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ABSTRACT 

 

 A novel cable-based metrology system is presented wherein six 
cables are connected in parallel from ground-mounted string pots to the 
moving object of interest.  Cartesian pose can be determined for 
feedback control and other purposes by reading the lengths of the six 
cables via the string pots and using closed-form forward pose 
kinematics.  This paper focuses on a sculpting metrology tool, assisting 
a human artist in generating a piece from a computer model, but 
applications exist in manufacturing, rapid prototyping, robotics, and 
automated construction.  The proposed real-time cable-based metrology 
system is less complex and more economical than existing commercial 
Cartesian metrology technologies. 
 
 
1.  INTRODUCTION 
 
 Many applications in robotics, construction, and manufacturing 
require effective real-time measurement of Cartesian pose of end-
effectors, tools, and materials.  Current technologies in use for pose 
metrology include machine vision, photogrammetry, theodolites, laser 
interferometry, magnetic tracking, stereo optical image registration, and 
acoustic methods; many of the technologies are complex and expensive.  
The current paper presents a novel system for Cartesian pose 
measurement using six cables (whose lengths are sensed via passive 
string pots with torsional-spring tensioning) connected to the end-
effector.  The proposed system is relatively simple and economical. 
 This idea is related to cable-suspended robots; the literature in this 
area is growing, starting with the NIST (National Institute of Standards 
and Technology) RoboCrane (Albus, et al., 1993) and the McDonnell-
Douglas Charlotte1 (Campbell, et al., 1995).  NIST was also the 
innovator behind passive cable-based metrology.  The Robot Calibrator 
(Bostelman, 1990) used three cables meeting at a single point, 
measured by three string encoders, were used to calibrate a PUMA 
robot, position only.  Driels and Swayze (1994) implemented a similar 
idea for partial-pose (position) calibration of an industrial robot, with 
experimental results.  Jeong, et al., (1998), have also implemented a 
similar cable-based industrial robot pose-measuring system.  Their six-
cable parallel wire mechanism is based on a (non-inverted) Stewart 
Platform.  No analytical solution to the forward pose kinematics 

problem exists; instead they use a numerical approach.  SpaceAge 
Controls, Inc. has used spring-loaded cable/potentiometer position 
transducers for aircraft applications (such as aileron control) for thirty 
years (www.spaceagecontrol.com1). 
 Another unique NIST application of cable-based metrology has been 
in conjunction with mathematician/sculptor Helaman Ferguson 
(Ferguson, 1994; also www.helasculpt.com1).  To provide an innovative 
tool for assisting a human artist in generating a sculpture from a 3D 
complex mathematical surface in a computer model, three cable-based 
metrology systems have been developed.  The purpose of these is to 
provide Cartesian pose feedback for replicating the computer model in 
real-world materials.  The String-Pot 1 System again only provides 3D 
position feedback to the human, using three cables and string pots 
meeting in a single point.  The String-Pot 2 System allows for full 6-dof 
pose (position and orientation) feedback to the human.  It is basically a 
passive RoboCrane, an inverted Stewart platform with six cables and 
string pots.  The sculpting tool is connected to the moving platform of 
the passive RoboCrane and the human sculptor stands within this 
moving platform.  These systems are documented in Bostelman (1993) 
and Ferguson (1998). 
 The third cable-based metrology sculpting tool is currently under 
development at NIST, and is the subject of this paper.  Like the String-
Pot 2 System, the current concept provides 6-dof pose measurement; 
however, the design has been changed from the symmetric RoboCrane-
like structure to improve pose measurement and human interaction.  
The next section presents the system description for this Six-Cable 
Hand-Directed Sculpting System.  The forward pose kinematics 
problem is important for calculating poses given the six sensed cable 
lengths; an analytical solution to the forward pose kinematics problem 
for the NIST system is presented.  This paper also presents various 
kinematics issues including sculpting displacements for display to the 
human, Cartesian measurement uncertainty, calibration of fixed cable 
points, and workspace. The sculpting metrology is an interesting 
application; however, various potential applications exist for this NIST 
cable-based metrology technology, including manufacturing, rapid 
prototyping, robotics, and automated construction.  This type of 
metrology system is adaptable to large-scale problems. 
 
                                                        
1 The identification of any commercial product or trade name does not imply 
endorsement or recommendation by Ohio University or NIST. 
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2.  SYSTEM DESCRIPTION 
 Figure 1 shows the arrangement of the six-cable hand-directed 
sculpting system.  The system is large: it stands almost 4.267 m (14 ft.) 
high and is supported by three 55-gallon drums on an equilateral 
triangle of side 3.048 m (10 ft.).  The size and height of the sculpting 
tool is exaggerated in Figure 1 for clarity.  Figure 2 shows a photograph 
of the supporting frame. 

In Figure 1, the (irregular) tetrahedral base frame has vertices A, B, 
C, and D; the vertices of the moving tool are P1, P2, and P3, and the 
cutting tip T is located at the origin of moving frame {T}.  The world 
coordinate frame is {0}; the origin of this frame is on the floor and 
directly under point C along the Z axis. 

The lengths of the six cables are Li, 6,,2,1 L=i .  Fixed points C1, 

C2, C3, A4, A5, and B6 are the cable contact points on the ground-
mounted string pots, located near points C, A, and B, respectively.   
Cable 1 connects C1 to P1, cable 2 connects C2 to P2, cable 3 connects 
C3 to P3, cable 4 connects A4 to P3, cable 5 connects A5 to P2, and cable 
6 connects B6 to P2.  The sides of the rigid moving platform triangle are 
s1, s2, and s3. 
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Figure 1.  Six-Cable Hand-Directed Sculpting System Diagram 

 

 
Figure 2.  Six-Cable Hand-Directed Sculpting System Photograph 

 

 Figure 3 shows a photograph of the aluminum cross with eyebolts, 
representing the sculptor’s chainsaw in the NIST hardware.  Moving 
cable connection points P1, P2, and P3 are shown, with one, three, and 
two cables connecting, respectively.  The tip of the cross is the origin of 
the tool-tip frame {T}.  We assume that points P1, P2, and P3 are known 
in the {T} frame and then points C1, C2, C3, A4, A5, and B6 are known in 
the {0} frame. 
 Figure 4 shows one of the six string pots, which are 10-turn 
potentiometers for measuring the length of each cable.  These string 
pots allow a length change of 2.54 m (100 inches) and are linear over 
their operating range.  A torsional spring maintains tension (about 2 N) 
on the cable at all times. 
 

