
Software Engineering for
Intelligent Control Systems

Anthony Barbera, Elena Messina, Hui-Min Huang, Craig Schlenoff, Stephen Balakirsky

Understanding how humans manage information and carry out actions provides a foundation for the software engineering
of intelligent control systems. The Real-time Control System (RCS) design methodology and reference architecture,
founded on human information management concepts, provides a domain independent approach to the acquisition and
representation of expert knowledge and supports implementation in a form conducive to maintenance of the knowledge
base. Its architecture provides a structured framework for sensory, semantic, episodic, and procedural knowledge.

1 Introduction

One of the challenges of building complex control
software is the need to capture a human’s knowledge
and translate it into a form that is executable by a
computer.   The capture and translation processes are
fraught with possibilities for losing knowledge and
introducing error.    Typically, once a system is
implemented, the software’s decision process and
internal knowledge is not directly recognizable by the
human expert, making it difficult to assess whether the
system was correctly implemented and   provide
enhancements to the system.  Furthermore, there are
very few guidelines available to implementers as to
exactly which knowledge must be included, where to
place it within the system, and how to represent it.

The RCS methodology and hierarchical task
decomposition architecture has been used to implement
a number of diverse intelligent control systems.  An
application summary [Albus 1995] describes major
systems, including machining stations,  space robotics,
coal mining, and stamp distribution systems. The most
advanced RCS system is presently under development
as the autonomous control system of the Army’s Demo
III unmanned vehicle program [Lacaze et.al. 2002]. This
project’s goals [Albus and Meystel 2001] are to create
near-human levels of performance for vehicle driving
and to be able to carry out military tactical maneuvers.

Understanding of how the human mind functions
is slowly developing. Various models of the mind
partition its activities in a number of ways.  One model
proposes a conscious and subconscious mind.   The
conscious mind reasons, plans activities, and sets
goals. The subconscious mind handles all of our
sensory inputs and controls autonomic functions.

Another way to think of the mind is to model how
its memory works. Memory is categorized into
subconscious and conscious.  The subconscious
memory stores all the patterns that sensory processing
uses to match inputs in order to recognize objects in the
world, sense temperatures or collisions, etc, and to
execute procedural skills, such as controlling vocal
cords to speak. The manner in which the subconscious
functions is too poorly understood to be of use to
designers of real-time control systems.    More is known
about conscious memory, which is generally modeled
with two components: short term, and long term. Short-
term memory is like a scratch pad for information being
processed. It decays rapidly and has a very limited
capacity. This limitation has manifested itself by forcing

humans to “chunk” information to make sure the typical
limit of 7±2 elements is not exceeded [Miller 1956]. An
additional characteristic of this limitation is the use of
analogies. We try to find what is similar so we can learn
the base information content once and recognize how
similar things are like it. [Dunbar and Schunn 1990]

Studies of long-term memory have classified two
types: semantic and episodic [Tulving 1972].  The
semantic long-term memory is a structured record of
facts, objects and relations between objects [Atkinson
and Shiffrin 1968].  Information is moved from short-
term memory to this long-term semantic memory
through repetition.  We retrieve information from
semantic memory through association of semantically
related properties, e.g., the number 1492 recalls the trip
to America by Columbus.  The episodic long-term
memory is our memory of events and experiences in the
sequence that they occurred [Tulving 1984].

Models for memory and retrieval mechanisms are
important for two reasons. First, an understanding of
how humans retrieve stored knowledge helps better
“mine” the expert for the particular task knowledge of the
system.  Second, an understanding of how we manage
and store information will help design a better
framework to hang this knowledge on so system
designers can access and manipulate it.

2 Representational Architecture

A domain expert’s knowledge is stored in
episodic memory as sequences of events and
operations. On-road driving will be used as an example.
The driving task can be characterized by “steering the
car to stay on the road and coordinate with the gas
pedal and brake pedal to keep from running into things.”
An expert has done this in a large number of different
situations and has an extremely large database of
experience of different circumstances and
corresponding response activities to successfully deal
with them.  The expert has derived semantic knowledge
such as “wet streets are slippery and driving speed must
be reduced.”

