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ABSTRACT

This paper discusses the modeling and control of a
nanopositioning flexure hinge mechanism with a piezoelectric
actuator. A complete dynamic model for the mechanism is
presented along with experimentally determined system
parameters. The control design concentrates on the problem of
controlling the nanopositioner when a base excitation is
injected into the system. The effects of the base excitation are
overcome using two approaches. The first is a robust tracking
controller which is developed to cancel the excitation effect on
the tracking error. The second is an inertial compensator which
is designed to update the desired trajectory using base motion
measurements, such that the nanopositioner performs the
desired trajectory in an inertial frame. This approach is
demonstrated through simulation results. These principals are
being developed for use in beam steering applications which
require nanoradian resolution and very low beam jitter.

INTRODUCTION

There have been significant developments in the design of
nanopositioning stages in recent years. This is largely due to
the many applications, both in industry and in research, which
benefit from this technology. Examples of such devices
include the work of Scire and Teague [1], Gao et al. [2], Chang
et al. [3], and Dagalakis et al. [4]. The most common design
approach for a nanopositioning stage is to create a flexure hinge
mechanism which is actuated by piezoelectric actuator. There
are many important criteria which must be considered in the
design process, such as the travel, bandwidth and resolution of
the device. Therefore, the assortment of designs presented in
the literature is large and greatly varied. A general discussion
on designing flexure hinge mechanisms has been discussed in
detail by Smith [5].

In this paper, the modeling and control of a particular
nanopositioning mechanism is discussed. The design of the
nanopositioner is a single-degree-of-freedom scaled-down

version of the device discussed by Dagalakis et al. [4]. One
application for this device which is currently being investigated
is high-precision beam steering, with an emphasis on deep
space optical communications. Future interstellar explorer
missions will require a high-bandwidth communications link
with a terrestrial monitoring station. The most likely candidate
for this link is optical communications due to its high data
transfer rates and low power consumption, as discussed by
Boone et al. [6]. However, one major difficulty in operating an
optical communication system over such great lengths is that
the beam steering mechanism must have very high positioning
accuracy. As an example, when transmitting data from Jupiter,
an error on the order of nanoradians can result in an error in the
beam placement as large as a kilometer when the beam reaches
Earth.  Although there have been many beam steering
mechanisms used in aerospace applications, none of the
commercially available devices have tracking accuracy and
resolution on the order of a nanoradian. Therefore, new
devices and their associated control systems must be developed
to enable future space missions.

A nanopositioning mechanism could provide the level of
precision motion control required by a deep space optical
communication system.  However, most nanopositioning
applications have much lower dynamic performance
requirements as compared to beam steering. Furthermore, the
operational conditions for nanopositioners used in typical
applications, such as microscopy, are very different compared
to operation in a spacecraft. Therefore, the research presented
in this paper concentrates on developing an accurate model and
high performance controller for a nanopositioner, which will
enable future beam steering applications.

Steering a laser beam from a spacecraft presents several
difficulties. Most importantly, the motion of the spacecraft
results in a disturbance to the beam steering mechanism causing
beam jitter. This can be viewed as the standard base excitation
problem studied in vibration control. The base excitation
causes beam steering errors in two distinct ways. The first is by
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inducing vibrations in the beam steering mechanism. The
second is by causing displacements of the beam steering
mechanism with respect to an inertial reference frame. The end
result is an error in the angle of the steered beam along with an
offset in the point of departure of the beam. In most cases, the
angle error will be of much greater significance than the beam
offset.

As an initial step towards using a nanopositioner for beam
steering applications, a dynamic model including the base
excitation and a controller designed to compensate for the
excitation will be presented. @ The model combines the
characteristics of the flexure hinge mechanism and
piezoelectric actuator, along with the coupling to the excitation.
Using this model, a robust tracking controller has been
developed which compensates for the disturbance. The
controller utilizes an estimate of the disturbance and a sliding
mode controller to guarantee a bounded tracking error.
Furthermore, an inertial compensator is used to provide a
desired trajectory to the controller which will maintain the
required pointing trajectory when the spacecraft is moving in an
inertial frame.