 
Figure 3.  Chainsaw Proxy 

 

 
Figure 4.  String Pot 

 
3.  FORWARD POSE KINEMATICS 
 Forward pose kinematics is required for Cartesian metrology over 
time.  Given the six cable lengths read from the string pots, we 
calculate the Cartesian pose (three translations and three rotations) in 
this section.  First, we derive a closed-form solution.  Due to the fact 
that the fixed cable points vary slightly as the cables rotate at different 
angles over their respective string pot pulleys (see Figure 4), this 
solution has some error; this is then corrected by an iterative solution, 
using the basic closed-form solution at each step. 
 
3.1  Nominal Closed-Form Solution  
 The forward pose kinematics problem is stated: Given the six cable 
lengths Li, 6,,2,1 L=i , calculate the Cartesian pose of the chainsaw tip 

frame, expressed by homogeneous transformation matrix [ ]T0
T  or the six 
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Cartesian pose numbers { } { } T
T zyx γβα=X0  (we use ZYX 

αβγ Euler angles, Craig, 1989).  This pose can then be interpreted and 
used for the sculpting or other Cartesian task at hand.  Unlike many 
parallel robot forward pose kinematics problems, there exists a closed-
form solution, and the computation requirements are not demanding.  
There are multiple solutions, but the correct solution can generally be 
determined. 
 The system in Figure 1 can be viewed as a (non-symmetric) 3-2-1 
Stewart Platform, whose forward pose kinematics problem has been 
presented (e.g. Nair and Maddocks, 1994; Geng and Haynes, 1994; 
Zsombor-Murray, 2000). 
 The forward pose kinematics solution consists of finding the 
intersection point of three given spheres; this must be done three times 
in the following sequence.  Let us refer to a sphere as a vector center 
point c and scalar radius r: (c,r).  Moving points Pi are found first, 

represented by vectors expressed in {0}: iP0 , 3,2,1=i . 

 

1.  P2 is the intersection of: ( 5
0 A ,L5), ( 6

0 B ,L6), and ( 2
0C ,L2). 

2.  P3 is the intersection of: ( 4
0 A ,L4), (P2,s1), and ( 3

0C ,L3). 

3.  P1 is the intersection of: (P2,s3), (P3,s2), and ( 1
0C ,L1). 

 
Where s1, s2, and s3 are the known fixed lengths of the moving platform: 

321 PPs = , 132 PPs = , and 213 PPs =  (see Figure 1). 

 The closed-form intersection of three given spheres algorithm is 
given below, but let us first finish the forward pose kinematics solution, 

assuming iP0  are now known.  Given iP0 , we can calculate the 

orthonormal rotation matrix [ ] [ ]RR 00
iPT =  directly (we assume that the 

{P1}, {P2}, {P3}, and {T} frames have identical orientation), using the 
definition that each column of this matrix expresses one of the XYZ unit 
vectors of {T} (or {Pi}) with respect to {0} (Craig, 1989): 
 

[ ]
















=
iiii

PPPP ZYX ˆˆˆ 0000 R     (1) 

 
The columns for (1) are calculated using (2), referring to Figure 1. 
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iii PPP YXZ ˆˆˆ 000 ×=     (2) 

 
where P4 (not shown in Figure 1) is the midpoint of P1P3: 
 

iPX
s ˆ
2

02
1

0
4

0 






+= PP      (3) 

 
There are two solutions to the intersection point of three given 

spheres (see the following subsection); therefore, the forward pose 
kinematics problem yields a total of 23 = 8 mathematical solutions since 
we must repeat the algorithm three times.  Generally only one of these 
is the valid solution for the hand-directed sculpting tool.  Also, as seen 
in the spheres intersection algorithm below, solution singularities exist.  
These issues will be dealt with later. 
 
3.1.1  Three Spheres Intersection Algorithm.  We now derive the 
equations and solution for the intersection point of three given spheres.  

This solution is required (three separate times) by the forward pose 
kinematics solution above.  Let us assume that the three given spheres 
are ( 1c ,r1), ( 2c ,r2), and ( 3c ,r3).  That is, center vectors 

{ } Tzyx 1111 =c , { } Tzyx 2222 =c , { } Tzyx 3333 =c , and radii 

r1, r2, and r3 are known (The three sphere center vectors must be 
expressed in the same frame, {0} in this paper; the answer will be in 
the same coordinate frame).  The equations of the three spheres are: 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 2

3
2

3
2

3
2

3

2
2

2
2

2
2

2
2

2
1

2
1

2
1

2
1

rzzyyxx

rzzyyxx

rzzyyxx

=−+−+−

=−+−+−

=−+−+−

   (4) 

 
 Equations (4) are three coupled nonlinear equations in the three 
unknowns x, y, and z.  The solution will yield the intersection point 

{ } Tzyx=P .  The solution approach is to expand equations (4) and 

combine them in ways so that we obtain ( )yfx =  and ( )yfz = ; we 
then substitute these functions into one of the original sphere equations 
and obtain one quadratic equation in y only.  This can be readily solved, 
yielding two y solutions.  Then we again use ( )yfx =  and ( )yfz =  to 

determine the remaining unknowns x and z, one for each y solution.  Let 
us now derive this solution. 
 First, expand equations (4) by squaring all left side terms.  Then 
subtract the third from the first and the third from the second equations, 
yielding (notice this eliminates the squares of the unknowns): 
 

1131211 bzayaxa =++      (5) 

