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Abstract 
This paper will present a knowledge layer used by a 
hierarchical on-road driving planner that represents a road 
network as a discrete set of attributed road states. This 
knowledge layer facilitates the construction of a planning 
graph by providing simulation and prediction services to the 
planning system. These services allow the determination of 
possible spatial transitions along a road network that a 
vehicle may take from its current location given its current 
state.   

I. Introduction 
In the mid 90's, a vision based machine-learning system 
known as RALPH controlled the lateral movements of a 
vehicle over the majority of the highways across United 
States of America (Pomerleau and Jochem 1994). This 
demonstration targeted a highly structured driving 
environment in the nation’s highway systems. (Thorpe et 
al. 1991) comments that the development of reliable 
algorithms for autonomous driving requires an 
environment that is unstructured and realistic. The 
development of a truly autonomous agent capable of 
handling partial observable stochastic environments that 
contain multiple agents operating in proximity with each 
other will require innovative ideas.  
 Deliberative planning systems attempt to create an agent 
function for goal-based autonomous vehicles. This 
function attempts to map the percepts from the vehicle’s 
sensors to possible actions the vehicle can take. (Russell 
and Norvig 2003) discuss deficiencies of table-driven 
agent functions, i.e., finite state machines or look-up 
tables. The authors claim that using a table driven 
approach to solving such a problem is unrealistic and 
hypothesize the total number of entries in such a table can 
be estimated by 
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where T = total number of percepts received by the agent, 
and P = the set of possible percepts.  
 In order to deal with a countably infinite sequence of 
percepts in stochastic environments to generate appropriate 
behaviors, some deliberative planning systems use 
planning graphs that determine the optimal path through 
cost analysis. (Guo, Qu, and Wang 2003) discusses a 
motion planner that attempts to tackle the global trajectory-
planning problem but has shown to be unable to handle the 

computational complexities in real time. (Balakirsky 2003) 
has developed a real-time deliberative planning system that 
has shown positive results in real time. This approach is 
based on an A* graph search algorithm that attempts to 
limit the size of the graph through the application of 
knowledge to the graph creation process.  
 An on-road driving planner such as (Balakirsky 2003) 
requires a knowledge layer that is capable of extracting 
knowledge from the a priori world knowledge, imperfect 
sensor knowledge and situational awareness. This paper 
will discuss a mini-expert system that is implemented to 
provide the planning system with the appropriate 
knowledge in real time. The layout of the rest of this paper 
is as follows. Section II contains a brief synopsis of the 
Real-time Control System reference architecture, RCS. In 
Section III, the on-road driving database that decomposes a 
road network into useful chunks of information that are 
easily accessible will be discussed. Section IV will discuss 
the incremental graph approach and sample results. In 
Section V, the knowledge layer used to support the 
planning system is discussed. Finally, Section VI will 
conclude the paper with a discussion of the expansion of 
the knowledge layer used by the on-road planning system. 

