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Abstract

Gradient-based numerical optimization of

complex engineering designs o�ers the promise

of rapidly producing better designs. However,

such methods generally assume that the objec-

tive function and constraint functions are con-

tinuous, smooth, and de�ned everywhere. Un-

fortunately, realistic simulators tend to violate

these assumptions, making optimization unre-

liable. Several decisions that need to be made

in setting up an optimization, such as the

choice of a starting prototype, and the choice

of a formulation of the search space, can make

a di�erence in the reliability of the optimiza-

tion. Machine learning can improve gradient-

based methods by making these choices based

on the results of previous optimizations. This

article demonstrates this idea by using ma-

chine learning for four parts of the optimiza-

tion setup problem: selecting a starting proto-

type from a database of prototypes, synthesiz-

ing a new starting prototype, predicting which

design goals are achievable, and selecting a for-

mulation of the search space. We use standard

tree-induction algorithms (C4.5 and CART).

We present results in two realistic engineering

domains: racing yachts, and supersonic air-

craft. Our experimental results show that us-

ing inductive learning to make setup decisions

improves both the speed and the reliability of

design optimization.

Keywords: Numerical Optimization, Engi-

neering Design, Decision Tree Induction, Re-

formulation, Case-Based Reasoning.

1 Introduction

Automated search of a space of candidate de-

signs seems an attractive way to improve the

traditional engineering design process. Each

step of such automated search requires evalu-

ating the quality of candidate designs, and for

complex artifacts such as aircraft, this evalu-

ation must be done by computational simula-

tion.

Gradient-based optimization methods, such

as sequential quadratic programming (see Sec-

tion 5.1), are reasonably fast and reliable when

applied to search spaces that satisfy their

assumptions. They generally assume that

the objective function and constraint func-

tions are continuous, smooth, and de�ned ev-

erywhere. Unfortunately, realistic simulators

tend to violate these assumptions. We call

these assumption violations pathologies. Non-
gradient-based optimization methods, such as

simulated annealing and genetic algorithms,

are better able to deal with search spaces that

have pathologies, but they tend to require

many more runs of the simulator than do the

gradient-based methods. We therefore would

like to �nd a way to reliably use gradient-based

methods in the presence of pathologies.

The performance of gradient-based methods
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depends to a large extent on choices that are

made when the optimizations are set up, es-

pecially in cases where the search space has

pathologies. For example, if a starting proto-

type is chosen in a less pathological region of

the search space, the chance of reaching the

optimum is increased. Machine learning can

help by learning rules based upon the results

of previous optimizations that map the design

goal into these optimization setup choices. We

demonstrate this idea by using machine learn-

ing for four parts of the optimization setup

problem.

When designing a new artifact, it would be

desirable to make use of information gleaned

from past design sessions. Ideally one would

like to learn a function that solves the whole

design problem. The training data would con-

sist of design goals and designs that satisfy

those goals, and the learning algorithm would

learn a function that maps a design goal into a

design. We believe this function is too hard to

learn. We therefore focused on improving opti-

mization performance by using machine learn-

ing to make some of the choices that are in-

volved in setting up an optimization. In the

course of our work, we found parts of the op-

timization setup problem for which machine

learning can help: selecting starting proto-

types, predicting whether goals are achievable,

and selecting formulations of the search space.

If each design in the design library that

is used as training data for the learner was

created by an automated optimization, and

some of these optimizations failed to reach the

true optimum due to pathologies, then the

training data will contain some noise. It is

therefore important to use a machine learning

method that has the ability to ignore reason-

able amounts of noise in the training data.

Our �rst e�ort was in the domain of the de-

sign of racing yachts of the type used in the

America's Cup race. In this domain, we had

success using a technique that we call proto-

type selection which maps the design goal into

a selection of a prototype from a database of

existing prototypes. We used C4.5, the stan-

dard tree-induction algorithm, in this work.

Our second e�ort was in the domain of the

design of supersonic transport aircraft. We

tried prototype selection in this domain, and

found that it did not perform well, so we de-

cided to try a new idea that we call proto-
type synthesis. Prototype synthesis synthe-

sizes a new prototype by mapping the design

goal into the design parameters that de�ne a

prototype. It requires continuous-class induc-

tion, which is not available in C4.5; hence we

used CART1. We then realized that we could

use the training data that we had collected for

prototype synthesis to further enhance opti-

mization performance using a new idea that

we call achievable goal prediction. Achievable

goal prediction uses inductive learning to pre-

dict whether a given design goal is achievable,

before attempting to synthesize a starting pro-

totype for the goal. Since this decision is dis-

crete, rather than continuous, we used C4.5.

We then had the idea of recognizing when

designs are at constraint boundaries, learning

to predict this accurately, and using these pre-

dictions to reformulate the search space. We

call this idea formulation selection. This pre-
diction is discrete, so we used C4.5 to make

it. We tested this idea in both the yacht and

aircraft domains, and found it to be successful

in both domains.

This article includes sections describing

these four techniques for using machine learn-

ing to set up optimizations: prototype selec-

tion, prototype synthesis, achievable goal pre-

diction, and formulation selection. Each sec-

tion includes experimental results demonstrat-

ing that using the machine learning techniques

improves the speed of optimization and/or the

1CART stands for Classi�cation And Regression

Trees
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quality of the resulting designs.

2 Inductive Learning

The problem addressed by an inductive-

learning system is to take a collection of la-

beled \training" data and form rules that

make accurate predictions on future data. In-

ductive learning is particularly suitable in the

context of an automated design system be-

cause training data can be generated in an au-

tomated fashion. For example, one can choose

a set of training goals (a training goal is a de-

sign goal used for training purposes) and per-

form an optimization for all combinations of

training goals and library prototypes. One can

then construct a table that records which pro-

totype was best for each training goal.2 This

table can be used by the inductive-learning al-

gorithm to generate rules mapping the space

of all possible goals into the set of prototypes

in the library. If learning is successful, this

mapping interpolates or extrapolates from the

training data and can be used successfully in

future design sessions to map each new goal

into an appropriate initial prototype in the de-

sign library.

The speci�c inductive-learning systems used

in this work are C4.5 [Quinlan 1993] (release

3.0, with windowing turned o�) for prob-

lems requiring discrete-class induction, and

CART [Breiman 1984] for problems requiring

continuous-class induction. Both of these sys-

tems represent the learned knowledge in the

form of decision trees. The approach taken by

these systems is to �nd a small decision tree

that correctly classi�es the training data, then

remove lower portions of the tree that appear

to �t noise in the data. The resulting tree is

then used as a decision procedure for assigning

labels to future, unlabeled data.

2The cost of generating this table is discussed in

Section 4.3.
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Figure 1: Design Associate block diagram

3 The Design Associate

Our prototype-selection and formulation-

selection techniques have been developed as

part of the \Design Associate," a system for

assisting human experts in the design of com-

plex physical engineering structures [Ellman

et al. 1992]. Figure 1 shows a block diagram

of the system's software architecture. The in-

ductive learner learns from the design library a

decision tree. Given a new design goal, the de-

cision tree is used to map this design goal into

a choice of starting prototype from the design

library, or a choice of formulation of the search

space. The optimizer optimizes this prototype

for the new design goal, using the selected for-

mulation. At each iteration of this optimiza-

tion, the optimizer uses a multidisciplinary3

simulator to evaluate the objective and con-

straint functions. At the end of the optimiza-

3We call the simulator multidisciplinary because it

contains code to evaluate the design using several engi-
neering disciplines. For example, our aircraft simulator

includes weights, aerodynamics, and propulsion.
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tion, the new optimal design is added to the

design library. The decision tree is periodically

rebuilt to re
ect the latest design library.

4 Prototype selection

Many automated design systems begin by re-

trieving an initial prototype from a library of

previous designs, using the given design goal as

an index to guide the retrieval process [Sycara

and Navinchandra 1992]. The retrieved proto-

type is then modi�ed by a set of design modi-

�cation operators to tailor the selected design

to the given goals. In many cases, the qual-

ity of competing designs can be assessed using

domain-speci�c evaluation functions. In such

cases the design-modi�cation process is often

accomplished by an optimization method such

as hill-climbing search [Ramachandran et al.
1992, Ellman et al. 1992].