2232221 bzayaxa =++      (6) 

 
where: 
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−=
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2
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Solve for z in (5) and (6): 

y
a

a
x

a

a

a

b
z

13

12

13

11

13

1 −−=      (7) 

y
a

a
x

a

a

a

b
z

23

22

23

21

23

2 −−=      (8) 

 
Subtract (7) from (8) to eliminate z and obtain ( )yfx = : 
 

( ) 54 ayayfx +==       (9) 

 

where:    
1

2
4 a

a
a −=   

1

3
5 a

a
a −=  

23

21

13

11
1 a

a

a

a
a −=  

23

22

13

12
2 a

a

a

a
a −=  

13

1

23

2
3 a

b

a

b
a −=  

 
Substitute (9) into (8) to eliminate x and obtain ( )yfz = : 
 

( ) 76 ayayfz +==       (10) 
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 where:   
23

22421
6 a

aaa
a

−−
=  

23

5212
7 a

aab
a

−
=  

 
Now substitute (9) and (10) into the first equation in (4) to eliminate x 
and z and obtain a single quadratic in y only: 
 

02 =++ cbyay      (11) 
 

where:   ( ) ( )
( ) ( ) 2

1
2
1

2
1

2
1177155

1761154

2
6

2
4

22

222

1

rzyxzaaxaac

zaayxaab

aaa

−+++−+−=

−+−−=
++=

 

 
There are two solutions for y: 

a

acbb
y

2

42 −±−=±       (12) 

 
To complete the intersection of three spheres solution, substitute both y 
values y+ and y- from (12) into (9) and (10): 

54 ayax += ±±       (13) 

76 ayaz += ±±       (14) 

 
In general there are two solutions, one corresponding to the positive and 
the second to the negative in (12).  Obviously, the + and – solutions 
cannot be switched: 

        { } Tzyx +++         (15) 

        { } Tzyx −−−  

 
Let us now present a simple example to demonstrate the solutions in the 
intersection of three spheres algorithm.  Given three spheres (c,r): 

{ }( ) { }( ) { }( )3,131;5,003;2,000 TTT −   (16) 

 
The intersection of three spheres algorithm yields the following two 
valid solutions: 

     { } { } TTzyx 101=+++               (17) 

     { } { } TTzyx 8.06.01 −−=−−−  

 
These two solutions may be verified by a 3D sketch.  This completes the 
intersection of three spheres algorithm.  In the next subsections we 
finish the overall forward pose kinematics solution discussion by 
presenting several important topics: imaginary solutions, singularities, 
and multiple solutions. 
 
3.1.2  Imaginary Solutions.  The three spheres intersection 
algorithm can yield imaginary solutions.  This occurs when the radicand 

acb 42 −  in (12) is less than zero; this yields imaginary solutions for 

±y , which physically means not all three spheres intersect.  If this 

occurs in the hardware, there is either a cable length sensing error or a 
modeling error, since the hardware assembles properly. 

A special case occurs when the radicand acb 42 −  in (12) is equal 
to zero.  In this case, both solutions have degenerated to a single 
solution, i.e. two spheres meet tangentially in a single point, and the 
third sphere also passes through this point.  This can happen in the 
hardware, for instance when point P2 lies on plane ABC (see Figure 1), 
plus either cables L2L5, L5L6, or L6L2 are collinear. 
 

3.1.3  Singularities.  The three spheres intersection algorithm and 
hence the overall forward pose kinematics solution is subject to 
singularities.  These are all algorithmic singularities, i.e. division by 
zero in the mathematics, but no problem exists in the hardware (no loss 
or gain in degrees-of-freedom).  This subsection derives and analyzes 
the algorithmic singularities for the three spheres intersection algorithm 
presented above.  Different possible three spheres intersection 
algorithms exist, by combining different equations starting with (4) and 
eliminating and solving for different variables first.  Each has a 
different set of algorithmic singularities.  We only analyze the algorithm 
presented above. 

Inspecting the algorithm, represented in equations (4) – (15), we 
see there are four cases in which the algorithm experiences 
mathematical difficulty (we already discussed the imaginary solutions 
cases above and do not include them here); all involve division by zero: 

 
Singularity Conditions: 

0;0

0;0

1

2313

==
==

aa

aa
      (18) 

 
The first two singularity conditions: 

( )
( ) 02

02

2323

1313

=−=
=−=

zza

zza
      (19) 

 
are satisfied when the centers of spheres 1 and 3 or spheres 2 and 3 
have the same z coordinate, i.e. 31 zz =  or 32 zz = .  These can occur for 

the Hand-Directed Sculpting Tool.  However, judicious choice of what 
are numbered spheres 1, 2, and 3 can completely avoid this algorithmic 
singularity; recall the chosen sphere intersection sequence for overall 
forward pose kinematics is given early in Section 3.1.  The fixed sphere 

centers 5
0 A  and 6

0 B  always have the same z coordinate; therefore in 

the first step they must appear as spheres 1 and 2.  In the second step, 

sphere centers 4
0 A  and P2 can have the same z coordinate and hence 

appear as spheres 1 and 2.  In the third and final step, moving sphere 
centers P2 and P3 can have the same z coordinate (this case is the 
nominal horizontal orientation) and hence appear as spheres 1 and 2.  In 

all cases fixed sphere center iC0 , 3,2,1=i , appears as the third sphere 

because its z coordinate will never be the same as any of the other fixed 
and moving sphere centers, for a normal human standing on the ground.  
Therefore, the algorithmic singularity conditions 1 and 2 pose no 
problem in the hardware. 