II. Reference Model Architecture 

PLANNER

EX

Plan

EX

Plan

EX

Plan

BG

PLANNER

EX

Plan

EX

Plan

EX

Plan

BG

PLANNER

EX

Plan

EX

Plan

EX

Plan

BG

Agent1

Subtask  
Command  

Output

Subtask  
Command  

Output

Subtask  
Command  

Output

WORLD  
MODELING

SIMULATOR 
PREDICTOR

VALUE 
JUDGMENT

cost 
benefit

EXECUTOR

PLAN

BEHAVIOR  
GENERATION

Expected  
Results

Tentative 
Plans

Images 
Maps 

Entities 
States 

Attributes

Feedback

Task 
Command  

Input

EXECUTOR

PLAN

EXECUTOR

PLAN

Task Decomposition 
PLANNER

KD

SENSORY 
PROCESSING

Recognize 
Filter 
Compute 
Group 
Window

BG
WMSP

 
Figure 1.  RCS computational Node (Albus and Meystel 2001) 
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 In order to guarantee real-time operation and decompose 
the problem into manageable pieces, it is necessary to 
embed the planning framework into a hierarchical 
architecture that was specifically designed to accommodate 
real-time deliberative systems. The Real-Time Control 
System (RCS) reference model architecture is a 
hierarchical, distributed, real-time control system 
architecture that meets this need while providing clear 
interfaces and roles for a variety of functional elements 
(Albus 1991) . 
 Under RCS, each level of the hierarchy is composed of 
the same basic building blocks illustrated in Figure 1 
(Albus and Meystel 2001). These building blocks include 
behavior generation, BG, (task decomposition and control), 
sensory processing, SP, (filtering, detection, recognition, 
grouping), world modeling, WM, (knowledge storage, 
retrieval, and prediction), and value judgment, VJ, 
(cost/benefit computation, goal priority).   
 This implementation of the WM is adapted from (Albus 
and Meystel 2001) to contain multiple knowledge layers 
within the WM, e.g. moving-object prediction, road state 
generator, maps, etc. The knowledge layer discussed in 
this paper is a mini-expert system that lies at the heart of 
the planning system for on-road driving, known as the 
Node Generator (NG). As shown in Figure 1, it is 
composed of two parts: a simulator/predictor and a 
knowledge database, KD. The NG maintains a knowledge 
base, provides state prediction, supplies data to planners 
and executors, and simulates spatial/temporal transitions 
within the road network. The simulated transition in the 
road network is evaluated by Value Judgment (VJ) to 
construct and analyze an incrementally created graph in 
order to produce the appropriate behavior for navigating 
road networks (Albus et al. 2001).  

III. Planner 
The planning system presented in this paper is designed to 
fill the roles of behavior generation, world modeling, and 
value judgment for a single level of the RCS hierarchy. 
The system receives a set of intersections that must be 
traversed, and one or more final goal locations from its 
supervising level. The system then refines this plan for 
specific lane locations and vehicle velocities while taking 
into account dynamic and static objects as well as user 
objectives and constraints (all of which must be in the 
knowledge representation of the system). The results of 
this plan refinement are then passed to the next lower level 
of the hierarchy for further refinement and execution. This 
process is periodically repeated for systems that include 
uncertainty in the prediction of moving object locations 
and the success of task execution. 

1. Planning Framework 
The incremental graph-planning framework is based on a 
combination of traditional graph-based planning 
techniques (Nilsson 1998; Russell and Norvig 2003) and 

logic-based planning techniques (Blum and Furst 1997). A 
detailed description of the planning system may be found 
in (Balakirsky 2003). The main difference between the 
incremental graph planning framework and traditional 
graph planning approaches is in the way states are mapped 
to nodes and the way that the nodes are connected. 
 

 
Figure 2.  Representative objects from World Model 

i.  Attributed Graph Nodes 
Figure 2 depicts several static objects that may be in an 
autonomous driving planning system's world model (a 
brick wall and an empty soda can) and the start and end 
points of a potential plan (the two spheres). In addition to 
knowledge about an object's location, the world model 
tracks all of the object's attributes that are necessary for 
making a cost/benefit decision that involves the object. For 
the above case of autonomous driving, this decision is 
about whether to drive over or around the object, and if 
over the object, at what speed. It should be noted that 
combinations of attributes are necessary for making this 
determination. Sample attributes that appear in the world 
model include such information as the corners of an 
object's bounding box, the object density, and the object's 
intrinsic value. 
 Having a varied set of object attributes allows the 
system to make intelligent trade-offs in its plans. For 
example, the system should run over a soda can in order to 
avoid driving into a brick wall. However, the system 
should be willing to incur substantial damage (i.e., hit the 
brick wall) rather than running over a small child (which 
would not damage the vehicle). 
 