In the context of such case-based design sys-

tems, the choice of an initial prototype can af-

fect both the quality of the �nal design and

the computational cost of obtaining that de-

sign, for three reasons. First, prototype selec-

tion may impact quality when the design pro-

cess is guided by a nonlinear evaluation func-

tion with unknown global properties. Since

there is no known method that is guaranteed

to �nd the global optimum of an arbitrary

nonlinear function [Schwabacher 1996], most

design systems rely on iterative local search

methods whose results are sensitive to the ini-

tial starting point. Second, prototype selec-

tion may impact quality when the prototypes

lie in disjoint search spaces. In particular,

if the system's design modi�cation operators

cannot convert any prototype into any other

prototype, the choice of initial prototype will

restrict the set of possible designs that can be

obtained by any search process. A poor choice

of initial prototype may therefore lead to a

suboptimal �nal design. Finally, the choice

of prototype may have an impact on the time

needed to carry out the design modi�cation

process | two di�erent starting points may

yield the same �nal design but take very dif-

ferent amounts of time to get there. In design

problems where evaluating even just a single

design can take a tremendous amount of time,

we believe that selecting an appropriate initial

prototype can be the determining factor in the

success or failure of the design process.

To use inductive learning to form prototype-

selection rules, we take as training data a col-

lection of design goals, each labeled with which

prototype in the library is best for that goal.

\Best" can be de�ned to mean the prototype

that best satis�es the design objectives, the

prototype that results in the shortest design

time, or the prototype that optimizes some

combination of design quality and design time.

4.1 The yacht domain

We developed and tested our prototype selec-

tion methods in the domain of 12-meter racing

yachts, which until recently was the class of

yachts raced in America's Cup competitions.4

An example of a 12-meter yacht is the Stars
& Stripes '87, which is shown in Figure 2; a

close-up of its hull and keel is shown in Fig-

ure 3.5

In the yacht domain, a design is represented

by eight design parameters that specify the

magnitude with which a set of geometric op-

erators are applied to the B-spline surfaces
[Rogers and Adams 1990] representing the hull

of the starting prototype. The goal is to design

the yacht that has the smallest course time

for a particular wind speed and race course.

Course time is evaluated using a \Velocity-

4In 1992, the 12-meter class was replaced with the

new America's Cup Class.
5This is the boat that won the 1987 America's Cup

competition, returning the trophy to the United States

after an Australian win in 1983 [Letcher et al. 1987].)
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Figure 2: Stars & Stripes '87, winner of the
1987 America's Cup competition

Figure 3: The hull and keel of Stars & Stripes
'87.

Prediction Program" (VPP) called \AHVPP"

from AeroHydro, Inc., which is a marketed

product used in yacht design [Letcher 1991].

A search space is speci�ed by providing an

initial prototype geometry and a set of oper-

ators for modifying that prototype. Our cur-

rent set of shape-modi�cation operators was

obtained by asking our yacht-design collabo-

rators for an exhaustive list of all features of

a yacht's shape that might be relevant to the

racing performance of a yacht. These opera-

tors include

� Global-Scaling Operators: Scale-X, Scale-
Y and Scale-Z change the overall dimen-

sions of a racing yacht, by uniformly scal-

ing all surfaces.

� Prismatic-Coe�cient Operators: Prism-
X, Prism-Y and Prism-Z make a yacht's

canoe-body more or less streamlined,

when viewed along the X , Y and Z axes

respectively.

� Keel Operators: Scale-Keel and Invert-
Keel change the depth and taper ratio of

the keel respectively.

These eight operators represent a subset of the

full set that were actually developed; they are

a smaller set suitable for testing our prototype-

selection methods.6

4.2 Prototype selection results

We conducted several sets of experiments. In

each case we compare our approach with each

of four other methods:

1. Closest goal. This method requires

a measure of the distance between two

goals, and knowledge of the goal for which

each prototype in the design library was

6Using the full set would have required too much

CPU time.
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originally optimized. It chooses the pro-

totype whose original goal has minimum

distance from the new goal. Intuitively,

in our yacht-design problem this method

chooses a yacht designed for a course and

wind speed most similar to the new course

and wind speed. Closest goal can be

seen as a simple version of instance-based

learning.

2. Best initial evaluation. This method

requires running the evaluation function

on each prototype in the database. It

chooses the prototype that, according to

the evaluation function, is best for the

new goal (before any operators have been

applied to the prototype). In the case

of our yacht-design problem this corre-

sponds to starting the design process from

whichever yacht in the library is fastest

for the new course and wind speed.

3. Most frequent class (MFC). This is

actually a very simple inductive method

that always chooses a �xed prototype,

namely the one that is most frequently

the best prototype for the training data.

4. Random. This method involves simply

selecting a random element from the de-

sign library, using a uniform distribution

over the designs.

We compare these methods using two di�er-

ent evaluation criteria:

1. Error rate. How often is a non-optimal

prototype selected?

2. Course-time increase. How much

worse is the resulting average course time

than it would be using the optimal choice

that an omniscient selection would make?

In our experiments we focused primarily on

the question of how well our inductive-learning

prototype-selection method handles problems

where the prototypes lie in disjoint search

spaces. Our experiments therefore explored

how prototype selection a�ects the quality of

the �nal design.

For the prototype selection experiments in

the yacht domain, we used the Rutgers Hill-

climber as our optimizer [Schwabacher 1996].

It is an implementation of steepest-descent

hill-climbing, that has been augmented so as

to allow it to \climb over" bumps in the sur-

face de�ned by the objective function that

have less than a certain width or a certain

height.

For our �rst set of experiments we created

a database of four designs that would serve as

our sample prototype library (and thus also

serve as the class labels for the training data

given to our inductive learner). To simulate

the e�ect of having each prototype de�ne a dif-

ferent space, the design library was created by

starting from a single prototype (the Stars and

Stripes '87) and optimizing for four di�erent

goals using all eight of our design-modi�cation

operators.7 All subsequent design episodes

used only four of the eight operators, so that

each yacht would de�ne a separate space.8

We de�ned a space of goals to use in test-

ing the learned prototype-selection rules. Each

goal consists of a wind speed and a race course,

where the wind speed is constrained to be 8,

10, 12, 14, or 16 knots, the race course is con-

strained to be 80% in one direction (relative

to the wind), and 20% in a second direction,

and each direction is constrained to be an in-

7The four resulting designs were locally optimal

according to our optimizer, but were not necessarily

globally optimal, or even necessarily locally optimal,

because of the pathologies in the search space.
8The four operators we chose were Scale-X, Scale-

Y, Prism-Y, and Scale-Keel. We chose these operators

because the results of our earlier work on operator-

importance analysis suggested that these are the four
most important operators [Ellman and Schwabacher

1993].
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long-leg <= 90 :

| windspeed > 10 : Design-1

| windspeed <= 10 :

| | short-leg <= 90 : Design-1

| | short-leg > 90 : Design-2

long-leg > 90 :

| windspeed > 14 : Design-2

| windspeed <= 14 :

| | windspeed <= 10 : Design-4

| | windspeed > 10 : Design-4

Figure 4: Example of a prototype-selection de-

cision tree generated by C4.5.

teger between 0 and 180 degrees. This space

contains 162,900 goals.

To generate training data we de�ned a set

of \training goals" that spans the goal space.

This smaller set of goals was de�ned in the

same fashion as for the testing set of goals

except that the directions in the race course

are restricted to be only 0, 90, or 180 degrees,

yielding a smaller space of 30 goals. To la-

bel the training data we attempted to �nd de-

signs for each of the 30 goals starting from each

of the four prototypes using the restricted set

of operators, and determined which starting

point was best.