The third singularity condition, 

0
23

21

13

11
1 =−=

a

a

a

a
a      (20) 

 
Simplifies to: 

23

23

13

13

zz

xx

zz

xx

−
−

=
−
−

     (21) 

 
For this condition to be satisfied, the centers of spheres 1, 2, and 3 must 
be collinear in the XZ plane.  For the first use of the three spheres 

algorithm, fixed centers 5
0 A , 6

0 B , and 2
0C  are never collinear.  For 

the second use of the three spheres algorithm, it is theoretically possible 

for the sphere centers 4
0 A , P2, and 3

0C  to lie along the same line in 

the XZ plane.  However, in reality, we will define the useful workspace 
to be bounded by the tetrahedral frame; thus, this type of algorithmic 
singularity will occur only near the workspace edge AC in the hardware.  
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For the third use of the three spheres algorithm, it is again possible for 

the sphere centers P2, P3, and 1
0C  to lie along the same line in the XZ 

plane.  In this case line P2P3 must also pass through 1
0C , which means 

line P2P3 is collinear with the third cable.  This case is far from nominal 
orientation ( 0=== γβα ).  Also, we define the boundary of the useful 
orientation workspace to be when a cable lies along one of the sides of 
the chainsaw.  Hence, singularity condition 3 lies along the edge of the 
useful workspace and thus presents no problem in the hardware if the 
user is properly instructed regarding workspace limitations.  A 
singularity-approaching algorithm can be developed to warn the user in 
these cases. 

The fourth singularity condition, 

01 2
6

2
4 =++= aaa      (22) 

 
Is satisfied when: 

12
6

2
4 −=+ aa       (23) 

 
It is impossible to satisfy this condition as long as a4 and a6 (from (9) 
and (10)) are real numbers (this is the case in the hardware).  Thus, the 
fourth singularity condition is never a problem in the sculpting tool 
hardware. 
 To summarize, this subsection analyzes the algorithmic singularity 
conditions for the three spheres intersection algorithm as applied to 
forward pose kinematics of the Hand-Directed Sculpting Tool.  Four 
singularity conditions were found and none present problems for the 
forward pose solution.  Only one subcase of the four was found to be a 
potential problem, but it lies on the boundary of the useful workspace.  
To reach this conclusion, it was also important to order the spheres 
passed into the algorithm properly. 
 
3.1.4  Multiple Solutions.  In general the three spheres intersection 
algorithm yields two distinct, correct solutions ( ±  in (12-14)).  Since 
this algorithm is used three times in the overall forward pose kinematics 
solution, 23 = 8 valid mathematical solutions exist.  Generally only one 
of these is the valid solution for the hand-directed sculpting tool pose.  
Through exhaustive simulation of the forward pose kinematics solution 
throughout the useful workspace, it was found that generally the 
positive y solution should be used in the three spheres intersection 
algorithm.  However, an undesired result was sometimes found, 
illustrated in Figure 5. 
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Figure 5.  Multiple Solution Trouble 

 
In Figure 5, the left part is the actual pose, while the right part is 

the erroneous pose.  As seen in the figure, the solutions for P2 and P3 

were as desired, but then point P1 was flipped over as shown; this is 
impossible in the hardware as cables would be twisted unless they were 
disconnected and reattached in the undesired pose.  To handle this type 
of problem in the forward pose kinematics solution, we write three 
inequalities, with respect to {0}, which must be satisfied for general 
operation of the tool: 

xx PP 31 <    yy PP 12 <    yy PP 32 <   (24) 

 
 If the first inequality in x is not satisfied, we must use the negative y 
solution in the three spheres intersection algorithm when determining 
point P1 (the third step). 
 However, for the second and third y inequalities in (24), the positive 
and negative y solutions yield identical results and hence cannot be used 
to distinguish the correct solution to use.  Generally the positive y 
solution should be used in the three spheres intersection algorithm when 
determining points P2 and P3 (the first and second steps). 
 A second type of multiple solution case exists within the workspace, 
potentially more problematic than the easily-detected case given above.  
When the chainsaw is oriented so that P2 and P3 is in the workspace 
near AB, at many Z planes, it was observed that a second valid solution 
exists, with orientation much closer to the expected solution than the 
previous case of Figure 5.  In this case, the expected solution can be 
found by using the positive y solution in the three spheres intersection 
algorithm when determining point P1, but using the negative y solution 
in the three spheres intersection algorithm for both P2 and P3.  The trick 
is in detecting when this occurs because both orientations are similar, 
unlike the flipped multiple solution case.  This situation only occurs 
near the tetrahedral frame, which is to be avoided according to our 
singularity analysis. 
 
3.2  Iterative Forward Pose Kinematics Solution 
 The preceding closed-form forward pose kinematics solution 
assumes that the ground-mounted fixed cable points C1, C2, C3, A4, A5, 
and B6 are constant.  However, as seen in Figure 6, these points change 
with cable angle θi (shown for cable 6 in Figure 6: contact point B6 
moves to 6'B  due to cable/pulley angle θ6).  The closed-form solution 

assumed that all cables extend horizontally for A4, A5, B6 and vertically 
for C1, C2, C3.  That is, for instance, the point of contact was assumed to 
be the nominal B6 rather than the actual 6'B  in Figure 6.  Ignoring this 

issue leads to Cartesian position error norms of over 50 mm and 

Cartesian orientation error norms of over o2  in the worst case (large 
cable angles).  Therefore, this section discusses an iterative solution to 
reduce this error (see Williams, 2002 for more details).  Each step of 
the iterative solution employs the closed-form solution from above. 

6L

B'6

Y0

Z0

6B6θ

6θ

X0

r

 
Figure 6.  String Pot Pulley with Cable Angle 

 
 The nominal horizontal and vertical cable cases are rare in actual 
operation; usually there is some cable angle as pictured in Figure 6.  
Note that the cable angle is always identical to the pulley angle.  For a 
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positive angle (shown as 6θ ; positive is about X0 into the page), the 

nominal point B6 has moved to actual contact point 6'B  and the sensed 

cable length for the sixth cable is too short by 6θr  (the cable length 

error is 6θr− ), where 6θ  is the cable/pulley angle (r = 11.11 mm 

(7/16”) for the contact pulley for all string pots).  The cables are 
calibrated so that zero length is defined as when the cable tip is at point 
B6 in Figure 6.  Relative to nominal point B6, the new fixed cable point 
can be calculated using (25): 

( )














−−
−=

66

66

6

6
0

cos1

sin'

θ
θ

rB

rB

B

z

y

x

B      (25) 