First, a discussion on using a nanopositioner for beam
steering will be presented. Then the dynamic model will be
derived and the results of model verification experiments are
discussed. This will be followed by the development of the
robust tracking controller and inertial compensator.
Simulations results for the control approach are then presented
and discussed. Finally, conclusions on the presented work are
provided.

NANOPOSITIONER DESIGN AND BEAM STEERING

A single degree of freedom nanopositioner is shown in Fig.
1. The nanopositioner design is comprised of a flexure hinge
mechanism, a piezoelectric actuator, and a spherical flexure
hinge coupler between the actuator and the flexure hinge
mechanism. This design is based on the mechanism previously
discussed by Dagalakis et al. [4], but the scale of the
mechanism has been reduced by a factor of four. This
particular design has been shown to have very low cross-talk
errors between motion axes. In addition, angular deviations
have also been determined to be very small compared to other
mechanisms.  Further details on the performance of this
mechanism design can be found in [4].

The reduction in scale is motivated by an interest in
utilizing the design concept presented in [4] to make meso and,
eventually, micro devices. The area of the flexure hinge
mechanism and piezoelectric actuator for the current device is
46 mm x 46 mm. The flexure hinge mechanism has ten right
circular flexure hinges, as indicated by the numbering in Fig.
1b. A parallel lever design is used to amplify the motion of the
piezoelectric actuator. The amplification gain ratio is
determined by the geometry of the four levers. The length of
the input end of the lever, which is the section between flexures
1 and 3, is denoted as a, and the length of the output end of the
lever, which is the section between flexures 3 and 5, is denoted
as b. Therefore, the amplification gain ratio is b/a. This ratio
has been set to ten in the existing mechanism. Based on this
amplification, the nanopositioner has a range of 0 um to 91 pum
for an input voltage range of the 0 V to 150 V for the
piezoelectric actuator.
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Fig. 2 Beam steering using a nanopositioner, lens,
and a stationary laser source
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This design can be used as a beam steering mechanism
using the simple approach depicted in Fig. 2. An aspheric lens
is attached to the nanopositioner, which is positioned one focal
length, £, from an optical fiber emitting a laser beam, resulting
in a collimated output beam. By moving the nanopositioner
perpendicular to the beam, by a displacement x;, the output
beam angle, ¢, is related to the nanopositioner translation such
that ¢ =x, /f , based on the small angle approximation. When

the focal length is in the range of a few millimeters, the
expected beam steering angle range is on the order of
milliradians. The beam angle depicted in Fig. 2 is only drawn
to demonstrate the concept and does not represent the actual
beam angle range of the mechanism. A capacitance probe is
built into the nanopositioner to measure the displacement of the
stage which can then be related to the beam angle. The range
and resolution of the beam steering can be optimized by the
proper selection of the lens, the position sensor, and the travel
limits of the nanopositioner. The modeling of this device,
including the base excitation effects which can limit the
steering accuracy, will be discussed in the following section.

DYNAMIC MODELING

An accurate dynamic model of the nanopositioner shown
in Fig. 1 is required to develop a model-based control design.
The model will be derived in this section by considering the
flexure hinge mechanism and piezoelectric actuator separately.
Then the two models will be combined. The flexure hinge
mechanism model will include the inertial forces resulting from
a base excitation. The derived model will then be used to
develop a robust tracking controller in the next section.

A breakdown of the two subsystems, flexure hinge
mechanism and piezoelectric actuator, is shown in Fig. 3. In
Fig. 3a, the flexure hinge mechanism is depicted including the
base excitation, x,. The position of the main (or output) stage
with respect to a local reference frame is defined as x;, the
rotation angle for each of the four lever arms is defined as 6,
and the position of the input stage with respect to a local
reference frame is defined as x,. The mass of the main stage,
the input stage and a single lever arm are m;, m,, and ms,
respectively. This mechanism is kinematically over
constrained and it can only move due to the rotational and
translational compliance of the flexure hinges. However, the
translational deflection of the hinges is expected to be much
smaller than the rotational deflection.

The first step in determining the dynamic model is to find a
relationship between the motion of the input stage, the output
stage and the lever arms. The relationship between x,, x, and &
can be determined to be:

X, X
sinf="L="2 1
PR (1)
Therefore,:
a 1
X2 :le 0 :le (2),3)

These relations will be used to place the equation of motion in
terms of only x;.