To generate test data we randomly selected

ten \testing goals" from the goal space. We

then generated designs starting from each of

the four prototypes in the database for each

of these testing goals to determine which pro-

totype was best, as well as to determine how

much of a loss in course time each incorrect

selection would impose.9 Table 1 shows a por-

tion of the input to C4.5, and Figure 4 gives

an example of a decision tree output by C4.5.

Table 2 compares the results of using C4.5

9Since four complete optimizations were required
for each testing goal, we were limited by available CPU

time to just 10 testing goal.

with the results of using the other prototype-

selection methods. (Since there are four pro-

totypes, one would expect random guessing to

get 75% of the test examples wrong.)

In this experiment, the inductive method

(C4.5) performed better than the other meth-

ods on both measures of performance. More-

over, we were particularly surprised by how

poorly the non-inductive prototype-selection

methods (closest goal and smallest initial eval-

uation) performed| our expectation was that

the prototypes chosen by these methods would

be close in \design space" to the optimal �nal

design, thus yielding better �nal designs than

starting from the other prototypes.

After studying these results we gener-

ated two new hypotheses for why these two

prototype-selection methods did not work

well. The �rst is that the shape of the de-

sign space may be such that there is little re-

lationship between the distance between two

designs and the ability of the hill-climber to

climb from one design to the other. If the

space contains \bumps" or \ridges" over which

the hill-climber cannot climb, then it might

be more important for the initial prototype to

be on the \right side" of a bump or a ridge

than for it to be close to the optimal point.

Our second new hypothesis is that some of

the prototypes in the database may be \bad"

prototypes. This could be the case if the hill-

climber got stuck at a local (non-global) op-

timum during the run that produced the pro-

totype. This latter hypothesis was supported

by the fact that one of the four prototypes

was never found to be a good starting point

for any of the 30 goals in the training data

(not even the goal for which it was suppos-

edly optimal, since it wound up being a local

optimum and starting from another prototype

yielded a superior result). In a realistic de-

sign scenario, when there is no control over the

source of a design library, there could easily be

\bad" prototypes included. Unlike the non-
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Table 1: A portion of the input to C4.5 for prototype selection in the yacht domain.

Long-Leg Short-Leg Wind speed Initial-Design

180 0 8 Design 1

180 0 10 Design 2

180 0 12 Design 2

180 0 14 Design 2

180 0 16 Design 2

180 90 8 Design 1

180 90 10 Design 4

180 90 12 Design 4

180 90 14 Design 4

180 90 16 Design 1

Table 2: Comparison of prototype-selection methods when trained on a set of goals that spans

the goal space, using AHVPP.

Error Course-Time

Method Rate Increase (sec)

Inductive Learning 30% 24

Most Frequent Class 70% 47

Random Guessing 75% 62

Best Init Eval 70% 64

Closest Goal 70% 78
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inductive prototype-selection methods, the in-

ductive methods learn to avoid the bad proto-

types.

We performed some experiments to test our

�rst new hypothesis that the closest-goal and

smallest-initial-evaluation methods performed

poorly because of the \bumps" in the evalu-

ation function. We repeated the earlier ex-

periments using a simpli�ed, \smooth" ve-

locity prediction program, called \RUVPP,"

that we developed at Rutgers [Schwabacher

1996]. RUVPP di�ers from the more complex

AHVPP in several respects. To begin with,

RUVPP represents a yacht as a list of major

geometric dimensions such as length, depth,

and beam, rather than B-spline surfaces. Fur-

thermore, RUVPP embodies a number of sim-

plifying assumptions about the physics of sail-

ing that are not made in AHVPP. Neverthe-

less, the simple version, RUVPP, is useful for

two reasons: RUVPP is much faster to execute

than AHVPP, and RUVPP has fewer of the

bumps and ridges that appear in AHVPP. We

therefore expect that a hill-climbing search al-

gorithm is less likely to get stuck on the wrong

side of a bump or ridge when the simple ver-

sion, RUVPP, is used as an evaluation func-

tion. Table 3 presents the results of exper-

iments comparing the performance of induc-

tively learned prototype-selection rules to the

other prototype-selection methods, repeating

our earlier experiments, but using RUVPP as

the evaluation function, and using forty ran-

dom test cases instead of just ten.10

Because RUVPP is much faster than

AHVPP, we conducted additional supporting

experiments to test our �rst new hypothesis,

to see if using a spanning set of goals as train-

ing data was signi�cant for our results. In par-

ticular, rather than just using inductive learn-

ing on a set of goals that span the space of

10Since RUVPP uses less CPU time than AHVPP,

we were able to use more random test cases.

possible goals, we also performed experiments

where C4.5 was trained on a random sample

of goals selected from the same space as the

testing data. This was done using ten trials

of four-fold cross-validation on a set of forty

random goals.11 Each such trial involved ran-

domly dividing the data into four sets of size

ten, using three of the sets for training data

and the remaining one as testing. This is re-

peated four times, using each ten-element set

once for testing, and this process was repeated

ten times with di�erent random partitionings

of the data. Table 4 reports the results of these

experiments.

Consistent with our �rst new hypothe-

sis, the closest-goal and best-initial-evaluation

methods both did much better in both cases

with the simpli�ed VPP than they did with

AHVPP, while C4.5 did about the same as

it had done before. We believe that be-

cause the simpli�ed VPP is much smoother

than AHVPP, the hill-climber is much less

likely to get stuck, so that the distance in

goal space or the di�erence in initial evalua-

tion becomes much more relevant when choos-

ing a prototype. In fact, the improvement

in the best-initial-evaluation method was so

great that it signi�cantly outperformed the in-

ductive method. The best-initial-evaluation

method may be the best method to use when

the search space is smooth.

We performed another set of experiments

to test our second new hypothesis of why

the closest-goal and smallest-initial-evaluation

methods performed so poorly using AHVPP,

namely that they were unable to avoid the

\bad" prototype in the database. We repeated

our preceding experiments using the simpli-

�ed VPP, except that we intentionally put a

\bad" prototype into the database. To gener-

ate a bad prototype, we started with the Stars

11We chose to use four-fold cross validation so that
each trial would use the same number of testing goals

(ten) as our earlier experiments with AHVPP.
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Table 3: Comparison of prototype-selection methods when trained on a set of training examples

that spans the goal space, using the simpli�ed velocity prediction program RUVPP.

Error Course-Time

Method Rate Increase (sec)

Best Init Eval 12% 26

Inductive Learning 37% 57

Closest Goal 40% 76

Most Frequent Class 45% 175

Random Guessing 75% 257

Table 4: Comparison of prototype-selection methods when trained and tested on random goals,

using cross-validation and RUVPP.

Error Course-Time

Method Rate Increase (sec)

Best Init Eval 12% 26

Inductive Learning 30% 35

Closest Goal 40% 76

Most Frequent Class 45% 175

Random Guessing 75% 257

Table 5: Comparison of prototype-selection methods when trained on a set of goals that span

the space, using the simpli�ed VPP, and a \bad" prototype in the database.

Error Course-Time

Method Rate Increase (sec)

Best Init Eval 10% 80

Inductive Learning 30% 82

Closest Goal 32% 89

Most Frequent Class 45% 171

Random Guessing 75% 348
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Table 6: Comparison of prototype-selection methods when trained and tested on a set of ran-

dom goals, using cross-validation, the simpli�ed VPP, and a \bad" prototype in the database.

Error Course-Time

Method Rate Increase (sec)

Inductive Learning 19% 38

Best Init Eval 10% 80

Closest Goal 32% 89

Most Frequent Class 45% 171

Random Guessing 75% 348

and Stripes '87, and added a random number

between -0.2 and +0.2 to each of the opera-

tor parameters. We then randomly chose one

of the four prototypes in the database to re-

place with the bad prototype (but we left the

class label the same). The results of repeating

the experiments with the bad prototype in the

database are presented in Table 5 for training

on goals that span the space, and Table 6 for

training on random goals.