 
The same statements can be made for negative cable/pulley angles as 
well: for negative cable angles, going down in Figure 6, the new fixed 

point 6
0 'B  can still be calculated using (25) with 6θ− , and this time 

the sensed cable length for the sixth cable is too long by 6θr . Similar 

formulas apply to points A4, A5, C1, C2, and C3, but different 
transformations are required for {0} coordinates. 
 We assume that only the type of angle shown in Figure 6 is 
significant (up-and-down); the secondary angle (side-to-side) is 
generally smaller and will be ignored in this analysis.  However, to 
calculate the up-and-down angle, we use the change in Z divided by the 
combined change in XY (below).  So we ignore the side-to-side angle, 
but this motion affects the primary up-and-down angle.  First, let us 
present formulas for calculating the six cable angles (θ6 is shown in 

Figure 6 and required to calculate 6
0 'B  in (25); the remaining five 

angles are similarly defined and required).  From geometry of each 
cable between the fixed and moving cable connection points: 










∆
∆= −

i

i
i

xy

z1tanθ   6,5,4=i     (26) 

where: 
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
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i

i
i

z

xy1tanθ   3,2,1=i     (27) 

where: izizi PCz −=∆   ( ) ( )22
iyiyixixi CPCPxy −+−=∆  

 
 Note the signs of the angles will be determined automatically in 
(26), even using the plain atan function; these will be correctly 
determined by the sign of iz∆ .  However, in (27), we forced iz∆  to be 

always positive; further, we use only the positive square root in ixy∆ , 

so we must determine the sign of the angles for 3,2,1=i  by logic.  

Looking down the X0 axis from the right of the machine, angles θi are 
positive when the tool tip places moving chainsaw point Pi forward of 
the vertical from fixed cable points Ci.  The sign conditions are: 
    iθ  is positive if  0>− iyiy CP  

    iθ  is zero if   0=− iyiy CP  3,2,1=i      (28) 

    iθ  is negative if  0<− iyiy CP  

 

 All position vector components above are expressed in {0} 
coordinates.  Note there is some error in these formulas since we use 
the nominal fixed points to calculate all angles: we do not yet know the 
shifted fixed cable points.  In the kinematics iterative solution to follow, 
we can update the angles based on the shifted cable points to reduce 
this error.  Given the six cable angles, we can now present the formulas 

for the shifted fixed cable points ( 6
0 'B  was given in (25)).  The shifted 

fixed cable points for Ci are similar to 6
0 'B , but the nominal cable 

location is vertical and the points shift differently with respect to {0}: 
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 The shifted fixed cable points for Ai are identical to 6
0 'B  in (25), 

but these are expressed in different coordinates, rotated by o120  about 
the Z0 axis with respect to {0}, and with origins located on the nominal 
fixed cable points Ai.  Thus, these formulas must be transformed to {0} 
coordinates first as follows: 
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 Since this cable/pulley angle error can be quite significant, we now 
develop an iterative forward pose kinematics solution incorporating the 
cable/pulley angles and shifted fixed cable points of (25-31).  This 
solution must be iterative because, given the six sensed cable lengths, 
we first use the nominal fixed cable points to calculate the nominal 
Cartesian chainsaw pose (as in Section 3.1).  But then we calculate the 
estimate for the six cable angles, which shifts the fixed cable points and 
modifies the cable lengths; we iterate until the Cartesian pose stops 
changing (according to a user-defined solution tolerance).  This iterative 
forward pose kinematics solution is summarized below: 

1. Given Lsensed, the six cable lengths read from the string pots. 
2. Calculate the closed-form forward pose kinematics solution as 

in Section 3.1. 
3. Calculate the six cable/pulley angles and update the shifted 

fixed cable points (using (25-31)). 
4. Modify the six cable lengths Lsensed by –rθi on each cable i. 
5. Repeat steps 2-4 until the change in Cartesian pose from the 

last step is sufficiently small. 
 
 Note it is important to always use the nominal fixed cable points in 
the shifted points formulas and to use the nominal Lsensed at each step 
when calculating new cable lengths; otherwise the solution will run 
away.  Upon implementation of this algorithm, it was discovered that 
only 3 to 5 iterations were required to reduce the translational and 
rotation error norms to 0.0254 mm and 0.01 degrees, respectively. 
 An alternate method to solve this problem is through mechanical 
design: each string pot can be fitted with a small plate with a small hole 
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to guide each cable (in the nominal horizontal or vertical position) so 
that the ground-mounted fixed cable points never change.  This would 
have the additional benefit of keeping all cables on their string pot 
pulleys at all times (it is not uncommon for one or more cables to slip 
off during normal motions) and reducing computation (no iteration 
required).  However, the disadvantages of this mechanical solution are 
increased cable friction and wear and sharper cable angles. 
 
4.  RELATED KINEMATICS ISSUES 
 This section presents required kinematics issues for implementation 
and use of the six-cable sculpting metrology tool: Cartesian 
displacements for display to the operator, Cartesian measurement 
uncertainty given uncertainty in cable length measurements, calibration 
of the fixed cable points, and system workspaces. 
 
4.1  Displacements for Display 
 This section presents equations for displaying displacement errors 
to the human sculptor from the hand-directed sculpting tool.  Presented 
is the difference (error) between the target pose for the chainsaw and 
the current pose of the chainsaw.  That is, assume a target pose (or a 
trajectory of target poses) is given for the sculpting tool.  Let the target 
pose be represented by coordinate frame {TARG} and let the current 
chainsaw pose be represented by {T}.  The sculptor’s goal is to drive 
{T} towards {TARG} at all times, to execute the desired piece from a 
computer model. 
 The pose displacement errors between the target and current poses 
are derived for display to the operator as follows.  It is easy for 
translations, and less straight-forward for rotations.  For translation 

errors, the position error vector EP0 is found by vector subtraction: 
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The result EP0  gives the XYZ displacements to translate the tool tip 

along, in the world coordinates, to drive {T} towards {TARG}. 
 Unfortunately, no description of orientation is a vector description.  
That is, we cannot simply subtract the target and current Euler angles 
(or fixed angles), analogously to the translation difference (32).  
Instead, we can use the rotation matrix form to determine a difference 
(error) rotation matrix, and extract the error Z-Y-X (α−β−γ) Euler 
angles (identical to the error X-Y-Z (γ−β−α) fixed angles, Craig, 1989) 
from the difference rotation matrix.  The difference rotation matrix is 

