
Knowledge Representation for On-Road Driving

Chris Scrapper and Stephen Balakirsky
National Institute of Standards and Technology

Gaithersburg, MD 20899
 {scrapper, stephen}@nist.gov

Abstract
This paper will present a knowledge layer used by a
hierarchical on-road driving planner that represents a road
network as a discrete set of attributed road states. This
knowledge layer facilitates the construction of a planning
graph by providing simulation and prediction services to the
planning system. These services allow the determination of
possible spatial transitions along a road network that a
vehicle may take from its current location given its current
state.

I. Introduction
In the mid 90's, a vision based machine-learning system
known as RALPH controlled the lateral movements of a
vehicle over the majority of the highways across United
States of America (Pomerleau and Jochem 1994). This
demonstration targeted a highly structured driving
environment in the nation’s highway systems. (Thorpe et
al. 1991) comments that the development of reliable
algorithms for autonomous driving requires an
environment that is unstructured and realistic. The
development of a truly autonomous agent capable of
handling partial observable stochastic environments that
contain multiple agents operating in proximity with each
other will require innovative ideas.
 Deliberative planning systems attempt to create an agent
function for goal-based autonomous vehicles. This
function attempts to map the percepts from the vehicle’s
sensors to possible actions the vehicle can take. (Russell
and Norvig 2003) discuss deficiencies of table-driven
agent functions, i.e., finite state machines or look-up
tables. The authors claim that using a table driven
approach to solving such a problem is unrealistic and
hypothesize the total number of entries in such a table can
be estimated by

∑ =

T

t

t

P1
,

where T = total number of percepts received by the agent,
and P = the set of possible percepts.
 In order to deal with a countably infinite sequence of
percepts in stochastic environments to generate appropriate
behaviors, some deliberative planning systems use
planning graphs that determine the optimal path through
cost analysis. (Guo, Qu, and Wang 2003) discusses a
motion planner that attempts to tackle the global trajectory-
planning problem but has shown to be unable to handle the

computational complexities in real time. (Balakirsky 2003)
has developed a real-time deliberative planning system that
has shown positive results in real time. This approach is
based on an A* graph search algorithm that attempts to
limit the size of the graph through the application of
knowledge to the graph creation process.
 An on-road driving planner such as (Balakirsky 2003)
requires a knowledge layer that is capable of extracting
knowledge from the a priori world knowledge, imperfect
sensor knowledge and situational awareness. This paper
will discuss a mini-expert system that is implemented to
provide the planning system with the appropriate
knowledge in real time. The layout of the rest of this paper
is as follows. Section II contains a brief synopsis of the
Real-time Control System reference architecture, RCS. In
Section III, the on-road driving database that decomposes a
road network into useful chunks of information that are
easily accessible will be discussed. Section IV will discuss
the incremental graph approach and sample results. In
Section V, the knowledge layer used to support the
planning system is discussed. Finally, Section VI will
conclude the paper with a discussion of the expansion of
the knowledge layer used by the on-road planning system.

II. Reference Model Architecture

PLANNER

EX

Plan

EX

Plan

EX

Plan

BG

PLANNER

EX

Plan

EX

Plan

EX

Plan

BG

PLANNER

EX

Plan

EX

Plan

EX

Plan

BG

Agent1

Subtask
Command

Output

Subtask
Command

Output

Subtask
Command

Output

WORLD
MODELING

SIMULATOR
PREDICTOR

VALUE
JUDGMENT

cost
benefit

EXECUTOR

PLAN

BEHAVIOR
GENERATION

Expected
Results

Tentative
Plans

Images
Maps

Entities
States

Attributes

Feedback

Task
Command

Input

EXECUTOR

PLAN

EXECUTOR

PLAN

Task Decomposition
PLANNER

KD

SENSORY
PROCESSING

Recognize
Filter
Compute
Group
Window

BG
WMSP

Figure 1. RCS computational Node (Albus and Meystel 2001)

drussell
Proceedings of the AAAI Sprint Symposium Series on Knowledge Representation and Ontology for Autonomous Systems, Palo Alto, CA, March 22-24, 2004.