Consistent with our second new hypothe-

sis, C4.5's ability to avoid the \bad" proto-

type improved its performance relative to the

other methods. When trained on the spanning

goals, C4.5 performed only slightly worse than

the smallest-initial-evaluation method. When

trained on the random goals, C4.5 performed

markedly better than any other method as

measured by average course-time increase, al-

though the smallest-initial-evaluation method

had a lower error rate. This apparent anomaly

can be explained as follows: The \bad" pro-

totype was very bad, so that choosing it even

a few times resulted in large increases in av-

erage course time. C4.5 never chose the bad

prototype. The best-initial-evaluation method

occasionally chose the bad prototype, so that

even though it chose the best prototype more

frequently than C4.5, the few times when it

chose the bad prototype worsened its average

course-time increase.12

4.3 The cost of learning

One important question to answer is whether

the inductive prototype-selection method is

worth the considerable \o�-line" expense of

collecting training data | every training ex-

ample requires one design run for each design

in the prototype library. An alternative, pos-

sibly cheaper method would be to take an \on-

line" approach: for each new design problem

optimize starting from every prototype in the

database, and then use whichever of the re-

sulting designs is the best.

If the quality of the �nal design is ex-

tremely important and there is ample CPU

time available, this \exhaustive" method is the

one to use (over any of the methods listed

in Table 2). On the other hand, if limiting

CPU time is important, our inductive learning

method becomes cost e�ective when the com-

putational expense of learning can be amor-

tized over a su�ciently large number of new

design goals. More speci�cally, the induc-

tive prototype-selection method is less expen-

sive than the exhaustive method whenever the

12This hypothesis was veri�ed by checking the data:
C4.5 never chose the \bad" prototype, but the best-

initial-evaluation method did.
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number of hill-climbing runs taken by the in-

ductive approach is less than the number of

runs taken by the exhaustive approach, i.e.,

TP +G < PG or

G >
T

1� 1

P

where T is the number of training examples, P

is the number of prototypes in the database,

and G is the number of new goals for which

prototypes need to be selected. (When us-

ing the inductive prototype-selection method,

TP is the cost of generating the training data,

and G is the cost of performing optimizations

for the new goals. When using the exhaus-

tive method, each prototype in the database

must be optimized for each new goal, at a cost

of PG.) In all of the experiments that we

performed, there were four prototypes and 30

training examples, so our inductive approach

will be less expensive than the exhaustive ap-

proach as long as at least 40 out of the more

than 150,000 remaining design goals must be

attempted.

When doing prototype synthesis rather than

prototype selection, it is not necessary to col-

lect training data in which each prototype in

a database is used as a starting point of an

optimization for each of a collection of goals.

(Prototype synthesis takes as training data

the optimal design parameters for each goal,

rather than the selection of the best prototype

from a database for each goal.) Instead, any

optimizations that have been previously done

(within the same goal space) can be used as

training data. Hopefully, such data will al-

ready exist in a design library, so additional

optimizations will not be needed to generate

training data. Prototype synthesis is further

described in the next section.

0
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0
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4.48947
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engineScale=1.14596
wing_area(m^2)=342.846
wing_aspect_ratio=1.0895
fuselage_taper_length(m)=39.6596
wing_t_over_c=0.0272754
fuel_annulus_width(m)=0
passenger_cabin_radius(m)=1.3716
structure_annulus_width(m)=0.3048
fuselage_mid_length(m)=27.432
fuselage_diameter(m)=3.3528
wing_sweep(rad)=1.29379
wing_root_chord(m)=35.4785
wing_span(m)=19.3269
v_tail_sweep(rad)=0.785398
v_tail_root_chord(m)=8.46036
v_tail_taper_ratio=0.33
v_tail_semi_span(m)=2.81307
v_tail_t_over_c=0.03
nacelle_length(m)=11.5824
nacelle_inlet_diameter(m)=0.85344
engine_diameter(m)=0.981579
wing_sweep_over_design_mach_angle=1.23548
wing_taper_ratio=0

Figure 5: Supersonic transport aircraft de-

signed by our system (dimensions in meters)

5 Prototype synthesis and

achievable goal predic-

tion

Prototype synthesis uses continuous-class

induction (also known as regression) to map

the design goal directly into the design pa-

rameters that de�ne a new prototype, in-

stead of selecting an existing prototype from

a database. What is learned is not a set of

rules for selecting a prototype, but rather a

set of functions that map the design goal into

the design parameters. We performed some

12



Altitude Duration

Phase Mach m ft (min) comment

1 0.227 0 0 5 \takeo�"

2 0.85 12 192 40 000 50 subsonic cruise (over land)

3 2.0 18 288 60 000 225 supersonic cruise (over ocean)

capacity: 70 passengers.

Table 7: Mission speci�cation for aircraft in Figure 5

experiments to test prototype synthesis in the

domain of supersonic transport aircraft design.

5.1 The aircraft domain

Figure 5 shows a diagram of a typical air-

plane automatically designed by our software

system to 
y the mission shown in Table 7.

The optimizer attempts to �nd a good air-

craft conceptual design for a particular mission

by varying major aircraft parameters such as

wing area, aspect ratio, engine size, etc_, us-

ing a numerical optimization algorithm. The

optimizer evaluates candidate designs using a

multidisciplinary simulator. In our current im-

plementation, the optimizer's goal is to mini-

mize the takeo� mass of the aircraft, a measure

of merit commonly used in the aircraft indus-

try at the conceptual design stage. Takeo�

mass is the sum of fuel mass, which provides a

rough approximation of the operating cost of

the aircraft, and \dry" mass, which provides

a rough approximation of the cost of build-

ing the aircraft. The simulator computes the

takeo� mass of a particular aircraft design for

a particular mission as follows:

1. Compute \dry" mass using historical data

to estimate the weight of the aircraft as

a function of the design parameters and

passenger capacity required for the mis-

sion.

2. Compute the landing massm(t�nal) which

is the sum of the fuel reserve plus the

\dry" mass.

3. Compute the takeo� mass by numerically

solving the ordinary di�erential equation

dm

dt
= f(m; t)

which indicates that the rate at which the

mass of the aircraft changes is equal to

the rate of fuel consumption, which in

turn is a function of the current mass of

the aircraft and the current time in the

mission. At each time step, the simula-

tor's aerodynamic model is used to com-

pute the current drag, and the simulator's

propulsion model is used to compute the

fuel consumption required to generate the

thrust which will compensate for the cur-

rent drag.

A complete mission simulation requires

about 1/4 second of CPU time on a DEC Al-

pha 250 4/266 desktop workstation.

In the airframe domain, the design goal is

to minimize take-o� mass (a rough estimate

of life-cycle cost) for a speci�ed mission. We

de�ned the space of missions in Figure 6.

A mission within this space can be repre-

sented using three real numbers (distance, per-

centage over land, and Mach number) and one

Boolean value (whether the takeo� phase is in-

cluded). We generated 100 random missions

13



distance between 1609 km (1000 miles) and 16 090 km (10 000 miles)

percentage over land between 0 and 100%

Mach number over land of 0.85, altitude 12 192 m (40 000 ft)

Mach number over water between 1.5 and 2.2, altitude 18 288 m (60 000 ft)

optional takeoff phase, no climb phase

Figure 6: Mission space for aircraft domain.

as follows: The distance and Mach number

were uniformly distributed over their possi-

ble ranges. There was a 1/3 probability of

having the mission entirely over land, a 1/3

probability of having it entirely over water,

and a 1/3 probability of having the percent-

age over land uniformly distributed between

0 and 100%. There was a 1/2 probability of

including the takeo� phase.

The numerical optimizer used in the

prototype synthesis experiments is CFSQP
[Lawrence et al. 1995]13, a state-of-the-art im-
plementation of the Sequential Quadratic Pro-

gramming (SQP) method. SQP is a quasi-

Newton method that solves a nonlinear con-

strained optimization problem by �tting a se-

quence of quadratic programming problems14

to it, and then solving each of these problems

using a quadratic programming method. We

have supplemented CFSQP with rule-based
gradients [Schwabacher and Gelsey 1997] and

model constraints [Gelsey et al. 1996b].