The expert’s knowledge is stored in the
conscious and subconscious long-term memory.  The
subconscious mind has the sensory patterns stored to
recognize entities, such as traffic signs, and the
procedural skills to coordinate the steering wheel with
the gas pedal to move the vehicle in the manner that the
conscious mind has determined. The domain expert’s
knowledge that is most useful is from the conscious



long-term episodic and semantic memory. For the on-
road driving example, the expert is interrogated to recall
the semantic memory components i.e., the rules-of-the-
road to establish the legal driving operations.  The
expert’s episodic memory (detailed sequential task
knowledge) is obtained through the expert’s retelling of
different scenarios. A particularly important component
of this episodic knowledge is the recall of the
coordination activities involved in carrying out various
tasks.  This is contrasted with most other control system
design techniques where the knowledge is captured as
functional (semantic) with little if any scenario-based
(episodic) knowledge.  Failure to account for the
coordination is a major malfunction cause during
integration.

The RCS methodology uses a hierarchical task
decomposition representational format on which to hang
the domain knowledge.  Hierarchies are the architectural
mechanisms used to “chunk” and abstract information to
meet the mind’s limitation of only being able to process
7±2 elements at one time.  The scenario descriptions of
intelligent control system activities naturally evolve into a
task decomposition representation since the scenarios
are task sequences and can easily be discussed at
many levels of abstraction leading to well-defined levels
within the task hierarchy.  This hierarchy also acts as a
convenient mechanism to place the semantic knowledge
from the expert.  Since each layer in the task
decomposition represents a different level of abstraction
of the tasks, it also delineates the context for
incorporation of semantic knowledge relevant to that
level of detail of the task’s activities (Figure 1).   A
detailed description of this process can be found in
[Huang et.al. 2001a]

3 Implementation

A correct implementation of an intelligent system must
reliably perform a set of tasks and be able to
accommodate augmentation of its capabilities.  These
requirements depend on how understandable the
system is and thus how well it complies with the human
limitations in information management.  The key aspects
of the RCS software engineering methodology are:

Hierarchical architecture of agent control modules.
Using a task decomposition decision hierarchy to
capture the knowledge from the expert’s narratives
helps instantiate this into an implementation of a
hierarchical architecture of agent control modules
(Figure 1) executing this task decomposition in a one-to-
one fashion.  This technique maintains the layered
partitioning of the task to create levels of abstraction,
task responsibility, execution authority, and knowledge
representation in a manner so as to greatly enhance the
designer’s ability to think about each of these layers
separately. Modifications and enhancements to this
layer can be evaluated with respect to their
completeness and potential interaction with other task
activities at that same level of abstraction.

A generic agent control module (Figure 2) was
developed as the unit building block in the hierarchical
execution system. Each agent control module receives
an input task command and decomposes it into a
simpler set of commands to send to its subordinate(s),
mimicking a chain-of-command organization. The input
task command sets the context for the execution of the
appropriate sensory processing, world modeling,

planning and value judgment, and behavior generation
processes [Albus 2002] in order to decide on the output
command to subordinate(s).  All of these processing
elements are present in each agent control module. This
generic structure facilitates comprehension of any
control system built from it.  The developer or the
domain expert can locate any piece of knowledge in the
structure and see how it is  processed.

Behavior Generation is typically done via Finite
State Machines (FSM’s) or rules governing costs for
nodes and edges in graph-search based planning
techniques. These approaches cluster and order the
knowledge rules specific to a particular task goal for an
agent control module.  Part of the implementation
procedure is to determine which rules apply to each
particular subtask activity at each level in the hierarchy.
This is a natural outcome of the task decomposition
process.