 In order to guarantee real-time operation and decompose
the problem into manageable pieces, it is necessary to
embed the planning framework into a hierarchical
architecture that was specifically designed to accommodate
real-time deliberative systems. The Real-Time Control
System (RCS) reference model architecture is a
hierarchical, distributed, real-time control system
architecture that meets this need while providing clear
interfaces and roles for a variety of functional elements
(Albus 1991) .
 Under RCS, each level of the hierarchy is composed of
the same basic building blocks illustrated in Figure 1
(Albus and Meystel 2001). These building blocks include
behavior generation, BG, (task decomposition and control),
sensory processing, SP, (filtering, detection, recognition,
grouping), world modeling, WM, (knowledge storage,
retrieval, and prediction), and value judgment, VJ,
(cost/benefit computation, goal priority).
 This implementation of the WM is adapted from (Albus
and Meystel 2001) to contain multiple knowledge layers
within the WM, e.g. moving-object prediction, road state
generator, maps, etc. The knowledge layer discussed in
this paper is a mini-expert system that lies at the heart of
the planning system for on-road driving, known as the
Node Generator (NG). As shown in Figure 1, it is
composed of two parts: a simulator/predictor and a
knowledge database, KD. The NG maintains a knowledge
base, provides state prediction, supplies data to planners
and executors, and simulates spatial/temporal transitions
within the road network. The simulated transition in the
road network is evaluated by Value Judgment (VJ) to
construct and analyze an incrementally created graph in
order to produce the appropriate behavior for navigating
road networks (Albus et al. 2001).

III. Planner
The planning system presented in this paper is designed to
fill the roles of behavior generation, world modeling, and
value judgment for a single level of the RCS hierarchy.
The system receives a set of intersections that must be
traversed, and one or more final goal locations from its
supervising level. The system then refines this plan for
specific lane locations and vehicle velocities while taking
into account dynamic and static objects as well as user
objectives and constraints (all of which must be in the
knowledge representation of the system). The results of
this plan refinement are then passed to the next lower level
of the hierarchy for further refinement and execution. This
process is periodically repeated for systems that include
uncertainty in the prediction of moving object locations
and the success of task execution.

1. Planning Framework
The incremental graph-planning framework is based on a
combination of traditional graph-based planning
techniques (Nilsson 1998; Russell and Norvig 2003) and

logic-based planning techniques (Blum and Furst 1997). A
detailed description of the planning system may be found
in (Balakirsky 2003). The main difference between the
incremental graph planning framework and traditional
graph planning approaches is in the way states are mapped
to nodes and the way that the nodes are connected.

Figure 2. Representative objects from World Model

i. Attributed Graph Nodes
Figure 2 depicts several static objects that may be in an
autonomous driving planning system's world model (a
brick wall and an empty soda can) and the start and end
points of a potential plan (the two spheres). In addition to
knowledge about an object's location, the world model
tracks all of the object's attributes that are necessary for
making a cost/benefit decision that involves the object. For
the above case of autonomous driving, this decision is
about whether to drive over or around the object, and if
over the object, at what speed. It should be noted that
combinations of attributes are necessary for making this
determination. Sample attributes that appear in the world
model include such information as the corners of an
object's bounding box, the object density, and the object's
intrinsic value.
 Having a varied set of object attributes allows the
system to make intelligent trade-offs in its plans. For
example, the system should run over a soda can in order to
avoid driving into a brick wall. However, the system
should be willing to incur substantial damage (i.e., hit the
brick wall) rather than running over a small child (which
would not damage the vehicle).