Because the search space has many local op-

tima, we use a technique that we call \ran-

dom multistart" to attempt to �nd the global

optimum. In an n-point random multistart,

the system randomly generates starting points

within a particular box until it �nds n evalu-

13CFSQP stands for \C code for Feasible Sequential

Quadratic Programming."
14A quadratic programming problem consists of a

quadratic objective function to be optimized, and a

set of linear constraints.

able points15, and then performs an SQP op-

timization from each of these points. The best

design found in these n optimizations is taken

to be the global optimum.

5.2 Achievable goal prediction

In order to generate training data to test

our techniques in the airframe domain, we per-

formed a 10-point random multistart CFSQP

optimization for each of the 100 random mis-

sions. We found that for many of these mis-

sions, CFSQP was unable to �nd a feasible

design in any of the ten runs | that is, it was

unable to design a plane that could 
y the mis-

sion. It occurred to us that it would be valu-

able if we could predict in advance whether

a given mission was achievable, so that we

could avoid attempting to synthesize proto-

types for infeasible missions. We hypothesized

that C4.5 would be able to make this predic-

tion, and that it would be able to do so with

greater accuracy than MFC.

To test this new achievable goal prediction
idea, we trained C4.5 on a set of training ex-

amples showing whether each of our 100 air-

frame domain missions was feasible.16 It pro-

15Some randomly generated designs, which we call

\unevaluable points," cannot be simulated, either be-

cause the designs are meaningless or because of limi-
tations of the simulator.

16We did not test achievable goal prediction in the

yacht domain, since almost all goals (within our goal
space) in that domain are achievable, making the pre-

diction unnecessary.
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distance > 14 456 km (8982.46 miles): infeasible

distance <= 14 456 km (8982.46 miles):

| distance <= 10 276 km (6384.94 miles): feasible

| distance > 10 276 km (6384.94 miles):

| | overland <= 23.6023% : feasible

| | overland > 23.6023% : infeasible

Figure 7: Learned decision tree for deciding if a mission is feasible.

duced the decision tree in Figure 7. This de-

cision tree shows that missions are infeasible

if they are very long, or if they are moder-

ately long and have a signi�cant portion over

land. Further analysis revealed that building

a plane to 
y such a mission would require

an engine larger than the largest engine that

we allowed. Our upper bound on engine size

can be considered to be representative of the

largest commercially available engine.

Tenfold cross validation showed that C4.5

has a 4% error rate on this learning task, com-

pared with 50% for random guessing and 24%

for most frequent class. The decision tree of

Figure 7 can be used to predict, without do-

ing any simulation or optimization, whether a

new proposed mission is feasible.

5.3 Prototype synthesis

In order to map the new mission into the nu-

merical design parameters that de�ne a pro-

totype, we need to use continuous-class in-
duction (which is also known as regression).

We used CART (Classi�cation And Regres-

sion Trees), which builds a \regression tree"

that has a numerical constant at each leaf
[Breiman 1984]. We trained CART on the 100

randomly generated training goals as follows:

For each design parameter, we gave CART a

set of training data, where each item in the

training data included the goal and the \op-

timal" (according to the optimizer) value of

the design parameter. CART thus generated

a set of trees to map the design goal into a

set of design parameters that we hope will be

near the optimal values for that goal. Table 8

shows the root mean squared error (RMSE) in

CART's prediction of each design parameter,

relative to the error of \constant regression,"

which always uses the mean of the training

data. A value less than one in this table in-

dicates that CART's prediction was more ac-

curate than that of constant regression. Our

expectation that these relative errors would be

low was con�rmed for all of the parameters ex-

cept fuel annulus width.

We performed a set of experiments to test

whether using these trees to do prototype syn-

thesis would produce better optimization per-

formance than using the mean prototype or a

random prototype. We used 25 randomly gen-

erated testing goals.17 Table 9 compares using

the prototypes synthesized by CART with us-

ing a 1-, 2-, or 3-point random multistart, or

always using the prototype that is the mean

of all the optimized prototypes in the train-

ing data. Of the 25 randomly generated test

goals, 16 were feasible. The \success" column

shows the number of optimizations that came

within 1% of the point that we believe to be

the global optimum.18 Some of the failures oc-

curred because the learning method produced

17Again, the number of testing goals was limited by

available CPU resources.
18Because CFSQP failed to �nd a feasible point in

some of these optimizations, it was not possible to com-

pute the average design quality.
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Table 8: Accuracy of CART in predicting each design parameter in the airframe domain.

Design Parameter Relative RMSE

engine size 0.65

wing area 0.59

wing aspect ratio 0.06

fuselage taper length 0.07

e�ective structural thickness over chord 0.08

wing sweep over design Mach angle 0.08

wing taper ratio 0.21

fuel annulus width 1.02

Table 9: Comparison of prototype-synthesis methods.

Method Success Cost (number of simulations)

CART 13/16 7394

mean 14/16 11963

1 random 8/16 16893

2 random 13/16 33883

3 random 14/16 47395
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an unevaluable prototype that could not be

simulated, and therefore could not be opti-

mized. Other failures occurred because the

optimizer, when started from the synthesized

point, failed to get within 1% of the appar-

ent global optimum. The \cost" column shows

the total number of simulations used in the 16

optimizations. Using the mean prototype in-

stead of a single random prototype resulted in

much greater success, at 33% lower cost. Us-

ing CART produced a success rate about the

same as using the mean prototype, with an ad-

ditional 38% cost reduction. Using a 2-point

random multistart produced the same success

rate as using CART, but it required more than

four times as many simulations.

To test the signi�cance of the result that

CART performed better than one random

probe, we repeated the one-random-probe test

ten times, with ten di�erent seeds to the ran-

dom number generator. The mean and stan-

dard deviation of the success rate and cost

are shown in Table 10. CART's success rate

was more than two standard deviations higher

than that of one random probe, and its cost

was more than two standard deviations lower

than that of one random probe.

6 Formulation selection

Besides the selection of a starting prototype,

another important decision in setting up an

optimization is the decision on how to for-

mulate the search space. This decision can

substantially a�ect the performance of the op-

timizer in two ways. First, using a lower-

dimensional formulation of the search space

makes optimization faster, since each gradient

computation requires fewer runs of the simula-

tor, and the distance in design space from the

starting point to the optimum is smaller. Sec-

ond, di�erent formulations of the search space

can result in di�erent degrees of \smoothness"

of the search space, which can impact not only

the speed of the optimizer, but also the ability

of the optimizer to get to the optimum, and

therefore the quality of the resulting designs.

We present a method of reformulation called

\constraint incorporation," which reduces the

dimensionality of the search space and in-

creases its smoothness by incorporating con-

straints into the search space.

Traditionally, numerical optimization has

dealt with explicit, \hard" constraints. The

optimizer assumes that these constraints can

never be violated. A hard constraint can be

expressed as

f(x1; x2; : : : ; xn) � k

(Here x1; x2; : : : ; xn are the design parameters
that represent the design.) The constraint is

said to be inactive if f(x1; x2; : : : ; xn) < k,

active if f(x1; x2; : : : ; xn) = k, and violated if

f(x1; x2; : : : ; xn) > k. Hard constraints can

result from the laws of physics, for example.

Another type of constraint is the \soft" con-

straint, for which there is some sort of known

penalty for violating the constraint. A soft

constraint can be expressed as

if f(x1; x2; : : : ; xn) > k then apply

penalty P (x1; x2; : : : ; xn)

These usually arise from human-written laws,

such as regulations specifying a monetary

penalty for exceeding a certain noise level. In

either case, if it is known that the constraint

will be active at the optimal design point, and

the constraint function f is invertible, then the

constraint can be incorporated into the search

space by using the inverse of f to eliminate one

of the design parameters. This incorporation

is done by making the inequality constraint

into an equality constraint, and then solving

for one of the design parameters in terms of the

other design parameters. [Papalambros and

Wilde 1988] describe how monotonicity knowl-

edge can be used to determine that certain
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Table 10: Performance of one random probe, averaged over ten trials.