(@) (b)

Fig. 3 Schematic of (a) flexure hinge mechanism and
(b) piezoelectric actuator and actuator coupler

The Lagrangian approach is used to determine the equation
of motion for the nanopositioner. Therefore, the kinetic and
potential energy for the system is first examined. The kinetic
energy of the flexure hinge mechanism includes contributions
from the inertia of the main stage, m,, the input stage, m,, and
the lever arms, which have a mass, m;, and mass moment of
inertia, /,, about the pivot point, A. Due to the base excitation,
the linear and rotational velocities of each of the linkages must
be determined in the inertial frame. Furthermore, the resulting
motion of the lever arms is a general planar motion. Therefore,
the kinetic energy of the flexure hinge mechanism can be
written as:

T=dm (5 =2 P +Lm, (&, + £, +~41, 62
2 2 2 4)

+%4m3 (xé +j/é)

where x; and y; are Cartesian velocities of the center of mass

for the lever arms, and I is the mass moment of inertia about
the center of mass. The velocities, x; and y;, can be found

to be:

o =—dfcosl +x, )
Yo =—dBsin@ (6)

The parameter, d, is the distance between the pivot point, A,
and the center of mass, G (see Fig. 3).

The potential energy for the flexure hinge mechanism
results from the stiffness of the stage. This stiffness can be
difficult to model using a simple analytical expression.
Discrete spring models have been derived by Paros and
Weisbord [7] and discussed extensively by Smith [5].
However, due to the over constrained design, the stiffness is
more complex than a simple torsional spring model. Instead of
modeling the springs directly, an experimental approach was
taken. Experimental results, which will be discussed shortly,
indicate that the stiffness is linear for the displacement range of
interest. Therefore, the stiffness of the mechanism can be
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lumped into a single constant parameter, %,, such that the
potential energy can be written as:

V:%k x; (7)

where £, will be determined experimentally.
The equation of motion can be determined by applying
Lagrange’s equation, which is:

d( oL oL
Z(a—x.JH—Q ®

and the Lagrangian, L, is defined as L = T— V. The generalized
force, Q, is chosen as:

0=-Bi + %.ﬂ ©)

where the first term accounts for structural damping, where B is
the damping parameter, and the second is the input force, fi,
from the actuator and coupler. Therefore, by applying Eq. (8)
based on Egs. (2)-(7) and (9), the following equation of motion
results:

Mx+3x+h%=%ﬁ+Mje (10)
where:
a? 1
M=m1+b—2m2 +4b_;1 (11)
a d
M,=m ——m,+4—m 12
e 1 b 2 b 3 ( )

The second term on the right hand side of Eq. (10) represents
the inertial force due to the excitation.

Next, an electromechanical model of the piezoelectric
actuator and actuator coupler is derived. Due to the small mass
of the actuator and coupler compared to the flexure hinge
mechanism, it is assumed that they act as massless spring
elements. A schematic of their configuration is shown in Fig.
3b. The objective in modeling the actuator and coupler is to
find a relationship between the force applied to the flexure
hinge mechanism, f;, the displacement x;, and the actuator
force, F,. By summing the forces at the two spring junctions,
the following equations result:

S+ (x, = x,)=0 (13)
Fa_kaxa+kc('x2_xa):0 (14)
where £, is the stiffness coefficient for the actuator coupler and
k, is the stiffness coefficient for the piezoelectric actuator.
These parameters can be determined either analytically or
experimentally. In this case, the actuator stiffness is calculated
based on the manufacturer’s specifications and the coupler
stiffness is found using a relation for a spherical hinge
discussed in [5]. Solving Egs. (13) and (14) simultaneously

and using Eq. (2) gives an expression for the applied force, fi,
such that:

a k,k, k,

=———4 < x +——F 15
/ bk, +k, ' k,+k ° (13)
An expression for the actuator force, F,, must also be
determined. Based on the model presented by Goldfarb and
Celanovic [8], the electrical dynamics of a piezoelectric
actuator can be written as:

q=Tx +Cy, (16)
vt = vin - vrc (17)
F, =Tv, (18)