Figure 3. Overhead view of nodes derived from objects in Fig. 2

 In order for the planning system to utilize these
attributes as decision points, a node in the planning space
must represent their location. As shown in Figure 3, these
nodes may be densely or sparsely populated, and there are
no "wasted" nodes placed in locations that are not relevant
to planning decisions. In addition, the existence of these
nodes may depend on the particular planning application.
For example, if path planning for a large all-terrain
vehicle, the low density corner nodes depicted in Figure 3
(the white nodes) would not be included in the planning
graph. Since nodes are only instantiated where relevant
attributes exist, the set of all nodes available for use by the
planning system is referred to as the set of Relevant
Annotated Nodes (RAND).
 Relevant nodes must exist wherever a planning decision
point exists. In the above example, there is no time
dimension. The placement of nodes must simply allow the
system to decide whether to go over or around static
objects.
ii. Logical Arc Connections
Once the set of potential graph nodes has been established,
a technique for creating a specific node's spanning set must
be developed. The graph arcs that are utilized by the
incremental framework build upon concepts developed by
Blum and Furst in their GraphPlan work (Blum and Furst
1997). Blum and Furst have created a logical planning
graph that expands levels by examining the results of the
execution of all valid actions.
 For the purposes of the incremental graph approach, the
intersection of the result of applying a node's valid actions
and the set RAND will be considered as the spanning set
of the current node. For the static example presented
above, the only valid action is for the vehicle to drive in a
straight line (in any direction). By constructing a visibility
graph from the current node to all other nodes, the node's
spanning set may be found.
 In other planning domains, time is an important factor
and decisions must be made that match a pre-specified
control cycle. It should be noted that for these cases the
spanning set of a node is time-dependent, and therefore the
graph topology may change on a planning cycle by
planning cycle basis. In addition, the spanning set for a
particular node at time t may not be equal to the spanning
set for node at time t+1.
 This is true for the case of on-road driving at the vehicle
level of the hierarchy, where a decision on vehicle velocity
and lane control (which lane to occupy) must be made
every second. The planning space is now four-dimensional
(x, y, time, velocity) and graph constraints through the use
of valid actions and attribute relevance becomes even more
important. For the over-simplified case shown in Figure 4,
the valid actions that may occur are accelerate (A),
decelerate (D), maintain velocity (M), and change lane. It
is also possible to simultaneously change lane and
velocity. The full set of valid actions is shown as the white
and gray circles in the figure. However, the size of the
spanning set will be constrained by membership in the set
RAND. In this case, only the white circles are legal lane

positions and members of RAND. Therefore, the spanning
set will consist of the white circles.

Figure 4. Spanning set of road states for in-road planning system

 This technique of excluding possible actions from a
node's spanning set is used to implement hard constraints
on the plan. Since no graph nodes exist in the oncoming
traffic's lane, it is impossible for the system to plan to enter
this lane. It should be noted that if a planning failure
occurs (no path below a certain cost threshold exists), then
the constraints may be relaxed and the set RAND
expanded to include all of the circles. The system must
then use soft constraints in the form of the system cost
function in order to discourage the vehicle from driving in
the oncoming traffic's lane.
 The focus of the remainder of this paper is the
generation of the nodes that are members of RAND. The
techniques that are utilized to generate the nodes and the
knowledge representation of the underlying data will be
examined.

IV. On-Road Driving Database
A knowledge base that provides concise, accurate
information about the environment and the objects that
reside in the environment is essential for the successful
operation of any deliberative autonomous vehicle. For on-
road driving, this knowledge must include the precise
location of where the road lies, what type of marking or
barriers are present along the roadway, the presence of
traffic signs or signals, etc. (Schlenoff et al. 2004) have
developed an on-road driving database that accurately
conveys the appropriate information about road networks
for the various fidelities of planning systems that are used
in the RCS hierarchy.
 The structure and features of the road network are
captured in a six level decomposition hierarchy. This six
level hierarchy was chosen for the on-road driving
database to allow for the efficient representation of the
road network at various levels of abstraction and to allow
the knowledge to be more easily accessible to the different
levels of BG within the system. Each level of the hierarchy
encapsulates the minimum set of attributes needed to

derive the appropriate knowledge about road networks for
behavior generation at that particular level of abstraction.

1. Database Definitions
The definitions in the on-road database that classify where
two paths converge are:

Level 1: Junctions –two or more paths that converge or

diverge, or a controlled point in a roadway.
Level 2: Intersections - type of junction in which two or

more separate roads come together.

The levels of the decomposition hierarchy are defined as:

Level 1: Road – bi-directional stretch of travel lanes

bounded by its proper name
Level 2: Road Segment - uni-directional stretch of a road

bounded by intersections
Level 3: Road Element - stretch of a road segment

bounded by any type of junction
Level 4: Lane Cluster – stretch of a road element bounded

by change in attributes or road feature
Level 5: Lane - single pathway of travel in a lane cluster

that is bounded by lane markings
Level 6: Generic Lane Segment – piece of a lane that

consists of constant curvature arcs
• Lane Segments – lane segments that traverse road

segments
• Intersections Lane Segments – lane segments that

traverse intersections

 As mentioned previously, the on-road driving BG
system contains a planner at each level of the RCS
hierarchy. The RCS architecture is design to uniformly
distribute the computational complexities over the levels of
the hierarchy by creating a hierarchy where each level is
responsible for smaller planning horizons at higher plan
fidelities than their supervisor. This architecture is
mirrored in the on-road driving database to satisfy the
different knowledge requirements needed at each level of
the RCS hierarchy. Below is one implementation of an on-
road planning system under the RCS architecture. The
planning system discussed in the previous section is
referred to as the Vehicle Level Planner, which is mapped
into the Drive Behavior Planner and Elemental Maneuver
Planner.