Measure Success Cost (number of simulations)

Mean 8.8/16 15062

Standard Deviation 1.9/16 3102

constraints will be active at the optimum. In-

corporating these constraints produces a new

search space with lower dimensionality, since

the incorporation eliminates a design param-

eter, and greater smoothness, since the in-

corporation eliminates the \ridge" (or non-

smoothness) in the search space caused by the

\if" statement in the constraint. If there are

n constraints that can be incorporated in this

way, then there are 2n possible formulations

that can be produced by incorporating di�er-

ent subsets of constraints.

Constraint activity depends on the goal

(some constraints are active at the optimum

for only some design goals), for two reasons:

First, the constraint thresholds are part of the

design goal. Second, di�erent design goals will

result in di�erent optimal values of the design

parameters on which the constraint functions

depend.

Because constraint activity depends on the

goal, di�erent formulations of the search space

are appropriate for di�erent design goals. We

describe a way in which inductive learning can

be used to map the design goal into the appro-

priate formulation.

To use in-

ductive learning to form formulation-selection

rules, we take as training data a collection of

design goals, each labeled with the set of con-

straints that are active (within a threshold) at

the optimal design point. We run the induc-

tive learner once for each constraint, produc-

ing for each constraint a set of rules that can

be used to predict whether the constraint will

be active for new design goals.

The training data can be generated in an au-

tomated fashion. For example, one can choose

a set of training goals and perform an opti-

mization for each goal. One can then evaluate

each constraint function for each optimal de-

sign, and then construct a table that records

which constraints were active (within a thresh-

old) for each training goal. This table can

be used by the inductive-learning algorithm

to generate a set of rules for each constraint,

mapping the space of all possible goals into a

prediction of whether or not that constraint

will be active at the optimal design point for

that goal. If learning is successful, these map-

pings extrapolate from the training data and

can be used successfully in future design ses-

sions to map a new goal into an appropriate

formulation.

6.1 Formulation selection results

in yacht domain

We performed some experiments to test the

performance of formulation selection in the

yacht domain. In the experiments described

in this subsection, we used CFSQP as the op-

timizer, with course-time, computed by RU-

VPP, as the objective function, and with one

explicit, nonlinear, \hard" model constraint.

This constraint speci�es that the mass of the

yacht, before adding any ballast, must be less

than or equal to the mass of the water that it

displaces. (In other words, the boat must not
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sink.)19

Yachts entered in the 1987 America's Cup

race had to satisfy a hard constraint known

as the 12-Meter Rule [IYRU 1985]. Instead

of using this rule as an explicit constraint, we

incorporated it into the search space. (How we

incorporated it is described below.) The basic

formula in the rule is:

length� freeboard+
p
sailarea

2:37
� 12m

In addition to the basic formula, the rule con-

tains several soft constraints, along with asso-

ciated penalties for violating these constraints.

These soft constraints are:

� draft constraint

� beam constraint

� displacement constraint

� winglet span constraint

For example, the beam constraint states

if beam < 3:6m, then add four times

the di�erence to length

While constructing the simulator, we used a

reasoning process similar to that described in
[Papalambros and Wilde 1988] to determine

that the constraint described by the basic for-

mula of the 12-Meter Rule, above, will always

be active, since the objective function being

minimized, course-time, is monotonically non-
increasing in sail-area,20 and the left-hand-side

19Actually, the mass of the yacht must equal the

mass of the water it displaces. SQP can more eas-

ily use inequality constraints than equality constraints,

and we determined that the inequality constraint spec-

ifying that the mass of the yacht must be greater than

or equal to the mass of the water it displaces would
be inactive, so we just used the \less than or equal"

constraint.
20The simulator assumes that there is perfect reef-

ing, so additional sail area can never hurt the yacht's

performance.
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Figure 8: The nonsmoothness in the search

space caused by the beam constraint.

of the constraint is monotonically increasing

in sail-area. We therefore incorporated this

constraint into the simulator by solving for

sail-area in terms of the other design param-

eters. So, for example, when the optimizer

makes length bigger, sail-area is automatically
made smaller. In addition, because we also

implemented the soft constraints as penalty

functions, reducing beam beyond 3.6 m causes

the quantity length in the formula to increase,

which causes sail-area to decrease.21

Because the beam constraint contains an if
statement, this incorporation causes a non-

smoothness in course-time as a function of

beam. That is, there is a discontinuity in

the �rst derivative of course-time with re-

spect to beam. Figure 8 illustrates this nons-

moothness by showing the cross-section of the

search space corresponding to the beam design

parameter.22 This nonsmoothness can cause

a gradient-based optimizer such as CFSQP to

get stuck, and to fail to get to the optimum.

21Because we incorporated the 12-Meter rule into

the simulator, we did not need to use it as an explicit
constraint.

22Although this �gure shows only a \snapshot" of

the search space for speci�c values of the other design
parameters, we believe that the trend shown in the

�gure is generally applicable.
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For many design goals, the optimal design

is right on the constraint boundary. The op-

timal beam is often 3.6 m. If we expect the

optimal beam to be 3.6 m, then we can in-

corporate the beam constraint into the oper-

ators. In the case of the beam constraint,

this incorporation is trivial | we simply set

beam to 3.6 m and leave it there. For other

constraints, the incorporation is more com-

plicated. For example, there is a constraint

that speci�es a penalty if displacement does

not vary with a certain cubic polynomial in

length. Displacement is not a design pa-

rameter; rather, it is a quantity computed

from all of the design parameters. In order

to incorporate the displacement constraint, we

used Maple [Char et al. 1992], a symbolic

algebra package, to invert the displacement

formula, and created a new set of operators

that vary certain parameters while maintain-

ing displacement at the minimum displace-

ment allowed by the constraint. For still-

more-complicated constraints, it might not be

possible to invert the constraint function us-

ing Maple; it might therefore be necessary for

the operators to contain numerical solvers that

�nd the right values of the incorporated design

parameters so as to put the design on the con-

straint boundary.23

We created operators to incorporate all four

of the above-listed 12-Meter Rule constraints:

the draft constraint, the beam constraint, the

displacement constraint, and the winglet con-

straint. Using these operators, we are able to

either incorporate or not incorporate each of

these four constraints independently. We thus

de�ned a set of sixteen (24) possible formu-

lations of the search space. From our initial

experiments with these operators, we deter-

23Operators containing numerical solvers would

probably be more computationally expensive than op-

erators containing the algebraic solutions of the con-
straint functions, so the CPU time savings from refor-

mulation would probably be smaller.

mined empirically that incorporating the draft

constraint substantially improved the reliabil-

ity and speed of optimization for any design

goal. We therefore decided to always incor-

porate the draft constraint, leaving us with a

space of eight possible formulations that we

used in the experiments described below.

Having de�ned eight formulations of the

search space, we used inductive learning to de-

cide, based on the design goal, which formula-

tion to use. As training data, we used 100 pre-

vious optimizations. The optimizer failed for

one of these goals, so we used the remaining 99

goals as training data in the results that follow.

For each previous optimization, we evaluated

each 12-Meter Rule constraint function at the

optimum, and determined if the constraint was

active (within a tolerance). Each of these pre-

vious optimizations had as its design goal min-

imizing course time for a single-leg race course,

which can be represented using two numbers:

the wind speed, and the heading (the angle

between the yacht's direction and the wind

direction). The design goal can therefore be

represented using these two numbers. We ran

the inductive learner once for each of the three

constraints. Each time, the inductive learner

was provided with a set of triples: the wind

speed, the heading, and a ternary value in-

dicating whether the constraint was inactive,

active, or violated. One of the constraints was

violated at the optimum in 10 of these opti-

mizations. Figure 9 gives an example of a

decision tree output by C4.5. This decision

tree predicts whether the displacement con-

straint will be active at the optimum, based

on the design goal. By running a new design

goal down three decision trees, one for each of

the three constraints that can be incorporated,

the system can make predictions of whether

each constraint will be active at the optimum.