where ¢ is the charge of the actuator, 7 is the actuator
transformer ratio, C is the actuator capacitance, v;, is the
voltage applied to the actuator, and v,. is an internal voltage. It
is well known that piezoelectric actuators have a hysteresis
nonlinearity between the applied voltage and resulting charge
of the actuator. This results in errors in displacement when
voltage is used as the control input. Goldfarb and Celanovic
[8] describe the hysteresis effect caused by v,. in detail and
provide an effective approach to estimating the hysteresis. In
this paper, this internal voltage will be viewed as an unknown
disturbance, so a complete model of the nonlinearity is not
required. However, Goldfarb and Celanovic’s approach could
be used to estimate the internal voltage and then use the
estimate as a feedforward component of the controller.

The final equation of motion can be found by combining
Egs. (10), (15), (17), and (18), resulting in the following:

k.T
M3, +Bx, +Kx, =22y 4§ (19)
bk, +k,
where:
a’® kk
K=k, +——“¢" 20
"b k, +k, 20)
.. kT
S=Mji -2 T 1)
bk, +k,

The dynamic model, shown in Eq. (19), is a linear second order
system with a nonlinear disturbance, 8. Therefore, the only
difficulty in controlling this system comes from the
disturbance, which is a combination of the internal voltage of
the actuator which causes hysteresis, and inertial forces
resulting from the base excitation.  An approach for
compensating for these disturbance forces will be discussed
shortly. First, the experimentally determined system
parameters will be presented.

SYSTEM PARAMETERS AND OPEN LOOP TESTS

Most of the parameters in the equation of motion shown in
Eq. (19) can easily be calculated or measured, such as the mass
and dimensions. However, the stiffness of the flexure
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Fig. 4 Flexure mechanism static stiffness evaluation
tests

mechanism, k,, and the transformer ratio of the actuator, T,
must be determined experimentally. The static force-
displacement relationship for the flexure mechanism when a
force is applied directly to the main stage is:

k,x, =1 (22)

A static loading stiffness test was performed on the mechanism
to determine the experimental value of k,. This was executed
by applying calibrated loads to the nanopositioner while
measuring the displacement. The results of this test are shown
in Fig. 4a. It is clear that the stiffness of the mechanism is
linear within the working region, as assumed in the modeling.
As an additional verification of the parameters, a second test
was performed in which the force was applied at the actuator
input. This scenario can be represented by the following
equation:

k,x, =—f; (23)

Comparing Egs. (22) and (23) indicates that the second test can
be used to verify the motion amplification of the mechanism.
The results of this test are shown in Fig. 4b. A comparison of
the results of two tests confirms the motion amplification ratio,
b/a, to be approximately equal to ten since this is the factor
between the slopes of each of the plots.

A final static test was performed on the fully assembled
nanopositioner to determine the transformer ratio, 7. The static
relation between the applied voltage, v;,, and displacement, xi,
was determined experimentally as shown in Fig. 5. This plot
shows the expected hysteresis loop for an increasing and then
decreasing voltage. These results can be compared to the
equation resulting from applying static analysis to the equation
of motion in Eq. (19). This results in the following equation:

2 kk k.T
o+ Safe 24 Zet 24)
bk +k | bk +k
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Table 1 Nanopositioner Model Parameters

value value
ko 25149 N/m I, 2.145x 107 kg m”
k, 1.859 x 10° N/m C  0.73pF
k, 2.440 x 10’ N/m T 9.06 C/m
m 0.0193 kg a 1.46x 10° m
iy 0.0013 kg b 1.49x 102 m
s 0.0025 kg d 8.1x10%m

All of the parameters in Eq, (24) are known at this point except
for T. Therefore, by finding the slope of the nearly linear rising
curve in the data shown in Fig. 5, and utilizing Eq. (24), the
transformer ratio, 7, can be estimated. @A more accurate
approach for determining the transformer ratio would require
measuring the charge on the actuator, which was not considered
in this initial research. The complete set of parameter values
are listed in Table 1. These values have been used in the
simulation tests which will be discussed later. First, an
approach to controlling the nanopositioner based on the derived
model will be discussed.

