previously in the Xsd2Owl transformation.

• For each AddressBase element (i.e. Id, City and Country) we define
respective properties (i.e. hasId, hasCity and hasCountry) with
corresponding values being the previously (step 1) created OWL individuals.

• The content of each element is related to a corresponding datatype property
(e.g. the Id data is related to TokenValue with RDF literal “1111” which
represents the value for that particular property).

Figure 9 An example transformation of XML data into OWL individuals

A DL knowledge base Σ(T, A) contains terminological axioms T (often called a TBox)
and a set of assertions about individuals A (often called an ABox). To construct a
knowledge base using concept languages, we permit concept and role expressions to be
used in assertions on individual, C(a) and R(a,b) where C is a concept of T, R is a role
of T and a, b are individuals in A. If Ι = (∆Ι,οΙ) is an interpretation, C(a) is satisfied
by I if aΙ ∈ CΙ and R(a,b) is satisfied by I if (aΙ,bΙ) ∈ RΙ.

Conjunction assertions about an individual forms a description of the individual.
DL allows the user to specify that an individual is an instance of a primitive concept. For
example, address12 is asserted to be an instance of AddressBase and contains roles
hasId, hasCity, hasCountry filled by id34, city56, country78, respectively:

oag:AddressBase(adress12)

oag:hasId(address12, id23)

oag:hasCity(address12, city56)

oag:hasCountry(address12, country78)

oag:TokenValue(id34, “1111”)

oag:languageId(city56, “en”)

oag:StringValue(city56, “Belgrade”)

oag:TokenValue(country78, “SCG”)

 16 N. Anicic et al.

4.6 Validating source data

This validation step checks transformation result with respect to both the concept
definition and other semantic constraints, which may be defined in the corresponding
ontology. Because a DL reasoner makes the Open World Assumption (OWA), if a
mandatory property is not present, the reasoner cannot conclude that it is false (as it is
wrong to assume it will never be present). For that reason, the reasoner can conclude
only contradictory but not insufficient information (i.e. missing properties). In a B2B
context, however, a document being exchanged must contain all required information
and to compute that an instance has all mandatory properties it is necessary to validate
instance with ‘local Closed World Assumption’ (CWA). The semantics of OWL
currently provide the standard logical model of an OWA. To illustrate checking in OWA
let us consider a set of assertions A defined as the following:

star:Address(address1)

oag:hasCity(address1, city56)

oag:hasCity(address1, city89)

We have an individual address1 with an explicit assertion that it is an instance of the
star:Address. This individual has two hasCity role fillers. To check individual
consistency, we follow the usual logical paradigm where two individuals with different
names are indeed different individuals. This characteristic called Unique Named
Assumption (UNA), is not characteristic of OWL (that requires an explicit statement that
two individuals are different or equal), but is very important when we perform individual
checking. The interpretation function ·I is extended in such way that for any two
individuals a, b ∈ A, a ≠ b if aI ≠ bI. Using UNA, the particular individual will
be calculated to have property hasCity=2, which violates the constraint for concept
description (≥1 hasCity) and, consequently, results in an inconsistent individual.

Consider the following example: star:Address(address2). We have an
individual with an explicit assertion that it is an instance of the star:Address class
and without any roles. On the basis of the instance checking in OWA, one can conclude
that this individual is consistent. However, when an individual is not complete, as is the
case, we can still recognise concept membership. If we know that an individual
address2 is star:Address, adding information to the model cannot cause it to
become false.

From the definition of the star:Address class, however, we can see that hasCity
and hasCountry are mandatory properties of that class. In this case, we ‘close the
world’ by creating a temporary class description (i.e. a query) based on the particular
individual. We include ‘close’ operator, which takes an individual and a role and ‘closes’
the role on the individual, by first counting the known fillers for the role on the
individual and then asserting number restriction on the individual (the class definition).
We also assert the values on the present properties as value restrictions of that temporary
class. This definition will be an Auxiliary Most-Specific (AMS) concept definition for a
particular individual. An inference rule is needed to look at roles that are closed on
individuals and check to see if all their fillers satisfy a value restriction.