The World Model and Knowledge Base.  The
processing in an agent control module mimics the model
of the human conscious/subconscious mind described
above, i.e. it performs sensory processing (SP) on input
data to recognize and classify objects and place them
into a world model.  The world model (WM) function
processes the world state in the context of the present
command to cause the behavior generation (BG)
function to output a new command to a subordinate
agent control module, or to request the planner to
simulate the possible future world states and cost to
achieve them, do a value judgment (VJ) based on cost
analysis and suggest a reasonable plan to the BG
function.

Analysis of the FSMs’ condition value judgments
is part of the RCS technique to define the necessary
knowledge base and primitive world model elements.
Using the on-road driving example, the rule that states if
the “ConditionsAreGoodToPass” then the BG function
can command the subordinate to “MoveToLeftLane”,
has the value judgment “ConditionsAreGoodToPass.”
To perform this value judgment, all of the rules-of-the-
road concerning passing are consulted; weather and
road surface conditions are sensed to determine
appropriateness of this maneuver; oncoming vehicles
are recognized out to considerable distances, etc. All of
the relevant knowledge and specific reasoning in the
context of this activity is gathered from the expert.  From
this, all of the primitive world model elements that need
to be measured (such as vehicles, speed, direction,
location, signs) are determined.  These primitive world
model elements then set the requirements for the SP
system needed to support these control tasks.

4 Representation and Methodology
Comparisons

While our understanding of how the human mind
represents, stores, and retrieves various classes of
knowledge is limited, considerable research has been
performed in developing computer architectures to
support these operations for autonomous systems. The
architectures are commonly grouped into the classes of
deliberative and reactive [Arkin 1989], with most
architectures lying somewhere in between these 2
extremes. Reactive architectures strive to embed the
control strategy into a collection of pre-programmed
reactions (sense-action mappings) that are very similar
to human reflexes [Balakirsky 2003].  This approach



provides a direct, constant-time response to the sensed
environment, which requires an expert to isolate each
possible combination of sensor output and map them to
actions. Adding the equivalent of the subconscious’
sensory and procedural skill memory to the above
architecture presents the basis for the behavior-based
architectures. [Brooks 1986]

Behavior based systems may implement very
sophisticated control laws and include the use of both
semantic and episodic long-term memory. These
systems do not use an explicit world model and
behaviors are activated based on environmental input,
making them similar to the human subconscious which
is capable of sophisticated actions without explicit
conscious control. Typically, behaviors are implemented
in a layered structure with the lowest layer being
constructed of relatively simple, self-contained control
laws that are more time extended then their reactive
cousins [Mataric 1997] and which utilize short term
memory.

The addition of an explicit world model and the
ability to simulate and reason over the consequences of
intended actions formulates the basis for the class of
deliberative architectures. In systems such as the one in
[Lacaze et.al. 1998], a multitude of possible system
actions are explored and a conscious decision is made
that is based on the cost/benefit of each action chain. It
is the authors’ belief that an architecture that allows
such conscious decisions to be made is a requirement
of the development of intelligent systems.  While this
system was implemented using the RCS architecture,
various other deliberative architectures such as CIRCA
[Musliner et.al. 1993] and the Three-level Intelligent
Machine [Saridis 1988] may be found in the literature.
RCS is unique in its inherent reuse of architectural
components and knowledge representations.

From a knowledge acquisition (KA) perspective,
RCS is not formal, like EXPECT [Swartout and Gill
1996], CommonKADS [Schreiber et.al. 1994] and other
methods and tools.  These other approaches focus
more on the knowledge in the system by knowledge
engineers, rather than the construction of an executable
system that is accessible to the domain expert.   Their
application domains also tend to be aimed at business
and other process modeling, instead of real-time control

for autonomous systems.   RCS blends the KA process
with classical control system design.

5 Application Example

In this section, we elaborate on the example
pertaining to passing another vehicle on a two-lane
undivided road.

Develop scenario with a domain expert. It is
beneficial to drive in a vehicle with the domain expert
and to have them speak through the process of
determining when it was appropriate to pass. These
specific conditions that spawn behaviors often change
slightly depending on the personality of the driver, but
we try to generalize the behavior to its fundamental
components when encoding it in the control system.