These three yes/no predictions directly map

into one of the eight (23) formulations of the

search space.
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heading <= 109 :

| windspeed <= 6.3 : active

| windspeed > 6.3 :

| | windspeed > 8.2 : violated

| | windspeed <= 8.2 :

| | | heading <= 65 : violated

| | | heading > 65 : active

heading > 109 :

| windspeed > 11.5 : active

| windspeed <= 11.5 :

| | heading <= 135 : active

| | heading > 135 : inactive

Figure 9: Learned decision tree for the dis-

placement constraint.

We used C4.5 to perform tenfold cross-

validation, and obtained the error rates shown

in Table 11. Here we compare the error rates

of C4.5 with and without pruning, and of

C4.5rules, a variant of C4.5 that extracts rules

from the trees, with the expected error rate

of random guessing (which is two-thirds since

there are three classes from which to guess),

and the error rate of the Most Frequent Class

(MFC) learning method. MFC always chooses

the class that occurs most frequently in the

training data. In this case, that means that it

always chooses the same formulation, namely

the one that is most often the best formulation

in the training data.

As Table 11 shows, C4.5 with pruning per-

formed slightly better than C4.5 without prun-

ing or C4.5rules (and so in our further exper-

iments reported below we use only C4.5 with

pruning), and all three substantially outper-

formed MFC, which in turn substantially out-

performed random guessing.

These results are for error rates, the pro-

portion of cases where learning makes an in-

correct guess. A more important question in

this domain is how learning a�ects the overall

problem-solving task, namely how it improves

the speed and reliability of the design opti-

mization process. Does learning make the de-

sign process faster or slower? Are the resulting

designs better or worse? To measure these ef-

fects, we performed optimizations for 25 new

randomly generated goals using the formula-

tions suggested by each learning method. Ta-

ble 12 shows the e�ect that C4.5 (with prun-

ing) and MFC had on the average course time

(the quality of the design), and average num-

ber of evaluations (the speed of the optimiza-

tion), as compared with the \old way" of do-

ing optimization without incorporating any of

the three constraints into the operators. The

�rst column in the table shows the percentage

di�erence between the optimized course-time

produced with the standard formulation that

does not incorporate constraints, and the op-

timized course time produced with the spec-

i�ed formulation. The second column shows

the percentage di�erence between the cost of

performing the optimization with the standard

formulation, and the cost of performing it with

the speci�ed formulation.

We also include in this table the perfor-

mance of several other methods. A hypotheti-

cal \omniscient" problem solver always magi-

cally guesses the best possible choice (the one

that results in the best course time).24 No

learning method will enable results superior to

this. The \exhaustive" optimization method

performs eight optimizations for each goal, us-

ing all eight possible formulations, and then

chooses the best resulting design. Incorporat-

ing \all" constraints all the time results in the

fastest possible optimization within this set of

formulations (at the cost of quality loss).

C4.5 produced a signi�cant speedup in op-

24We simulated the omniscient learner by perform-

ing optimizations using all eight formulations for each

goal (as in the \exhaustive" method), and then ignor-
ing the cost of the seven optimizations that turned out

not to be best.
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Table 11: Cross-validated error rates for predicting whether each constraint will be inactive,

active, or violated.

method Beam Displacement Winglet

C4.5 w/ pruning 11.1% 15.1% 7.0%

C4.5 w/o pruning 11.1% 15.1% 10.0%

C4.5rules 11.1% 15.1% 10.0%

MFC 33.3% 53.5% 13.1%

Random 66.7% 66.7% 66.7%

Table 12: E�ect of using formulations chosen

by learner on optimization performance. A

positive quality change indicates an improve-

ment in quality (which is a reduction in course

time).

quality CPU time

method change change

omniscient +0.085% -36%

exhaustive +0.085% +384%

C4.5 +0.080% -35%

MFC +0.029% -32%

none 0 0

random -0.276% -40%

all -0.599% -74%

timization, with no quality loss. In fact, it

produced a small quality increase. (This qual-

ity increase suggests that with the standard

formulation, the optimizer gets \stuck" on the

\ridges" that the constraints cause the search

space to have, and therefore sometimes fails

to get to the optimum.) MFC produced a

slightly smaller speedup and a slightly smaller

quality improvement. The di�erence between

C4.5 and MFC in quality change was, however,

statistically signi�cant at the 99% con�dence

level, according to the paired t-test. Both

learning methods performed substantially bet-

ter than random guessing. C4.5 performed al-

most as well as the hypothetical omniscient

learner, which means it performed almost as

well as any learner could possibly do.25

Incorporating all of the constraints all of the

time resulted in a very large speedup, with a

modest quality loss. This method may be ap-

propriate if one wants a quick and approxi-

mate optimization. It might, for example, be

used in the early stages of design when the en-

gineer wants to get a feel for the search space

by asking \what-if" questions.

One question that these results raise is how

training-data quantity a�ects performance. If

25Interestingly, according to the t-test, the di�erence

between C4.5 and the omniscient method was not sta-

tistically signi�cant, but this just illustrates a limita-
tion of the t-test, since we know that the omniscient

method really is better, on average, than C4.5.
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Figure 10: E�ect of training set size on learner

performance.

one does not have results from a large num-

ber of previous optimizations available, then

one can either run some extra optimizations to

generate training data (which is expensive), or

do the learning with less training data (which

is likely to produce higher error rates and lower

optimization performance). We ran some ex-

periments to determine how C4.5's perfor-

mance varies with training-set size, and how

its performance compares with that of MFC

for various training-set sizes. We applied our

learning approach to datasets of varying sizes,

with the error rates shown in Figure 10. For

each training-set size in the �gure, we ran-

domly chose 10 di�erent subsets of our train-

ing data of that size, and performed 10-fold

cross-validation on each subset. The �gure

shows the averages. The three symbols at the

right side of the �gure show MFC's perfor-

mance on the full training set. C4.5 outper-

formed MFC for every training-set size, but

C4.5's error rate on smaller training sets was

signi�cantly larger than C4.5's error rate for

larger training sets (with performance reach-

ing an asymptote for training sets of about 60

cases or more).

6.2 Formulation selection results

in airframe domain

We believe that our formulation selection tech-

nique is applicable to a broad range of de-

sign optimization problems. To test the

domain-independence of the formulation selec-

tion technique, we performed additional ex-

periments in the airframe domain, and com-

pared the impact on optimization performance

of C4.5 with that of MFC.

In the airframe domain, there are eight de-

sign parameters, each of which can have an

upper and lower bound. The optimal design

sometimes lies at the bounds of some of these

parameters, depending on the mission.

We used CFSQP as the optimizer, and used

the same simulator and the same space of mis-

sions as in Section 5. We used the same C4.5

decision tree, described in that section, to pre-

dict which missions are feasible. As training

data, we used the same 100 10-point random

multistart CFSQP optimizations, 76 of which

are feasible.

We used the 76 feasible missions to train

C4.5 for formulation selection. Of the eight

design parameters, four were never at their

upper or lower bounds at the apparent op-

tima for any of the 76 missions. The other

four had optima at their lower bounds for some

missions. We trained C4.5 to predict whether

these four design parameters would be at their

lower bounds, depending on the mission. C4.5

produced a separate decision tree for each of

these four design variables. For example, Fig-

ure 11 shows the decision tree for wing taper

ratio. This decision tree says that wing taper

ratio will be at its lower bound of zero, un-

less the mission includes a takeo� phase and

is almost entirely over land. The four deci-

sion trees can be used to select among 16 (24)

possible formulations.

Table 13 compares the cross-validated error

rates of C4.5 with those of most frequent class
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Table 13: Cross-validated error rates for selecting whether to incorporate each lower bound, in

the airframe domain.

design parameter C4.5 MFC Random

wing taper ratio 2.7% 14.5% 50.0%

wing sweep 2.5% 27.6% 50.0%

fuselage taper length 3.9% 22.4% 50.0%

fuel annulus width 13.6% 5.3% 50.0%

overland <= 95.0872% : zero (54.0)

overland > 95.0872% :

| takeoff = no: zero (12.0/1.0)

| takeoff = yes: nonzero (10.0)

Figure 11: Learned decision tree for predicting

if the taper ratio will be at its lower bound of

zero.

and random guessing for each of the four de-

sign parameters. For the �rst three parame-

ters, C4.5 did much better than most frequent

class. For the fourth parameter, fuel annulus

width, C4.5 did much worse than most fre-

quent class, violating our expectations. In this

case, only 4 of the 76 training examples were

positive examples. We suspect C4.5 would

need more training examples to be more accu-

rate. Interestingly, in our prototype synthesis

experiments, CART had di�culty predicting

the optimal value of fuel annulus width (see

Section 5).