T_address2 ≡ star:Address ⊓
(≤0 oag:hasCity) ⊓ (≤0 oag:hasCountry)

 Semantic EAI standards 17

To check whether a is an instance of a concept C it should be sufficient to check whether
most-specific concept of a is subsumed by C, turning instance checking into
subsumption.

T_address2 ⊑ star:Address

As this subsumption does not hold, we can conclude that the individual address2 is
inconsistent with respect to the concept star:Address in closed world reasoning, that
is, the individual address2 is not a valid instance of star:Address.

4.7 Create satisfiable merged ontology

To translate XML data from one format to another, we need to create a merged ontology.
The merged ontology contains all concept axioms from relevant ontology sources
(e.g. OAG, STAR and AIAG). In the merged ontology one concept might be dependent
on some concepts in the other ontology namespace. The merged semantics provides
support for inferences over the source data that may yield unexpected results (such as
those we discussed in the previous section).

The actual process of ontology merging is the same discussed in the Testing
Integration Capabilities portion of Section 4.4. (If this testing resulted in additional
mapping axioms, then this entire additional axiom set will be included in the
merged ontology.) It is also possible to create the merged ontology at design time. In that
case, the merged ontology will be referenced and, for the performance reason, may
be reduced only to include the sufficient set of concepts that is necessary for the next
step of the data transformation. We check satisfiability for every concept of the
merged ontology.

4.8 Check source data consistency for the merged ontology

As the integration tool is a complete reasoner that includes consistency checkers, all
axioms of the merged ontology must be loaded. The tool has to check the individual
consistency checking for source individuals with respect to the merged ontology.
An individual that belongs to the source concept and which satisfies all constraints in
the source definition has to satisfy all constraints defined for the equivalent
concept definitions in the target ontology (for details about consistency checking, see
Section 4.6).

4.9 Compute target data

To compute target data, we use the merged ontology to calculate a new concept
subsumption hierarchy. We use the individual classification capability of a DL reasoner
to compute target data (i.e. individuals). The individual classification allows us to find
the most-specific concept for every individual in the target ontology as well as other
concepts that the particular individual belongs to.

 18 N. Anicic et al.

Let us define a set of assertions Astar that describe an individual address3, an
instance of the star:Address concept. The individual has property fillers for
oag:hasId, oag:hasCity and oag:hasCountry:

star:Address(address3)

oag:hasId(address1, compids1)

oag:hasCountry(address1, country78)

oag:hasCity(address1, city56)

oag:TokenValue(compids1, “1111”)

oag:StringValue(city56, “Belgrade”)

oag:TokenValue(country78, “SCG”)

For the address3 individual, we define an AMS concept Msc_address3 (we formally
define operator ⋐: address3 ⋐ star:Address ⊓ Msc_address3). If the address3
satisfies necessary and sufficient conditions for star:Address (and subsumption
between Msc_address3 and star:Address holds), then address3 will be classified
as a valid instance of star:Address (Figure 10).

Figure 10 Compute target data – individual classification

Using the merged ontology T′, we check satisfiability between the AMS concepts and
other concepts in the merged ontology. For terminology T ′, new axioms might be
calculated (e.g. equivalence). The equivalence between two concepts may force an
individual to be checked for consistency with respect to both concepts (i.e. equivalence

 Semantic EAI standards 19

between two concepts means that the two concepts share exactly the same set of
individuals):

star:Address(address3) and star:Address ≡ ivi:Address
⇒ ivi:Address(address3)

If an individual is consistent, then it can be classified as an instance of a new concept or a
set of concepts in the merged ontology T ′. Our target ontology Tivi introduces a new
property ivi:hasCountry that is equivalent to oag:hasCountry. As a range of that
property, a new ivi:Country class is defined in the Tivi ontology. As a consequence
of these relationships between concepts and properties, the newly classified Tivi instance
has obtained a locally defined property ivi:hasCountry and the corresponding
range (that has also obtained a locally defined class for its range value).