Develop the task decomposition hierarchy.
Before we can encode the knowledge needed to pass
on a two-lane undivided road, we must understand and
build an initial overall task decomposition hierarchy for
on-road driving. The task decomposition hierarchy is
often structured around a hierarchy of goals within the
overall task at different levels of abstraction.  An
example of the on-road driving task decomposition
hierarchy is seen in Figure 1, left side. The passing
scenario is one of many scenarios that is used to
develop this task decomposition  hierarchy.

Determine the conditions that cause you to
perform an action and the sub-actions that are
needed to perform that action.  In the case of passing,
the actions that need to be performed are fairly
straightforward; namely, change to left lane, follow left
lane for some period of time, and change to right lane.
This is shown in Figure 1. However, the conditions of
when to start this sequence of actions and when to
progress from one action to the next is much more
difficult to understand.

In speaking with domain experts, there are two
general conditions that must be true to initiate a passing
operation: our vehicle desires to pass and conditions are
good to pass.  The next logical question to the domain
expert is “When are the conditions good to pass?”  Five
sub-conditions must be true: 1) it is legal to pass, 2) the
environmental weather and visibility conditions are
conducive to passing, 3) the situation in front of our

Figure 1:RCS implementation creates a hierarchy of agent control modules (right side) that
are the execution engine for the task decomposition (left side)



vehicle is OK to pass (other vehicles, pedestrians, and
objects do not hinder us), 4) the situation in back of our
vehicle is OK to pass (the vehicle behind us is not
passing or tailgating), and 5) oncoming traffic allows us
to pass safely (we have time to get around the vehicle in
front of us). Each of these sub-conditions is broken
further down into sub-conditions until the point where we
have identified the objects in the environment, and their
pertinent attributes, that are relevant to this passing
action.

Define the contents and structure of
knowledge base. The objects and attributes discovered
in the previous step set the requirements for the
knowledge base that underlies the system. Following
through with the scenario of passing on a two-lane
undivided road, in order to evaluate the conditions
mentioned in the previous step, the knowledge base
must contain concepts such as other vehicles, including
their speed, direction, and intention, pedestrians, lane
markings and type, weather conditions, and signs.
Once these concepts are captured in the knowledge
base, they can be also used to derive requirements for
sensor processing.

Develop a control hierarchy. The control
hierarchy is the execution engine for the task
decomposition. This hierarchy is built bottom-up (unlike
the task decomposition hierarchy which is built top-
down). The control hierarchy is based upon the
actuators that must be grouped and coordinated to
accomplish a given task. The actuators in the case of
on-road driving include steering, braking, throttle, gear
shift, turn signal, etc. The control hierarchy is shown in
Figure 1 (right side) along with the mappings between
the task decomposition hierarchy and the control
hierarchy.

Test. Fundamental to the success of any system
is testing. During the testing procedure, we determine if
the vehicle was able to recognize the conditions in the
world properly to trip appropriate behaviors, if the
behaviors executed in a suitable way, and if we
encountered situations that were not explicitly
accounted for in the system.

6 Software Engineering Tools

Software engineering tools can facilitate
systematic and efficient approaches for implementing
RCS based systems.  Over the years, there have been
several thrusts in applying different software engineering
tool paradigms to facilitate RCS applications.   A
Generic Shell [Huang et.al. 2000] approach that
develops code frames for the RCS generic agent control
module is used.  C++ and Unified Modeling Language

(UML) [Huang et.al. 2001b] versions of the generic shell
have been implemented.  Additional commercial tools,
such as Control Shell, have also been used to model
RCS control modules [Horst 2000]. Advanced
Technology and Research Corporation has developed
RCS tools that heavily focus on the Behavior Generation
aspects of RCS and feature open, detailed task and
world knowledge and visualization of real-time execution
[Balakirsky and Messina 2002]. Formal methods have
been researched, including the Rapide Architectural
Description Language [Messina et.al. 2000] and the
precise specification of RCS components in order to
ensure conformance to the RCS reference architecture
and to facilitate composition of systems. [Horst 1997;
Messina et.al. 1999]