[ ]RT
TARG , expressing the orientation of {TARG} with respect to the 

current pose {T}: 
 

[ ] [ ][ ] [ ][ ] [ ][ ]RRRRRRR 000100
0 TARG

T
TTARGTTARG

TT
TARG === −   (33) 

 

In (33) we take advantage of the beautiful property that TRR =−1  for 
orthonormal rotation matrices (Craig, 1989).  Now we extract the error 

Euler angles (or fixed angles) from [ ]RT
TARG  (Craig, 1989) and display 

these to the operator.  The result EEE γβα ,,  gives the Z-Y-X Euler 

rotational displacements to rotate the tool orientation about, with 
respect to world coordinates, to drive {T} towards {TARG}.  Note due 
to the definition of Euler angles, we must reverse the rotation order and 
do the γ about XT rotation first, followed by β rotation about YT and then 
α rotation about ZT.  We cannot do the rotations in any order as we can 
do for translations.  In the case of fixed angles, we would first do the α 

rotation about Z0, followed by β rotation about Y0 and then γ about X0, 
again reverse the original definition, to drive {T} toward {TARG}. 
 The Cartesian displacement error formulas developed in this section 
should be displayed to the operator so that the human can drive all tool-
tip errors to zero for all sculpted poses.  This subsection derived the 
formulas with respect to the world frame; in practice, a relative mode 
will be used as often as the world mode.  That is, the chainsaw frame 
{T} will be touched to the sculpture material in three or more reference 
poses (called poses {mi}, L,3,2,1=i ); this will align the real world 
with the same reference poses in the computer model.  Sculpting 
motions will then be made relative to one or more of these reference 
poses, rather than the world frame.  Similar error formulas apply: 
simply replace index 0 with the desired reference pose mi in (32) and 
(33). 
 
4.2  Cartesian Uncertainty 
 This section presents simulated Cartesian pose measurement 
uncertainty errors ∆X given a δl uncertainty in cable length 
measurements from the string pots.  This section establishes a baseline 
regarding the sculpting tool resolution for aiding a sculptor in 
generating a carving.  This resolution varies with the nominal Cartesian 
pose. 
 We apply a forward pose kinematics method for determining 
Cartesian uncertainty, applied to a grid of nominal poses (vertices of 
cubes of 0.5 m side, centered about the origin of {0}, for Z planes 0.25, 
0.75, 1.25, and 1.75 m, for ‘all orientations’, see below).  About each 
nominal pose Xnom (we first use inverse pose kinematics to determine 
the nominal set of cable lengths Lnom), we form all possible 

permutations 2
lL

inom
δ± , 6,,2,1 K=i .  For each of these 26=64 

permutations, we use forward pose kinematics to calculate Xerr, the 
uncertain Cartesian pose in each case.  For each case we calculate the 
Cartesian error: 

nomerr XXX −=∆      (34) 

 

where { } Tzyx δγδβδαδδδ=∆X  is the vector of Cartesian 

pose measurement uncertainty errors.  For all 64 permutations, we 
average all Cartesian error components separately; note we must use 
absolute value for all error components or the resulting average 
Cartesian uncertainty would always be zero.  Then we calculate the 
translational and rotational norms of the average Cartesian errors:  
 

222
avgavgavgT zyxe δδδ ++=  222

avgavgavgRe δγδβδα ++=  (35) 

 
The error norms Te  and Re  represent the Cartesian pose 

measurement uncertainty errors.  These measures are the length of the 
3D diagonals of rectangular parallelopipeds bounded by 

avgavgavg zyx δδδ ,,  and avgavgavg δγδβδα ,, , the distance between the 

uncertain average and nominal Cartesian poses.  We wish these metrics 
to be as small as possible given a specific δl, for a high-resolution 
machine. 
 As mentioned above, we consider ‘all possible orientations’: at each 

tool tip grid point, let us consider all Euler angles o45±=α , o45±=β , 
o45±=γ  in all possible permutations with an angle step size of o15 .  

We have 73=343 possible orientations at each tool tip point.  For each 
point, among the 343 orientations, we will report the average values 
over all orientations of the average Te  and Re  over all forward pose 

kinematics permutations.  Now, many of these orientation combinations 
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are outside the workspace, due to cable length limits; we skipped these 
conditions in the data presented below. 
 The grid described above is given in XY coordinates in Table I.  The 
average Cartesian pose measurement uncertainty error data for the grid 
of tool-tip points and ‘all possible orientations’ are presented in Tables 
II-V, in the same arrangement as Table I for each Z plane.  From 
laboratory observations the cable measurement uncertainty resolution is 
δl = 0.05 mm.  Note the equilateral triangle ABD in Figure 1 has sides 
of length 3.048 m (120 inches).  The units of translational error norms 
are mm and degrees for rotational error norms in Tables II-V. 
 

Table I.  Grid of X,Y Tool-Tip Points (m) for each Z Plane 
-0.5,0.5 0,0.5 0.5,0.5 
-0.5,0 0,0 0.5,0 

-0.5,-0.5 0,-0.5 0.5,-0.5 
 
 With δl = 0.05 mm, an important value for the translational error 

norm is ( ) 0866.005.03 2 ==Te  mm; at this value, the Cartesian 

error is equivalent to δl on each of zyx δδδ ,,  (of course the components 

can shift up and down to still yield 0.0866 mm).  A smaller error means 
the machine reduces the effect of δl and a larger error means the effects 
of δl are amplified at the given pose.  The units of Re  have been 

converted to degrees for the results tables below. 
 