From an individual assertion, we may deduce information about other individuals
using the notation of propagation. If it is known that a is an instance of ivi:Address,
based on equality between roles ivi:hasCountry and oag:hasCountry and range
restriction on ivi:hasCountry, one can deduce that country78 is also an instance of
ivi:Country class.

ivi:Address(address3)

 and ivi:hasCountry(address3, country78)

 and (∀ivi:hasCountry.ivi:Country)
⇒ ivi:Country(country78)

4.10 Validate target data

Similar to the discussion of validating a source individual, it is necessary to check that a
target individual is a valid instance under both OWA and CWA assumptions. The
individual consistency checking in OWA is already done with respect to the merged
ontology. The OWL individuals classified in the AIAG concept hierarchy have to be
checked for sufficiency with respect to the target (AIAG) concepts. If the individual is
inconsistent in CWA with respect to the target ontology, then translation is not possible
(e.g. the individual does not have all the required properties or violates some of the
business rule constraints). If successful, however, the specific XML source data
(i.e. star:Address from step 5), is translatable into a target OWL data and allowing
interoperable data exchange.

As discussed previously, finding a new individual consistent is still not sufficient for
interoperability in B2B context. For instance, if it is calculated that address3
∈ ivi:Address and target ontology Tivi have these additional axioms:

ivi:Address ⊑ ∃oag:hasLine.Text
ivi:Msc_address3 ⊑ ivi:Address ⊓ (≦0 oag:hasLine),

then the AMS concept ivi:Msc_address3 will contain a constraint on hasLine equal
to zero. This, however, is contradictory to the introduced axiom ‘at least 1 hasLine with
range Text’.

An AMS concept in the target ontology may be different from the corresponding
(i.e. the same individual) AMS concept in the source ontology.

 20 N. Anicic et al.

4.11 Serialising target data

The serialisation into OWL format is straightforward. A new file will contain a set of
individuals with types from the target (AIAG) ontology.

For serialisation into XML format, we use concept and property hierarchy. If we use
default XSD serialisation from our OWL ontology, then the serialisation is also provided.
If we have a customised mapping to specific XML Schema syntax (e.g. a sequence of
elements defined in a separate file), then that serialisation is dependent on the mapping
rules. The serialisation algorithm is a subject of a future publication.

5 Related work

A previous effort investigated use of Semantic Web technologies (e.g. the DAML+OIL
merger of the US DARPA Agent Markup Language and the Ontology Inference Layer
(OIL)) in support of semantic constraints definitions and management for RosettaNet
(Trastour et al., 2003). In this paper, an approach for mapping from XML Schema to
DAML+OIL is outlined. This approach uses RosettaNet XML Schema design decisions
which are different from OAG and, consequently, the mapping rules are slightly
different. The authors’ evolutionary approach that uses (but does not change) the
integration standard and their focus on automatic validation of XML documents is
similar to ours. However, the main difference is our focus on evaluation and validation of
integration results in the EAI standards domain.

An initial exploration of OWL as a model-based language for integrating XML data
sources was reported in Lehti and Fankhauser (2004) with OWL introduced as a top layer
of heterogeneous XML data sources. The focus is on an OWL query language that may
be used for hybrid reasoning (i.e. relies on procedural computation) in our approach.

Recently, a new layered model for XML schemas was proposed, which offers a
semantic view of XML schemas through specification of concepts and semantic
relationships among them (Boukottaya et al., 2004). The work introduces a
transformation framework that encompasses the whole XML document transformation
process, from modelling and semantic matching to transformation script generation.
Conceptual modelling is used to automate the transformation algorithm. While this work
deals with diversity of schema constructs and semantic matching, our approach is based
on OWL DL representation of a conceptual model using a core set of concept
descriptions that may be customised.