7 Summary

The RCS software engineering methodology is
heavily based on understanding of human information
management.  The primary goal is to access, represent,
and implement task knowledge for real-time control
systems in a manner that matches the human mind’s
own mechanisms for processing information. The RCS
attributes contribute to make the system accessible to
modifications not only by the original system designer
but by others, as a result of the generic agent control
module and the hierarchical task decomposition
architecture.

Product/Company Disclaimer
The identification of certain commercial products or
companies does not imply recommendations or
endorsements by NIST.

References

J. Albus, The NIST Real-Time Control System (RCS):
An Application Survey. In Proceedings of the 1995
AAAI Spring Symposium Series, 1995.

J. Albus, 4D/RCS A Reference Model Architecture for
Intelligent Unmanned Ground Vehicles. In
Proceedings of SPIE Aerosense Conference, 2002.

J. Albus and A. Meystel, Engineering of Mind. John
Wiley & Sons, Inc., 2001.

R. C. Arkin, Towards the Unification of Navigational
Planning and Reactive Control. In AAAI 1989
Spring Symposium on Robot Navigation, 1989.

R. C. Atkinson and R. M. Shiffrin, Human Memory: A
Proposed System and Its Control Processes. In
K.W. Spence and J.T. Spence, The Psychology of
Learning and Motivation, Vol 2, Academic Press
1968.

S. Balakirsky, A Framework for Planning With
Incrementally Created Graphs in Attributed Problem
Spaces. Akademische Verlagsgesellschaft Aka
GmbH, Berlin, 2003.

S. Balakirsky and E. Messina, A Simulation Framework
for Evaluating Mobile Robots. In Proceedings of the
2002 Performance Metrics For Intelligent Systems
(PerMIS) Workshop,  pgs. 71-78, 2002.

R. Brooks, Achieving Artificial Intelligence Through
Building Robots. Massachusetts Institute of
Technology, 1986.

K. Dunbar and C. D. Schunn, The Temporal Nature of
Scientific Discovery: The Roles of the Priming and

perceived
objects &
events

commanded
task (goal)

evaluate
situation

plan
results

observed
input statepredicted

input

update

Knowledge
Base

Value
Judgment

World
Modeling

Sensory
Processing

Behavior
Generation

plan

Figure 2:  Generic Agent Control Module



Analogy. In Proceedings of the 12th Annual
Conference of the Cognitive Science Society,  pgs.
93-100, 1990.

J. Horst, Precise Definition of Software Component
Specifications. In Proceedings of the 7th
Symposium on Computer-Aided Control System
Design, 1997.

J. Horst, Architecture, Design Methodology, and
Component-Based Tools for a Real-Time
Inspection System. In Proceedings of the 3rd IEEE
International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2000), 2000.

H. Huang, J. Albus, W. Shackleford, H. Scott, T.
Kramer, E. Messina, F. Proctor, An Architecting
Tool for Large-Scale System Control With an
Application to a Manufacturing Workstation. In
proceedings of the 4th International Software
Architecture Workshop, in conjunction with the
International Conference on Software Engineering
2000 (ICSE 2000), 2000.

H. Huang, E. Messina, H. Scott, J. Albus, F. Proctor, W.
Shackleford, Intelligent System Control: A Unified
Approach and Applications. In C.T. Leondes, The
Technology of Knowledge Management for the 21st
Century, 2001a.

H. Huang, E. Messina, H. Scott, J. Albus, F. Proctor, W.
Shackleford, Open System Architecture for Real-
Time Control Using a UML Based Approach. In
Proceedings of the 1st ICSE Workshop on
Describing Software Architectures with UML,
2001b.