 
Figure 3.  Overhead view of nodes derived from objects in Fig. 2 



 In order for the planning system to utilize these 
attributes as decision points, a node in the planning space 
must represent their location. As shown in Figure 3, these 
nodes may be densely or sparsely populated, and there are 
no "wasted" nodes placed in locations that are not relevant 
to planning decisions. In addition, the existence of these 
nodes may depend on the particular planning application. 
For example, if path planning for a large all-terrain 
vehicle, the low density corner nodes depicted in Figure 3 
(the white nodes) would not be included in the planning 
graph. Since nodes are only instantiated where relevant 
attributes exist, the set of all nodes available for use by the 
planning system is referred to as the set of Relevant 
Annotated Nodes (RAND). 
 Relevant nodes must exist wherever a planning decision 
point exists. In the above example, there is no time 
dimension. The placement of nodes must simply allow the 
system to decide whether to go over or around static 
objects. 
ii.  Logical Arc Connections 
Once the set of potential graph nodes has been established, 
a technique for creating a specific node's spanning set must 
be developed. The graph arcs that are utilized by the 
incremental framework build upon concepts developed by 
Blum and Furst in their GraphPlan work (Blum and Furst 
1997). Blum and Furst have created a logical planning 
graph that expands levels by examining the results of the 
execution of all valid actions.  
 For the purposes of the incremental graph approach, the 
intersection of the result of applying a node's valid actions 
and the set RAND will be considered as the spanning set 
of the current node. For the static example presented 
above, the only valid action is for the vehicle to drive in a 
straight line (in any direction). By constructing a visibility 
graph from the current node to all other nodes, the node's 
spanning set may be found. 
 In other planning domains, time is an important factor 
and decisions must be made that match a pre-specified 
control cycle. It should be noted that for these cases the 
spanning set of a node is time-dependent, and therefore the 
graph topology may change on a planning cycle by 
planning cycle basis. In addition, the spanning set for a 
particular node at time t may not be equal to the spanning 
set for node at time t+1.  
 This is true for the case of on-road driving at the vehicle 
level of the hierarchy, where a decision on vehicle velocity 
and lane control (which lane to occupy) must be made 
every second. The planning space is now four-dimensional 
(x, y, time, velocity) and graph constraints through the use 
of valid actions and attribute relevance becomes even more 
important. For the over-simplified case shown in Figure 4, 
the valid actions that may occur are accelerate (A), 
decelerate (D), maintain velocity (M), and change lane. It 
is also possible to simultaneously change lane and 
velocity. The full set of valid actions is shown as the white 
and gray circles in the figure. However, the size of the 
spanning set will be constrained by membership in the set 
RAND. In this case, only the white circles are legal lane 

positions and members of RAND. Therefore, the spanning 
set will consist of the white circles. 
 

 
Figure 4.  Spanning set of road states for in-road planning system 

 This technique of excluding possible actions from a 
node's spanning set is used to implement hard constraints 
on the plan. Since no graph nodes exist in the oncoming 
traffic's lane, it is impossible for the system to plan to enter 
this lane. It should be noted that if a planning failure 
occurs (no path below a certain cost threshold exists), then 
the constraints may be relaxed and the set RAND 
expanded to include all of the circles. The system must 
then use soft constraints in the form of the system cost 
function in order to discourage the vehicle from driving in 
the oncoming traffic's lane.  
 The focus of the remainder of this paper is the 
generation of the nodes that are members of RAND. The 
techniques that are utilized to generate the nodes and the 
knowledge representation of the underlying data will be 
examined. 

IV. On-Road Driving Database 
A knowledge base that provides concise, accurate 
information about the environment and the objects that 
reside in the environment is essential for the successful 
operation of any deliberative autonomous vehicle. For on-
road driving, this knowledge must include the precise 
location of where the road lies, what type of marking or 
barriers are present along the roadway, the presence of 
traffic signs or signals, etc. (Schlenoff et al. 2004) have 
developed an on-road driving database that accurately 
conveys the appropriate information about road networks 
for the various fidelities of planning systems that are used 
in the RCS hierarchy.  
 The structure and features of the road network are 
captured in a six level decomposition hierarchy. This six 
level hierarchy was chosen for the on-road driving 
database to allow for the efficient representation of the 
road network at various levels of abstraction and to allow 
the knowledge to be more easily accessible to the different 
levels of BG within the system. Each level of the hierarchy 
encapsulates the minimum set of attributes needed to 



derive the appropriate knowledge about road networks for 
behavior generation at that particular level of abstraction. 