DISTURBANCE REJECTION CONTROL

In many typical nanopositioning applications, such as
microscopy and mask alignment, the operating environment is
well controlled and the required tracking bandwidth is low.
Therefore, the specifications for the control design can
generally be achieved using standard linear approaches, even
with the presence of actuator hysteresis. However, the use of
nanopositioners for beam steering in an optical communication
system presents several difficulties typically not addressed in
the control of nanopositioning mechanisms.

High bandwidth beam steering can be severely affected by
actuator hysteresis, since it introduces a phase lag, causing
large tracking errors and possible instability. Furthermore, the
base excitation, which can be expected in many beam steering
applications, results in inertial disturbances to the mechanism
as well as line-of-sight perturbations. Both of which can result
in tracking errors. In this section, a robust control approach is
presented which is designed to compensate for the base
excitation and hysteresis.

The control system concept proposed for the
nanopositioning mechanism is shown in Fig. 6. This system is

Copyright © 2003 by ASME



e e e inertial
compensator

X

T robust

tracking

’_, controller

Fig. 6 Block diagram of control system for beam
steering

inertial X,

] id 1 x4
trajectory

nanopositioner

¥

decomposed into two sub-systems, the robust tracking
controller and the inertial compensator. The robust tracking
controller is used to overcome the hysteresis and base
excitation disturbance to achieve high precision motion control.
This is achieved with a sliding mode controller and feedback
from an accelerometer measuring the base excitation. The
inertial compensator adjusts the desired trajectory based on
estimates of the base motion, which are found by integrating
the accelerometer signal.

Robust Tracking Control

The goal of the robust tracking control design is to achieve
a guaranteed bounded tracking error for a given level of base
excitation and hysteresis effect. There are a number of
approaches which could be adopted for this purpose. The
internal model principle is one which is well suited for base
excitation problems when the frequency of the excitation is
known or can be estimated online. Alleyne and Pomykalski [9]
have investigated the use of an internal model for nonlinear
systems such as the system discussed in this paper. Linear
robust control could also be used to minimize the effect of the
hysteresis and external disturbances, which has been examined
by Salapaka et al. [10]. However, due to the boundedness of
the uncertainty in the base excitation and hysteresis, sliding
mode control has been chosen. This will provide broadband
disturbance rejection and it is straightforward to design the
controller for the presented system. Shan and Menq [11] have
demonstrated the use of sliding mode control for disturbance
rejection in a micropositioning magnetic suspension stage. A
similar approach is utilized here, with adaptations to include the
base excitation measurement data and base motion estimates.
First, the system dynamics are transformed into error
coordinates using the relations X, =x, —x,, and X, =%, —%,,

such that:

5o, 25)
< K B o a kT

=X, ——X, =X, +—+————<v. (26
Xy Mxl sz X1a Y bM(ka+kC)vm (26)

Since the system, represented in Eqs. (25-26), has linear second
order dynamics with a nonlinear disturbance, the design of the
sliding mode controller is straightforward. This approach has
been discussed in detail by Edwards and Spurgeon [12], among
others. Therefore, only an outline of the approach is provided
here. A first order sliding surface, s, is chosen such that:

s=% + A%, @27)

where A is a positive valued design parameter. The sliding
surface is designed such that when the system states lie on this
surface, the system is exponentially stable. Therefore, the
problem is reduced to guaranteeing that the system reaches the
sliding surface, or in the case of bounded tracking, some region
around the surface.  The sliding surface dynamics are
determined by taking the time derivative of Eq. (27), and
applying Eq. (25-26). This results in the following:

- kT
UL SR AN LAY & A ST
M M M bM(ka+kc)

Based on the sliding dynamics, the control law for the applied
voltage, v;,, is chosen as:

bM(ku+kC)[ K B . 4
= T X TNy Xy T

vin
a kT M
(29)
+ AX,+ ds + Ll
(sz +é° )A
where:
5=M%, (30)

The parameter ¢ is a positive valued design constant, and the
variables X, is an estimate of the actual disturbance variable,