Level 1: Destination Planner – Coarse plan consisting of

roads and intersections
• Planning horizon: 1-2 hours and up to 100 km
• Knowledge Requirements: Roads, Road

Segments, Intersections
Level 2: Route Segment Planner – Negotiating intersection

and road segments
• Planning horizon: 10 minutes and up to 10km
• Knowledge Requirements: Road Segments, Road

Elements, Intersections

Level 3: Drive Behavior Planner – Low-level behaviors
and lane changes
• Planning horizon: 100 seconds and up to 500

meters
• Knowledge Requirements: Lane Clusters, Lane,

Intersection
Level 4: Elemental Maneuver Planner – real-time

maneuver, i.e. acceleration
• Planning horizon: 10 seconds and up to 50 meters
• Knowledge Requirements: Lanes, Lane Segments

Level 5: Goal Path Trajectory Planner – trajectory within
lane segments
• Planning horizon: 1 second and up to 5 meters
• Knowledge Requirements: Lane Segments

 For further details concerning the on-road driving
database refer to (Schlenoff et al. 2004).

V. Road State Generator
As mentioned in Section II, the Node Generator is one
knowledge layer in the World Model of an RCS
computational node that is composed of a
simulator/predictor and a knowledge database. The
implementation of the NG discussed in this paper is for the
on-road driving knowledge layer at the vehicle level of the
RCS architecture and is responsible for (Albus et al. 2001):

1. Creation and maintenance of on-road driving

knowledge base
2. State elaboration and knowledge extraction
3. Constrained simulation and state prediction

 Road Networks present a continuous, complex,
unstructured environment containing static and dynamic
features. To decrease the computational complexities of
planning in a continuous domain, the NG maps the
continuous environment into a spanning set of discrete
uniformly spaced attributed nodes known as road states.
The NG uses these road states and the vehicle’s current
state to predict plausible road states, known as goal states,
and creates simulated temporal-spatial transitions of the
vehicle along a road network, known as trajectories. The
set of goal states and trajectories defines a reachability
graph that is used by the planner to find a cost optimal path
through the road networks.

1. Knowledge Database
The knowledge database consists of a data structure that
stores a priori knowledge of the road networks as well as
in situ knowledge received from the sensory data. The data
structure used in this knowledge layer of the WM is a
composition of road objects received from the on-road
driving database discussed in Section IV. The data
structure, which is implemented as a connected graph of
adjacent lane segments, is depicted in the UML logical

model in Figure 5. The road primitives are generalized in
polymorphic structures in order to facilitate the
extendibility and durability of the data structure.

Figure 5. UML logical model of knowledge database

2. State Elaboration and Knowledge Extraction
As mentioned previously, road states are discrete
uniformly spaced nodes that carry with them road feature
attributes (e.g., lane markings, speed limit). Each road state
is uniquely identifiable by a tuple that includes the road
object id and node id that can be seen as an offset from the
beginning of a lane segment. Note that the mapping from
the continuous domain to a discrete domain inherently
introduces an error in the spacing of the last two nodes of
every lane segment which is no greater than half of the
defined node spacing. This error is acceptable in this
implementation of the NG because of the fidelity at this
planning level.

StateElab(nodeName) → UTM Location
StateElab(UTM) → nodeName
StateElab(laneSegment_id, offset) → nodeName
StateElab(nodeName, orientation) →
directionInLane
StateElab(nodeName, directionInLane) →
orientation
Legend:
StateElab() - overloaded function for state elaboration
nodeName - unique road state identifier

 directionInLane - direction of travel with respect to how
the lane segment is rendered

UTM – Universal Transverse Mercator

Figure 6. Psuedo-code prototypes for state elaboration function

 The NG provides the planner with the ability to extract
and elaborate road states from the KD using logical and
mathematical models. Figure 6 illustrates the knowledge
that can be derived from partial state knowledge by the
state elaboration function in the NG. For example, given a
road state unique identifier, known as a nodeName, and the
orientation of the vehicle in the current state, the NG is
able to derive the direction the vehicle is traveling in a lane
segment with respect to how the lane is rendered in the
knowledge base.