1. Database Definitions 
The definitions in the on-road database that classify where 
two paths converge are:  
 
Level 1: Junctions –two or more paths that converge or 

diverge, or a controlled point in a roadway.  
Level 2: Intersections - type of junction in which two or 

more separate roads come together.  
 
The levels of the decomposition hierarchy are defined as:  
 
Level 1: Road – bi-directional stretch of travel lanes 

bounded by its proper name  
Level 2: Road Segment - uni-directional stretch of a road 

bounded by intersections 
Level 3: Road Element - stretch of a road segment 

bounded by any type of junction 
Level 4: Lane Cluster – stretch of a road element bounded 

by change in attributes or road feature 
Level 5: Lane - single pathway of travel in a lane cluster 

that is bounded by lane markings  
Level 6: Generic Lane Segment – piece of a lane that 

consists of constant curvature arcs  
• Lane Segments – lane segments that traverse road 

segments  
• Intersections Lane Segments – lane segments that 

traverse intersections 
 
 As mentioned previously, the on-road driving BG 
system contains a planner at each level of the RCS 
hierarchy. The RCS architecture is design to uniformly 
distribute the computational complexities over the levels of 
the hierarchy by creating a hierarchy where each level is 
responsible for smaller planning horizons at higher plan 
fidelities than their supervisor. This architecture is 
mirrored in the on-road driving database to satisfy the 
different knowledge requirements needed at each level of 
the RCS hierarchy. Below is one implementation of an on-
road planning system under the RCS architecture. The 
planning system discussed in the previous section is 
referred to as the Vehicle Level Planner, which is mapped 
into the Drive Behavior Planner and Elemental Maneuver 
Planner.  
 
Level 1: Destination Planner – Coarse plan consisting of 

roads and intersections 
• Planning horizon: 1-2 hours and up to 100 km  
• Knowledge Requirements: Roads, Road 

Segments, Intersections 
Level 2: Route Segment Planner – Negotiating intersection 

and road segments 
• Planning horizon: 10 minutes and up to 10km 
• Knowledge Requirements: Road Segments, Road 

Elements, Intersections 

Level 3: Drive Behavior Planner – Low-level behaviors 
and lane changes 
• Planning horizon: 100 seconds and up to 500 

meters 
• Knowledge Requirements: Lane Clusters, Lane, 

Intersection 
Level 4: Elemental Maneuver Planner – real-time 

maneuver, i.e. acceleration 
• Planning horizon: 10 seconds and up to 50 meters 
• Knowledge Requirements: Lanes, Lane Segments 

Level 5: Goal Path Trajectory Planner – trajectory within 
lane segments 
• Planning horizon: 1 second and up to 5 meters 
• Knowledge Requirements: Lane Segments 

 
 For further details concerning the on-road driving 
database refer to (Schlenoff et al. 2004). 

V. Road State Generator 
As mentioned in Section II, the Node Generator is one 
knowledge layer in the World Model of an RCS 
computational node that is composed of a 
simulator/predictor and a knowledge database. The 
implementation of the NG discussed in this paper is for the 
on-road driving knowledge layer at the vehicle level of the 
RCS architecture and is responsible for (Albus et al. 2001):  
 
1. Creation and maintenance of on-road driving 

knowledge base 
2. State elaboration and knowledge extraction 
3. Constrained simulation and state prediction   

        
 Road Networks present a continuous, complex, 
unstructured environment containing static and dynamic 
features. To decrease the computational complexities of 
planning in a continuous domain, the NG maps the 
continuous environment into a spanning set of discrete 
uniformly spaced attributed nodes known as road states. 
The NG uses these road states and the vehicle’s current 
state to predict plausible road states, known as goal states, 
and creates simulated temporal-spatial transitions of the 
vehicle along a road network, known as trajectories. The 
set of goal states and trajectories defines a reachability 
graph that is used by the planner to find a cost optimal path 
through the road networks. 