A. Lacaze, Y. Moscovitz, N. DeClaris, K. Murphy, Path
Planning for Autonomous Vehicles Driving Over
Rough Terrain. In Proceedings of the
ISIC/CIRA/ISAS '98 Conference, 1998.

A. Lacaze, K. Murphy, M. DelGiorno, Autonomous
Mobility for the DEMO III Experimental Unmanned
Vehicle. In Proceedings of the AUVSI, 2002.

M. J. Mataric. Behavior-Based Control: Examples From
Navigation, Learning, and Group Behavior. Journal
of Experimental and Theoretical Artificial
Intelligence, 9(2-3): 323-336, 1997.

E. Messina, C. Dabrowski, H. Huang, J. Horst,
Representation of the RCS Reference Model
Architecture Using an Architectural Description
Language. In EUROCAST '99, 798 (Lecture Notes
in Computer Science), 2000.

E. Messina, J. Horst, T. Kramer, H. M. Huang, T. Tsai,
E. Amatucci, A Knowledge-Based Inspection
Workstation. In Proceedings of the 1999 IEEE
International Conference on Information,
Intelligence, and Systems, 1999.

G. A. Miller. The Magical Number Seven, Plus or Minus
Two: Some Limits on Our Capacity for Processing
Information. The Psychological Review, 6381-97,
1956.

D. J. Musliner, E. H. Durfee, K. G. Shin. CIRCA: A
Cooperative Intelligent Real-Time Control
Architecture. IEEE Transactions on Systems Man
and Cybernetics, 23(6): 1561-1574, 1993.

G. N. Saridis, On the Theory of Intelligent Machines: A
Survey. In Proceedings of the 27th IEEE
Conference on Decision and control,  pgs. 1799-
1804, 1988.

A. T. Schreiber, B. J. Wielinga, R. De Hood, J. M.
Akkermans, W. Van de Velde. CommonKADS: A

Comprehensive Methodology for  KBS
Development. IEEE Expert, 9(6): 28-37, 1994.

B. Swartout and Y. Gill, Flexible Knowledge Acquisition
Through Explicit Representation of Knowledge
Roles. In 1996 AAAI Spring Symposium on
Acquisition, Learning, 965 and Demonstration:
Automating Tasks for Users, 1996.

E. Tulving, Episodic and Semantic Memory. In E.
Tulving and W. Donaldson, Organization of
Memory, 1972.

E. Tulving. Precis of Elements of Episodic Memory.
Behavior and Brain Sciences, 7(2): 223-268, 1984.

Contact
Tony Barbera
Intelligent Systems Division
National Institute of Standards and Technology
Gaitherburg, MD 20899
tony.barbera@nist.gov

Authors

Tony Barbera  is a Senior Controls Engineer  in
the Intelligent Systems Division at the National
Institute of Standards and Technology (NIST),
with 30 years experience implementing real-time
control systems using the 4D/RCS methodology.

Elena Messina is Knowledge Systems Group
Leader In the Intelligent Systems Division at
NIST.   She has over 20 years experience in
robotics and in software engineering for complex
systems.

Hui-Min Huang has been an engineer at NIST for 15
years and conducts research on software
architectures and UML based, scenario driven
methods for intelligent systems such as unmanned
vehicles.  He coordinates/participates in architectural
standards working groups for interoperability,
performance, and autonomy levels and has over 50
publications.

Craig Schlenoff has a Bachelors degree from the
University of Maryland and a Masters degree from
Rensselaer Polytechnic Institute in mechanical
engineering. He is a researcher in the Intelligent
Systems Division at NIST, focusing on knowledge
representation applied to autonomous systems and
manufacturing.  He was recently the Process
Engineering Program Manager at NIST as well as
the Director of Ontologies at VerticalNet.

Stephen Balakirsky received the Ph.D. degree
from the University of Bremen, Germany in 2003.
He is currently a researcher in the Intelligent
Systems Division of the National Institute of
Standards and Technology. His research interests
include planning systems, knowledge
representations, world modeling, and
architectures for autonomous systems.