Table II. Translational Errors(mm) Rotational Errors (Z=0.25 m) 

0.07 0.07 0.08  0.01 0.01 0.01 
0.07 0.12 0.20  0.01 0.01 0.01 
0.08 0.20 0.57  0.01 0.01 0.03 

 
Table III. Translational Errors(mm) Rotational Errors (Z=0.75 m) 

0.07 0.07 0.08  0.01 0.01 0.01 
0.08 0.16 0.33  0.01 0.01 0.02 
0.08 0.38 0.42  0.01 0.02 0.02 

 
Table IV. Translational Errors(mm) Rotational Errors(Z=1.25 m) 

0.07 0.07 0.11  0.01 0.01 0.01 
0.08 0.21 0.39  0.01 0.01 0.03 
0.11 0.41 0.45  0.01 0.03 0.03 

 
Table V. Translational Errors(mm)  Rotational Errors(Z=1.75 m) 

0.07 0.08 0.24  0.01 0.01 0.02 
0.09 0.34 0.61  0.01 0.02 0.04 
0.39 0.36 0.27  0.02 0.03 0.02 

 
 From the Cartesian uncertainty error norms of Tables II-V, for a 
given Z plane, most errors decrease to the front and to the left in the 
workspace.  This is due to longer cables yielding lower relative errors, 
for the same δl.  For Tables II-IV the largest error is in the lower right 
corner, for both translations and rotations; this point approaches a 
singularity where two cables nearly become collinear.  The machine 
will be unreliable near singularities in terms of Cartesian uncertainties 
given finite cable length measurement uncertainties.  In order to avoid 
algorithmic singularities in forward pose kinematics, the moving cable 
connection points must stay away from the boundaries of the ground 
truss defined by points A, B, and C.  In Table V, this singularity has 
moved nearer the (2,3) and (3,2) locations. 
 Tables II-V all have elements where the average translational error 
norm is less than 0.0866 mm.  Translational errors under this value are 
good since this means that the cable sculpting tool is diminishing the 
effects of cable measurement uncertainty δl in these regions.  All poses 

where the normalized translational error is greater than 0.0866 mm 
amplify the effects of cable measurement uncertainty δl. 
 Generally all rotational errors given in Tables II-V are very low (all 
units are degrees).  Due to the relatively long rotational arms on the 
chainsaw between moving points P1, P2, and P3, and T, the rotational 
error is diminished compared to the translational error.  All errors are in 
the hundredths of deg range.  The worst rotational error is 0.04 deg, 
which combines all three rotational axes.  It appears that rotational 
errors will not cause any problem in the sculpting tool.  The 
translational errors dominate; the worst of these is only 0.61 mm. 
 Since the above grid of poses was central to the reachable 
workspace, we also checked the Cartesian uncertainties at various 
outlying points, on the boundary of the reachable workspaces; we did 
not find higher errors for these cases.  Also, the above results are for the 
specific δl of 0.05 mm observed in the system; though the forward pose 
kinematics problem is non-linear, we found that doubling δl to 0.10 mm 
roughly doubled all error norms in Tables II-V. 
 For the 0.05 mm δl value, our results show that the Cartesian 
resolution varies between 0.07 and 0.61 mm for translations and 
between 0.01 and 0.04 degrees for rotations (both measures are 
combined for the three XYZ axes).  These Cartesian uncertainty values 
are very small considering the large scale of the sculpting problem.  
According to sculptor Helaman Ferguson, a Cartesian resolution of 1 cm 
is sufficient for large sculpting projects.  This subsection shows that all 
translational Cartesian uncertainties are far below this 1 cm level.  
Since the system is a hand-directed metrology system driven by a 
human, a much more significant source of problems is tremors and 
errors from the human hands.  The chainsaw further is very heavy; thus 
a gravity offload system will help the human maintain desired 
resolution; the metrology system resolution is more than that required. 
 
4.3  Calibration of Fixed Cable Points 
 What if the location of the fixed cable points A4, A5, B6, C1, C2, and 
C3 are not known precisely?  This section presents a method for 
calibration of these points given length readings from three known 
poses within the workspace.  That is, touching the tool tip to a known 
XYZ position, plus a known orientation, we read the six cable lengths 

via the string pots.  This is performed for three distinct poses [ ]T0
1T , 

[ ]T0
2T , and [ ]T0

3T , and the following mathematics calculates the vector 

positions of fixed cable connection points A4, A5, B6, C1, C2, and C3.  
The first step in the solution process is to determine the chainsaw cable 
attachment points P1, P2, and P3, one set for each given (touched) pose: 
 










=



 −100 TTT ij

jjij

P
TTP   3,2,1=i   3,2,1=j   (36) 

 
 In this subsection, point Pij is defined as: 
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where ijP0  is the position vector to moving cable connection point Pi, 

for the jth given pose ( 3,2,1=i  and 3,2,1=j ).  ijP0  is extracted as the 

last column, first three rows, of (36). 
 To solve this overall calibration problem, let us first consider only 
cable 4, which connects fixed point A4 (unknown) to moving point P3 
(known in three poses from (36)), via length L4 (known in the three 
poses from the fourth string pot).  The key to the problem is to 
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recognize that A4 is the intersection of three spheres, whose centers are 
the three known points P3j and whose radii are the three sensed values 
L4j, 3,2,1=j .  Note we define Lij as the sensed length for cable i, in the 

jth given pose ( 6,,2,1 L=i  and 3,2,1=j ).  The equations for these three 
spheres are: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 2

43
2

334
2

334
2

334

2
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2
324

2
324

2
324

2
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2
314

2
314

2
314

LPAPAPA

LPAPAPA

LPAPAPA

zzyyxx

zzyyxx

zzyyxx

=−+−+−

=−+−+−

=−+−+−

   (38) 

 
The unknown point A4 may easily be found using the Intersection of 
Three Spheres algorithm developed earlier for Forward Pose 
Kinematics.  This algorithm appears in (4-15). 
 To finish the calibration of fixed cable points A4, A5, B6, C1, C2, and 
C3, simply apply the three spheres intersection algorithm six times 
(including the case described above), as follows: 
 