1.  Knowledge Database 
The knowledge database consists of a data structure that 
stores a priori knowledge of the road networks as well as 
in situ knowledge received from the sensory data. The data 
structure used in this knowledge layer of the WM is a 
composition of road objects received from the on-road 
driving database discussed in Section IV. The data 
structure, which is implemented as a connected graph of 
adjacent lane segments, is depicted in the UML logical 



model in Figure 5. The road primitives are generalized in 
polymorphic structures in order to facilitate the 
extendibility and durability of the data structure. 
 
 

 
Figure 5.  UML logical model of knowledge database 

  

2.  State Elaboration and Knowledge Extraction 
As mentioned previously, road states are discrete 
uniformly spaced nodes that carry with them road feature 
attributes (e.g., lane markings, speed limit). Each road state 
is uniquely identifiable by a tuple that includes the road 
object id and node id that can be seen as an offset from the 
beginning of a lane segment.  Note that the mapping from 
the continuous domain to a discrete domain inherently 
introduces an error in the spacing of the last two nodes of 
every lane segment which is no greater than half of the 
defined node spacing. This error is acceptable in this 
implementation of the NG because of the fidelity at this 
planning level. 
 
  

StateElab( nodeName ) → UTM Location 
StateElab( UTM ) → nodeName 
StateElab( laneSegment_id, offset) → nodeName 
StateElab( nodeName, orientation ) → 
directionInLane 
StateElab( nodeName, directionInLane ) → 
orientation 
Legend: 
StateElab() - overloaded function for state elaboration 
nodeName - unique road state identifier 

  directionInLane - direction of travel with respect to how    
the lane segment is rendered 

UTM – Universal Transverse Mercator 
 

Figure 6.  Psuedo-code prototypes for state elaboration function 

 The NG provides the planner with the ability to extract 
and elaborate road states from the KD using logical and 
mathematical models. Figure 6 illustrates the knowledge 
that can be derived from partial state knowledge by the 
state elaboration function in the NG. For example, given a 
road state unique identifier, known as a nodeName, and the 
orientation of the vehicle in the current state, the NG is 
able to derive the direction the vehicle is traveling in a lane 
segment with respect to how the lane is rendered in the 
knowledge base. 
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 i = Road node index into lane segment  
Subscripts: 
   c=curved lane segment, s=straight lane segment, *=both 

Figure 7.  Mathematical models for knowledge extraction 

To efficiently handle numerous road states without the 
implementation of a large complex data structure, the road 
states are derived from knowledge stored in the KD. 
Figure 7 depicts the mathematical models that the NG uses 
to extract and elaborate road states form the knowledge 
residing in the KD.  For instance, the UTM location of a 
road state in a curved lane segment is derived by utilizing a 
rotational matrix, whose angle corresponds to the angular 
offset of the road state in the lane segment. The matrix is 
used to rotate the radial vector that runs from the curvature 
center to the starting point of the lane segment. The rotated 
vector is then translated to the proper UTM locations by 
adding the UTM location of the curvature center of the 
lane segment.  



3.  Constrained Simulator and State Predictor 
 
 

 
Figure 8.  Reachability graph 

 The constrained simulator of the NG is responsible for 
the creation of the reachability graphs shown in Figure 8. 
Each branch of the graph represents a separate trajectory 
that models the distance traveled and the maneuvers 
performed by the vehicle (i.e., turn, change lane, maintain 
lane) per cycle. A trajectory is represented by the NG as an 
ordered subset of road states that are connected to a given 
root node to form a reachability graph. The leaf nodes of 
the graph are the set of obtainable goal states for a given 
cycle.  
 The simulator utilizes the constraints applied to the 
system when creating the reachability graphs to limit or 
dictate the maneuvers that a vehicle can perform. For 
example, on a first planning pass the NG may be 
constrained from returning any road states that violate a 
driving law or would produce uncomfortable vehicle 
movement. However, if no plan is found that satisfies the 
planner’s maximum cost value, replanning could take 
place with a reduced set of constraints. The constraints 
could now allow for emergency maneuvers by altering the 
angle in which lane changes are performed or allow nodes 
deemed illegal by the set of road rules.  
 The simulator creates the reachability graphs by 
applying equation-based algorithms to the internal state of 
the vehicle. The internal state of the vehicle consists of the 
vehicle constraints, current road state, orientation, and 
velocity. The current base set of functions used in the 
simulator allows for the vehicle to move along the lane 
segment or to change lanes.  
 The function that moves along a lane is depicted by a 
UML flow-chart in Figure 9. Note that this figure assumes 
that the arc length between the uniformly spaced road 
states is one meter. When the function is called, the 