X,. This estimate will be determined by the inertial

compensator, which will be discussed shortly. The switching
gain, p, is a positive definite function which will be chosen to
guarantee a desired tracking error bounds. The final term in
Eq. (29) is a continuous approximation to the standard
discontinuous sliding mode control switching law. Substituting
Eq. (29) into Eq. (28) results in the following closed-loop
sliding surface dynamics:

foX +5—§
(sz+£2)% M

§=—¢s—

3D

It is clear from Eq. (31) that if the difference between the actual
and estimated disturbances were equal to zero, then the system
would be asymptotically stable. The error between the actual
and estimated values can be compensated by the choice of the
switching gain, p. This error can be written as:

. kT ;
§-5=-2 % vr(,+M‘,()'c'e—x‘,) (32)
bk, +k

a c

In order to achieve the boundedness properties of sliding mode

control, the switching gain is chosen such that p > ‘5 -5 ‘ / M .
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Therefore it is found that:

nla kT .
= —-——v_ +M 33
M(bka-f‘kc re eq)lj ( )
where >1, v |<v. , and ‘)'c'e —}ée‘ﬁ(p,. Sufficient values

for v, and ¢, can be determined experimentally and from a

priori bounds on the excitation, if available. It is important to
note that the closed loop system is bounded-input bounded-
output stable. Therefore, even if these bounds are not met, the
response is guaranteed to be bounded. This property is very
useful since it allows for the experimental tuning of the
switching gain without risk of instability. However, when the
parameters are chosen to meet these bounds, the tracking error
is guaranteed to asymptotically approach a bound such that:

|x1|£77/(/1(772 —1%) (34)

The controller presented in this section in based on available
estimates of the base excitation. The approach for finding these
estimates and applying them to inertial compensation is
discussed in the following section.

Inertial Compensator

The presented robust tracking controller can achieve a
bounded tracking error for a desired trajectory within its local
reference frame when an accurate estimate for X, is available.

Furthermore, the base motion estimates can be used to update
the desired trajectory so that the correct trajectory is executed
in the inertial reference frame. The position of the
nanopositioning stage in an inertial frame, x;, can be written as:

X, =x - X, (35)
Therefore, assuming that the base motion, x,, can be estimated
by X,, the desired position trajectory can be written as:

Xy =X, + X, (36)
where x;, is the desired position trajectory in the inertial frame.
The desired velocity and acceleration trajectories can be found
by taking the first and second derivatives of Eq. (36).

Therefore, both the robust tracking controller and the
desired trajectory will require the estimated variables. The
most obvious approach for obtaining these estimates is to
measure the acceleration of the base of the nanopositioner using
an accelerometer, and then integrate this signal for velocity and
position. This approach is common in many inertial navigation
systems. It has also been demonstrated for a beam steering
application by Borello et al. [13].

The proposed estimation scheme is shown in Fig. 7. The
measured acceleration is first passed through a low pass filter
with a cut-off frequency corresponding to the nanopositioner
bandwidth. The output of the low-pass filter then goes through
a high-pass filter designed to cut off any DC acceleration. The

B
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inertial | iz
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Fig. 7 Integration and filtering scheme for base
excitation estimation

output of this filter is the estimate ie Passing this estimate
through an integrator and a second similar high-pass filter

results in the estimate fce . The second high-pass filter is used
to cancel any DC content resulting from ambiguity in the initial

condition for integration. Finally, %, is passed through an

integrator and the third high-pass filter, resulting in x,.

Due to the use of the filters, the estimates will not
correspond exactly to the actual variables. However, this is in
some respects beneficial. Since the nanopositioner cannot track
a constant acceleration due to travel limitations, it wouldn’t be
sensible to feed the actual signal into the controller. This
particular integration and filtering scheme will capture all of the
periodic content in the acceleration signal within the
nanopositioner bandwidth, which is what is of the most interest
when trying to stabilize the line-of-sight in a beam steering
application. Of course, errors in the estimates will also exist
due to the added phase lag and amplitude attenuation of the
filters. Therefore, the performance limitations of the beam
steering mechanism will be a factor of the controller bandwidth
and the estimation bandwidth.

The robust tracking controller will receive a total of four

variables based on this estimation scheme. They are x,, which
is used to cancel the forces due to the base excitation, and %,,,

}él 4> and }él 4> which provide a full state trajectory to
compensate for the motion in the inertial frame caused by the
base excitation. The implementation results of the robust
tracking controller and inertial compensator will be discussed
in the following section.