1.  C1 is the intersection of:  ( 11
0 P ,L11), ( 12

0 P ,L12), ( 13
0 P ,L13) 

2.  C2 is the intersection of:  ( 21
0 P ,L21), ( 22

0 P ,L22), ( 23
0 P ,L23) 

3.  C3 is the intersection of:  ( 31
0 P ,L31), ( 32

0 P ,L32), ( 33
0 P ,L33) 

4.  A4 is the intersection of:  ( 31
0 P ,L41), ( 32

0 P ,L42), ( 33
0 P ,L43) 

5.  A5 is the intersection of:  ( 21
0 P ,L51), ( 22

0 P ,L52), ( 23
0 P ,L53) 

6.  B6 is the intersection of:  ( 21
0 P ,L61), ( 22

0 P ,L62), ( 23
0 P ,L63) 

 
 Note in each case, the spheres’ intersection is found from the same 
moving cable connection point and the same cable, but for three 
different known poses and measured lengths.  Now, since we use the 
same sphere intersection algorithm from forward pose kinematics, this 
fixed cable points calibration is subject to the same imaginary solutions, 
multiple solutions, and algorithmic singularities problems.  If imaginary 
solutions result, this means one or more spheres do not intersect; this 
means there is a modeling or sensing error.  The multiple solutions will 
cause no trouble, since approximate values for the fixed cable points are 
known.  Further, if a different Z value is chosen for each of the known 
poses, and if the known orientations are kept to nominal (i.e. 

0=== γβα ), none of the algorithmic singularities will be a problem. 
 The methods in this subsection will work well only if the fixed 
cable points are truly fixed (see Section 3.2 and Figure 6).  Otherwise, 
there will be some error due to the cable/pulley angles shifting the cable 
contact points.  Thus, fixed point calibration is another reason to add a 
plate with a fixed hole to each of the string pots.  If this mechanical 
guide is not added, an iterative procedure similar to Section 3.2 may be 
implemented to reduce this error in the fixed cable point calibration due 
to cable/pulley angles. 
 
4.4  Workspaces 
 The workspace is defined as the 3D volume that is attainable by the 
tip {T} of the six-cable hand-directed sculpting metrology tool, both in 
position and orientation.  We are interested in three types of workspace: 
reachable, zero-orientation, and dexterous.  The reachable workspace is 
the 3D volume reachable by the tool tip regardless of orientation; if a 
point is reachable in only one specific orientation, it is considered part 
of the reachable workspace.  The zero-orientation workspace is that 3D 
volume that can be reached by the tool tip with the constraint of 
nominal orientation only, 0=== γβα .  The dexterous workspace is 
that 3D volume reachable by the tool tip in all possible orientations.  
For most parallel robots, the dexterous workspace vanishes, so we must 

define a limit on dexterous workspace, such as o30±  on α, β, and γ.  
Generally, the zero-orientation workspace is a subset of the reachable 
workspace, and the dexterous workspace is a subset of the zero-
orientation workspace. 
 The workspaces are limited by the 2.54 m (100 inch) string pot 
cable excursions.  For the hardware, the length constraints are 

318.4778.1 ≤≤ iL  m ( 17070 ≤≤ iL  inches) for 3,2,1=i  and 

54.20 ≤≤ iL  m ( 1000 ≤≤ iL  inches) for 6,5,4=i .  Note we added 

cable extensions of 1.778 m (70 inches) to cables 1, 2, and 3 to bring 
the tool to normal heights for sculptors standing on the floor.  We have 
developed a geometric workspace determination method for certain 
planes (Williams, 2002).  However, in this section we use a numerical 
computer method to determine the 3D reachable, zero-orientation, and 

o30± dexterous workspaces. 
 In the numerical workspace results presented below, we discretized 
the possible pose space as follows.  We search over all pertinent XY 
points with 05.0=∆=∆ yx  m.  For the reachable and dexterous 

workspaces, we vary γβα ,,  over all possible permutations in the 

ranges o30± , with o10=∆=∆=∆ γβα .  All Z planes have the same 

XY plane limits in the workspace plots below; the ABD equilateral 
frame is shown for reference in each.  We consider nine Z planes, 
evenly spaced within the workspace; the workspace plots below follow 
the Z-plane arrangement shown in Table VI (m): 
 

Table VI.  Z-planes (m) for Numerical Workspace Determination 
0 0.4 0.8 

1.2 1.6 2.0 
2.4 2.8 3.2 

 
 Figures 7, 8, and 9 present the numerical reachable, zero-

orientation, and o30± dexterous workspaces, respectively, for the hand-
directed sculpting tool.  These show the theoretical workspace extents; 
the useful workspaces are bounded by the planes of the tetrahedral 
frame.  The dexterous workspace is dependent on the limited angle 

ranges chosen.  For instance, the o45±  dexterous workspace (not 
shown) is nearly void; in that case, there is a small workarea on Z 
planes 0.8, 1.2, and 1.6; the remaining Z planes are completely blank. 
 

 
Figure 7.  Numerical Reachable Workspace 
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Figure 8.  Numerical Zero-Orientation Workspace 

 
Figure 9.  Numerical Dexterous Workspace 

The axis units in Figures 7 to 9 are m (the equilateral triangle ‘V’ 
shown has sides of length 3.048 m).  This concludes our presentation of 
workspace.  For more details on workspace, plus all topics in Sections 3 
and 4, including simulation examples for all of the related kinematics 
problems, please see Williams (2002). 
 
 
5.  CONCLUSION 
 This paper has presented a novel system for passive-cable-based 
Cartesian pose metrology.  Six cables are connected to a moving body; 
six string pots (tensioning the cables via torsional springs) 
independently read the six cable lengths and analytical forward pose 

kinematics was presented to calculate the Cartesian pose at all times.  
Several important kinematics issues were also addressed related to 
cable-based metrology.  The proposed system was introduced as a 
sculptor’s aid, but there are many potential applications in 
manufacturing, rapid prototyping, robotics, and automated construction, 
that require effective, real-time, economical Cartesian pose 
measurement. 
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