number of road states that can be traversed (deltaNode) is 
initially computed. If deltaNode is greater than or equal to 
the number of road states in the lane segment (nodeCount) 
then the simulator must get a handle to the lane segment 
linking to the end of the current lane segment and the 
appropriate road state of the adjacent lane segment. Once 
the link to the adjacent road state is found, the simulator 
determines how many nodes it may still traverse (rDist). 
The function is recursively called to move along the lane in 
order find a leaf node. During the recursive process, the 
function maintains an ordered set of road states that 
consists of a given start node, a leaf node, and the first 
node of every lane segment traversed during the process.  

 

deltaNode=node.ID+(direction*nodeDist) 

rDist = nodeDist - node.ID

newDirection=MOV_END_2_START newDirection=MOV_START_2_END

movAlongLane(newNode,rDist,newDirection)

rDist = nodeDist-(nodeCount-node.ID)

GetEndLinkLaneSegment 
GetStartLinkLaneSegment

newNode=start node in linking 
LaneSegment

newNode=end node in linking 
LaneSegment

return newNode

movAlongLane(node,nodeDist,direction) 

newDirection=direction

newNode=node

newNode=node in current lane  
segment indexed by deltaNode 

deltaNode >= nodeCount 
deltaNode < 0

0 < deltaNode < nodeCount 

deltaNode != nodeCount deltaNode == nodeCount 

Link to End of next LaneSegment Link to Start to next LaneSegment

deltaNode > nodeCount

deltaNode == nodeCount

NodeDist == 0 

 
Figure 9.  UML flowchart of function for moving along a lane 

 
 The change lane function uses a trigonometry-based 
equation to model a lane change while adhering to the lane 
change angle required for the maneuver. Equation 1 shows 
how this function calculates the forward, F, component 
that is required to model the lane change angle α given the 
lane change width w. Equation 2 shows the means in 
which the function ascertains the corresponding node 
index i in the adjacent lane segment.   
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Figure 10.  Trigonometry-based equations used by the simulator to change 
lanes. See nomincature for Θ in Figure 7. 



  The simulator builds the reachability graph one 
trajectory at a time using the two functions discussed 
previously. When constructing a reachability graph, the 
simulator attempts to find additional arms of the 
reachability graph (representing multiple lane changes) by 
recursively searching adjacent lanes using the two base 
equations mentioned above. This is accomplished by first 
performing a lane change maneuver to the adjacent lanes 
of the root node. If an adjacent lane segment exists, and a 
node in this lane segment is obtainable at the given 
vehicle’s speed, then the function forms a trajectory to this 
adjacent lane. This trajectory is created by connecting the 
root node of the reachability graph to the node found 
during the lane change maneuver with nodes that model 
the vehicle’s traversal to this lane as intermediate nodes in 
the trajectory. A completed reachability graph that is used 
by BG is depicted in Figure 8. 

VI. Further Work 

The NG will to be extended in the future to handle more 
complex road structures, such as large cloverleaf 
intersections and parking lots. This will require the further 
development of the on-road driving database (Schlenoff et 
al. 2004) as well as the intelligence contained in the NG.   
 The NG will also be expanded to handle larger 
environments by dividing the world into multiple grids that 
can be cached in to and out of memory. A statistical model 
will have to analyze how BG expands the planning graph 
in order to determine the appropriate way to prune the 
grids that are in memory.    
 It is predicted that the incorporation of this knowledge 
layer into VJ will improve the performance of BG. By 
increasing the intelligence in the knowledge layer, the NG 
will be able to assist the heuristic search to make a more 
accurate estimation of the cost that will be incurred in 
reaching the goal. This will reduce number of nodes in the 
planning graph, which in turn will lead to better 
performance by the behavior generation.  
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