SIMULATION RESULTS

The two-part controller discussed in the previous section
was tested in simulation on the presented dynamic model. The
closed-loop system, using the robust tracking controller, was
designed to have the same natural frequency as the open loop
system, which is @, = 3166.8 rad/s, and a damping ratio, & =
1.1. The desired trajectory in the inertial frame was a 10 Hz
sinusoidal trajectory with an amplitude of 5 um and an offset of
20 um. Another sinusoidal signal was used as the base
excitation, which had an amplitude of 10 um and a 40 Hz
frequency. As an initial test, the switching gain, p, and the base
excitation estimates were set to zero, resulting in a PD
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controller. The local tracking error results of this test are
shown in Fig. 8, where the steady state error is on the order of =
65 nm.

In a second test, the base excitation estimates were used in
the controller but the switching gain, p, was still set to zero.
The local tracking error results for this test are shown in Fig. 9.
The use of the base excitation estimates results in a large
improvement in the error, although it is still on the order of
10 nm. Finally, the full robust tracking controller was
implemented, resulting in the local tracking error as shown in
Fig. 10. In this case, the local tracking error has been reduced
to £ 0.4 nm. This error is on the order of what would be
acceptable for a deep space optical communication system.
Furthermore, the control effort for this level of tracking
performance is very reasonable, as shown in Fig. 11. The
magnitude of the input voltage is similar to that resulting from a
feedforward controller. Furthermore, the input is sufficiently
smooth indicating that chattering does not occur. This is due to
the use of the continuous sliding mode switching function.

Copyright © 2003 by ASME



All of these tracking error bounds are for the position of
the nanopositioner in its local reference frame. The inertial
compensator provides an updated trajectory for the robust
tracking controller based on the base excitation estimates.
Therefore, the inertial tracking error can only be as good as the
excitation estimates. This can be seen in the results for the
inertial tracking error as shown in Fig. 12. In the inertial frame,
the tracking error is on the order of £ 1 um. This indicates that
the motion due to the base excitation has been attenuated by 90
%. Whether this reduction is acceptable is dependent on the
design of the optical communication system. For example, if
the base excitation effects the laser source and nanopositioner
equally, then the error will result in a position bias of the beam
on the order of a few micrometers. This would not have any
effect on the operation of the optical communication system.
However, if the base excitation causes motion in the
nanopositioner and not in the laser source, then the errors
would cause large errors in the beam angle.

These simulation results indicate that the robust tracking
controller can effectively compensate for the inertial forces
resulting from the base excitation and provide an acceptable
tracking error for the nanopositioner in its local frame.
However, within the inertial frame, the tracking error is
significantly larger. This problem lies within the excitation
estimation scheme. Due to the high-pass filtering and
integration, there is phase lag and amplitude attenuation in the
estimates. If better performance with respect to inertial
tracking is required, a more advanced estimation scheme can be
designed to reduce the tracking error.

CONCLUSION

The application of a nanopositioning mechanism to beam
steering applications has been proposed due to their high-
precision positioning capabilities. However, most research on
the control of nanopositioners has not addressed the problems
encountered in beam steering applications such as the inertial
forces and beam jitter introduced by base excitations. In this
paper, a model of a single degree-of-freedom nanopositioner,
including the effects of a base excitation, has been presented.
Using this model, a disturbance rejection controller comprised
of two parts, the robust tracking controller and the inertial
compensator, has been developed. The robust tracking
controller combines a sliding mode controller with base
excitation estimates to guarantee a desired tracking error
performance within the local reference frame of the
nanopositioner. The inertial compensator provides the
estimates of the base excitation for the robust tracking
controller and generates an update to the desired trajectory
based on the base motion. This update is designed to cancel the
relative motion so that beam jitter could be eliminated.

Simulation results for this control approach have been
presented which show that the local tracking error is less than a
nanometer but the inertial tracking error is on the order of a
micrometer. This is caused by the inertial compensator which
suffers from phase lag and amplitude attenuation due to the
required filtering. A test bed for beam steering is currently
being developed to study the relevant control problems such as
base excitations and uncertainties within the optical geometry.

In addition, the effect of actuator hysteresis on the tracking
performance will be examined.
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