Arc Length of the entire lane segment

rCECBL c *⎥⎦
⎤

⎢⎣
⎡ ∠=

BEL S =

Number of nodes in a given segment

⎥⎦
⎥

⎢⎣
⎢ += 5.0*

* s
LN

Angle corresponding to s for a particular lane segment

r
s

c =Θ 0.1=Θ s
Determining UTM locations of individual nodes

() ()
() () CCB

ii
ii

UTM c +
ΘΘ−
ΘΘ

=
*cos*sin
*sin*cos

i
BE
BEsBUTM s ∗∗+=

Legend:
 UTM vectors that define a lane segment
 C=Curvature Center, B=Start Point, E=end Point
 w = width of lane segment
 s=uniform arc length separating each node in lane segment
 CBr = , Radius

 i = Road node index into lane segment
Subscripts:
 c=curved lane segment, s=straight lane segment, *=both

Figure 7. Mathematical models for knowledge extraction

To efficiently handle numerous road states without the
implementation of a large complex data structure, the road
states are derived from knowledge stored in the KD.
Figure 7 depicts the mathematical models that the NG uses
to extract and elaborate road states form the knowledge
residing in the KD. For instance, the UTM location of a
road state in a curved lane segment is derived by utilizing a
rotational matrix, whose angle corresponds to the angular
offset of the road state in the lane segment. The matrix is
used to rotate the radial vector that runs from the curvature
center to the starting point of the lane segment. The rotated
vector is then translated to the proper UTM locations by
adding the UTM location of the curvature center of the
lane segment.

3. Constrained Simulator and State Predictor

Figure 8. Reachability graph

 The constrained simulator of the NG is responsible for
the creation of the reachability graphs shown in Figure 8.
Each branch of the graph represents a separate trajectory
that models the distance traveled and the maneuvers
performed by the vehicle (i.e., turn, change lane, maintain
lane) per cycle. A trajectory is represented by the NG as an
ordered subset of road states that are connected to a given
root node to form a reachability graph. The leaf nodes of
the graph are the set of obtainable goal states for a given
cycle.
 The simulator utilizes the constraints applied to the
system when creating the reachability graphs to limit or
dictate the maneuvers that a vehicle can perform. For
example, on a first planning pass the NG may be
constrained from returning any road states that violate a
driving law or would produce uncomfortable vehicle
movement. However, if no plan is found that satisfies the
planner’s maximum cost value, replanning could take
place with a reduced set of constraints. The constraints
could now allow for emergency maneuvers by altering the
angle in which lane changes are performed or allow nodes
deemed illegal by the set of road rules.
 The simulator creates the reachability graphs by
applying equation-based algorithms to the internal state of
the vehicle. The internal state of the vehicle consists of the
vehicle constraints, current road state, orientation, and
velocity. The current base set of functions used in the
simulator allows for the vehicle to move along the lane
segment or to change lanes.
 The function that moves along a lane is depicted by a
UML flow-chart in Figure 9. Note that this figure assumes
that the arc length between the uniformly spaced road
states is one meter. When the function is called, the

number of road states that can be traversed (deltaNode) is
initially computed. If deltaNode is greater than or equal to
the number of road states in the lane segment (nodeCount)
then the simulator must get a handle to the lane segment
linking to the end of the current lane segment and the
appropriate road state of the adjacent lane segment. Once
the link to the adjacent road state is found, the simulator
determines how many nodes it may still traverse (rDist).
The function is recursively called to move along the lane in
order find a leaf node. During the recursive process, the
function maintains an ordered set of road states that
consists of a given start node, a leaf node, and the first
node of every lane segment traversed during the process.

deltaNode=node.ID+(direction*nodeDist)

rDist = nodeDist - node.ID

newDirection=MOV_END_2_START newDirection=MOV_START_2_END

movAlongLane(newNode,rDist,newDirection)

rDist = nodeDist-(nodeCount-node.ID)

GetEndLinkLaneSegment
GetStartLinkLaneSegment

newNode=start node in linking
LaneSegment

newNode=end node in linking
LaneSegment

return newNode

movAlongLane(node,nodeDist,direction)

newDirection=direction

newNode=node

newNode=node in current lane
segment indexed by deltaNode

deltaNode >= nodeCount
deltaNode < 0

0 < deltaNode < nodeCount

deltaNode != nodeCount deltaNode == nodeCount

Link to End of next LaneSegment Link to Start to next LaneSegment

deltaNode > nodeCount

deltaNode == nodeCount

NodeDist == 0

Figure 9. UML flowchart of function for moving along a lane

 The change lane function uses a trigonometry-based
equation to model a lane change while adhering to the lane
change angle required for the maneuver. Equation 1 shows
how this function calculates the forward, F, component
that is required to model the lane change angle α given the
lane change width w. Equation 2 shows the means in
which the function ascertains the corresponding node
index i in the adjacent lane segment.