6 Conclusion

In this paper, we have described a Semantic Web-based integration architecture and
methodology to serve as a blueprint to assess the Semantic Web technologies for EAI
standards. This novel integration methodology is described through an integration
scenario and validation steps that are performed both at design time and run time.
During design time, the methodology supports development of generalised and
normalised ontologies and allows model-based similarity analysis of these ontological
models. During run time, the methodology enables semantic translation of instances

 Semantic EAI standards 21

of business documents using the previously developed ontologies and automated
reasoning tools.

Initial results show interesting capabilities such as the ability to perform an individual
equivalence test that is content based. Our immediate future work will focus on
experimental assessment of the initial ideas for Semantic Web-based EAI standards.
We expect to identify the key technical issues for the proposed approach and
through experimentation show whether these issues be addressed using the proposed
approach.

7 Disclaimer

Certain commercial software products are identified in this paper. These products were
used only for demonstration purposes. This use does not imply approval or endorsement
by NIST, nor does it imply these products are necessarily the best available for the
purpose.

References

Anicic, N. and Ivezic, N. (2005) ‘Semantic Web technologies for enterprise application
integration’, ComSIS International Journal, Vol. 2, No. 1, Available at: http://www.comsis.
fon.bg.ac.yu/ComSIS/Vol2No1/RegularPapers/AnicicIvezic.htm.

Automotive Industry Action Group (AIAG) (2004) Available at: http://www.aiag.org/.

Boukottaya, A., Vanoirbeek, C., Paganelli, F. and Khaled, A.O. (2004) ‘Automating XML
document transformations: a conceptual modeling based approach’, The First Asia-Pacific
Conference on Conceptual Modeling, New Zealand: Dunedin.

Decker, S., et al. (2000) ‘The Semantic Web – on the roles of XML and RDF’, IEEE Internet
Computing, Vol. 4, No. 5, pp.63–74.

Haarslev, V. and Moller, R. (2001) ‘Description of the RACER system and its applications’,
Proceedings of the International Workshop on Description Logics.

Horrocks, I., Patel-Schneider, P.F. and Harmelen, F. (2003) ‘From SHIQ and RDF to OWL: the
making of a web ontology language’, Journal of Web Semantics, Vol. 1, pp.7–26.

Jelliffe, R. (2004) Schematron – Pattern-Based Schema Language, Available at: http://www.
ascc.net/xml/resource/schematron/schematron.html.

Lehti, P. and Fankhauser, P. (2004) ‘XML data integration with OWL: experiences and
challenges’, Applications and the Internet, Proceedings 2004 Internat, Symposium,
pp.160–167.

McGuinness, D.L. and Harmelen, F. (Eds) (2004) OWL Web Ontology Language Overview,
Available at: http://www.w3c.org/TR/owl-features/.

Meadows, B. and Seaburg, L. (Eds). (2004) Universal Business Language 1.0, Available at:
http://docs.oasis-open.org/ubl/cd-UBL-1.0/.

Nardi, D. and Brachman, R.J. (2003) ‘An introduction to description logics’, in F. Baader,
D. Calvanese, D.L. McGuinness, D. Nardi and P.F. Patel-Schneider (Eds). Description Logic
Handbook, Cambridge University Press, pp.1–39.

Open Applications Group (OAG) (2004) Available at: http://www.openapplications.org/.

RosettaNet (2004) Available at: http://www.rosettanet.org.

 22 N. Anicic et al.

Schmidt-Schauß, M. and Smolka, G. (1991) ‘Attributive concept descriptions with complements’,
Artificial Intelligance, Vol. 48, No. 1, pp.1–26.

Standards for Technology in Automotive Retail (STAR) (2004) Available at: http://www.
starstandard.org/.

Trastour, D., Preist, C. and Coleman, D. (2003) ‘Using Semantic Web technology to enhance
current business-to-business integration approaches’, Seventh IEEE International Enterprise
Distributed Object Computing Conference, EDOC 2003, Brisbane, Australia.

Note
1A specification may be either description or definition.