Equation 1:
⎥
⎦

⎥
⎢
⎣

⎢
+= 5.0

tan α
wF

Equation 2:
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+

Θ
∗Θ

= 5.0
adjacent

currentcurrent
adjacent

ii

Figure 10. Trigonometry-based equations used by the simulator to change
lanes. See nomincature for Θ in Figure 7.

 The simulator builds the reachability graph one
trajectory at a time using the two functions discussed
previously. When constructing a reachability graph, the
simulator attempts to find additional arms of the
reachability graph (representing multiple lane changes) by
recursively searching adjacent lanes using the two base
equations mentioned above. This is accomplished by first
performing a lane change maneuver to the adjacent lanes
of the root node. If an adjacent lane segment exists, and a
node in this lane segment is obtainable at the given
vehicle’s speed, then the function forms a trajectory to this
adjacent lane. This trajectory is created by connecting the
root node of the reachability graph to the node found
during the lane change maneuver with nodes that model
the vehicle’s traversal to this lane as intermediate nodes in
the trajectory. A completed reachability graph that is used
by BG is depicted in Figure 8.

VI. Further Work

The NG will to be extended in the future to handle more
complex road structures, such as large cloverleaf
intersections and parking lots. This will require the further
development of the on-road driving database (Schlenoff et
al. 2004) as well as the intelligence contained in the NG.
 The NG will also be expanded to handle larger
environments by dividing the world into multiple grids that
can be cached in to and out of memory. A statistical model
will have to analyze how BG expands the planning graph
in order to determine the appropriate way to prune the
grids that are in memory.
 It is predicted that the incorporation of this knowledge
layer into VJ will improve the performance of BG. By
increasing the intelligence in the knowledge layer, the NG
will be able to assist the heuristic search to make a more
accurate estimation of the cost that will be incurred in
reaching the goal. This will reduce number of nodes in the
planning graph, which in turn will lead to better
performance by the behavior generation.

References

 1. Pomerleau, D. and Jochem, T. 1994. Image
Processor Drives Across America. Photonics
Spectra 30:80-85.

 2. Thorpe, C. et al. 1991. Toward Autonomous
Driving: the CMU Navlab. I. Perception. Expert,
IEEE [see also IEEE Intelligent Systems] 6:31-42.

 3. Russell, S. and Norvig, P. 2003. Artificial
Intelligence: A Modern Approach. Prentice Hall.

 4. Guo, Y., Qu, Z., and Wang, J. 2003. A New
Performance-Based Motion Planner for
NonHolonomic Mobile Robots. In the Proceedings
of the 2003 Performance Metrics for Intelligent
Systems Workshop

 5. Balakirsky, S. 2003. A Framework for Planning
With Incrementally Created Graphs in Attributed
Problem Spaces. Berlin, Germany: Akademische
Verlagshesellschaft Aka GmbH.

 6. Albus, J. and Meystel, A. 2001. Engineering of
Mind: An Introduction to the Science of Intelligent
Systems. John Wiley & Sons, Inc.

 7. Albus, J. 1991. Outline for a Theory of Intelligence.
IEEE Transactions on Systems Man and
Cybernetics 21:473-509.

 8. Albus, J. et al. 2001. The RCS Handbook: Tools for
Real-Time Control Systems Software Development.
John Wiley & Sons, Inc.

 9. Nilsson, N. J. 1998. Artificial Intelligence: A New
Synthesis. San Francisco: Morgan Kaufmann
Publishers, Inc.

 10. Blum, A. L. and Furst, M. L. 1997. Fast Planning
Through Planning Graph Analysis. Artificial
Intelligence 90:281-300.

 11. Schlenoff, C. et al. 2004. The NIST Road Network
Database. NISTIR. Forthcoming