To determine the impact of using the for-

mulations selected by the various methods on

optimization performance, we randomly gen-

erated 25 new missions. Table 14 compares

the performance of the various methods of for-

mulation selection when doing optimizations

for these new missions. For the methods that

used C4.5, we used the decision tree of Fig-

ure 7 to predict whether each new mission was

feasible, and only performed optimizations for

those missions that were predicted to be fea-

sible. For the other methods, we performed

optimizations for all 25 missions. Each opti-

mization was a 10-point multistart. The \suc-

cess" column indicates for how many of the

missions the speci�ed method came within 1%

in takeo� mass of the best design found.26 The

\time change" column shows the change in to-

tal number of simulations used in all of the

optimizations performed, compared with not

incorporating any constraints.

Because cross-validation showed that C4.5

under-performs MFC for predicting whether

to incorporate fuel annulus width, we did not

use C4.5 to decide whether to incorporate this

parameter. We used C4.5 to decide whether

to incorporate the other three parameters, and

used two di�erent methods to decide whether

to incorporate fuel annulus width. The �rst

method used MFC to decide whether to in-

corporate the fuel annulus width, which re-

sulted in always incorporating it. The results

of this method are labeled \C4.5/MFC" in Ta-

ble 14. For the second method, we decided to

play it safe and never incorporate fuel annu-

lus width, since cross validation suggests that

we are not able to accurately predict when

this parameter will be at its bound. The re-

26Because CFSQP failed to �nd a feasible point in
some of these optimizations, it was not possible to com-

pute the average design quality.
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Table 14: E�ect of using formulations chosen

by learner on optimization performance, in air-

frame domain.

time

method success change

omniscient 16 -51%

exhaustive 16 +1206%

C4.5/none 15 -36%

none 15 0

C4.5/MFC 13 -57%

MFC 13 -21%

all 3 -55%

sults of this method are labeled \C4.5/none"

in Table 14. We compare these methods

with most frequent class, with the exhaus-

tive method that does optimizations for all 16

(24) formulations, with the omniscient method

which magically guesses the best formulation,

and with always incorporating all of the con-

straints (\all") or never incorporating any of

the constraints (\none").

The �rst interesting thing to note about Ta-

ble 14 is that there is one mission for which

CFSQP failed to reach the optimum without

reformulation. The only way to reach the op-

timum for this mission is to use the \omni-

scient" method (which does not exist), or the

\exhaustive" method (which is extremely ex-

pensive). The next thing to note is that us-

ing the formulations selected by C4.5 for the

�rst three parameters, while not incorporat-

ing fuel annulus width (\C4.5/none"), reduces

cost by 36% compared with not incorporat-

ing any constraints (\none"), without any loss

of quality. Using C4.5 for the �rst three pa-

rameters, and MFC for fuel annulus width

(C4.5/MFC), causes CFSQP to fail to �nd the

optimum in two additional cases. Using MFC

for all parameters causes the same number of

missed optima, at a higher cost. And incorpo-

rating all of the parameter bounds all of the

time results in CFSQP almost always failing

to get to the optimum.

The airframe domain results are surprisingly

similar to the yacht domain results. In the

yacht domain, using the formulations selected

by C4.5 reduced the cost of optimization by

35% (Table 12), while in the airframe domain

the speedup was 36%. In the yacht domain,

using C4.5 also resulted in a small quality in-

crease, while in the airframe domain, quality

remained the same. The reason for this di�er-

ence may be that the yacht domain reformu-

lations increase the smoothness of the search

space (by eliminating the 12m-rule penalties),

while the airframe domain reformulations do

not. Another interesting thing to note is that

while the di�erence between MFC and C4.5

was small (but statistically signi�cant) in the

yacht domain, it was much larger in the air-

frame domain.

7 Related work

Cerbone [Cerbone 1992] has reported work

which applied machine-learning techniques to

a problem similar to our prototype-selection

problem. His design space, in the domain of

truss design, has an exponential number of dis-

connected search spaces. He uses inductive

learning techniques to learn rules for select-

ing a subset of these search spaces for further

exploration. In contrast, our system has a

smaller number of prototypes (each of which

de�nes a search space) from which to choose,

and it just chooses one of them. Cerbone uses

an ad-hoc utility function to combine solution

quality and search time when evaluating his

learning methods, while we only consider so-

lution quality in this article. Cerbone also

presents two learners that incorporate back-

ground knowledge by incorporating the objec-

tive function into the learner.
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Research on prototype-retrieval strategies

for hill-climbing design optimization is re-

ported by Ramachandran et al. [Ramachan-
dran et al. 1992], who investigated a number

of library-based methods for �nding starting

points for the DPMED iterative parameter-

design system. These included a nearest-

neighbor method, a curve-�tting method, and

a hybrid method. The curve-�tting method

is similar to our prototype synthesis method.

It uses regression to �nd a function mapping

goal parameters to initial design parameters,

whereas our approach uses inductive learning

to �nd a regression tree mapping goal param-

eters to initial design parameters. Ramachan-

dran et al. compared their retrieval strategies

in terms of the number of iterations needed to

carry out the hill-climbing design-optimization

process. They showed that starting points ob-

tained by curve �tting led to fewer iterations

than were required when the nearest-neighbor

method was used. In contrast to this, our work

has evaluated retrieval strategies in terms of

the quality of the resulting designs, in addi-

tion to the number of iterations needed to �nd

them.

There has been much work on case-based
reasoning [Kolodner 1993]. Our prototype se-
lection system can be seen as a case-based

reasoning system, in which the prototype-

selection method is the retrieval process, and
the optimization method is the adaptation
process.27 Researchers in case-based rea-

soning have investigated the use of library-

retrieval techniques for case-based design
[Sycara and Navinchandra 1992], but have not

used them to initialize an iterative design pro-

cess. [Bhatta and Goel 1995] describe a system

27We use the word prototype to refer to a complete

design, not an incomplete prototype. The optimization

process modi�es the retrieved design to satisfy the new

goal. Our system is thus best viewed as a case-based
design system, rather than as a prototype-based design

system.

that learns to retrieve a starting point for the

design of a high-acidity sulfuric acid cooler.

They evaluate the performance of this index-

ing system based on its e�ect on retrieval time,

and not based on its impact on optimization

performance.
[Burns 1989] presents a graphical represen-

tation that can be used to compare di�erent

design optimization processes. He uses the

technique to show that small changes in the

starting prototype can result in large di�er-

ences in the �nal design. Gelsey et al. [Gelsey
et al. 1996a] describe a Search Space Toolkit,

which assists in determining properties of the

search space that can be used for reformula-

tion. [Choy and Agogino 1986] describe a sys-

tem that automates [Papalambros and Wilde

1988]'s method of using monotonicity analysis

to detect constraint activity.
[Williams and Cagan 1994] presents activity

analysis, a technique inspired by monotonicity
analysis. Their technique is similar to the for-

mulation selection technique described in this

article, except that they use qualitative rea-

soning instead of machine learning to deter-

mine which constraints will be active at the

optimum. Their technique has the advantages

that it does not require training data, and that

the reformulation is guaranteed not to lose the

global optimum. It has the disadvantage that

it requires that the objective function and con-

straint functions be symbolically di�erentiable

and composed of simple arithmetic operations;

it would therefore not be applicable to the

complex simulators used in the experiments

described in this article.

A number of research e�orts have combined

AI techniques with numerical optimization.
[Ellman et al. 1993] describes a method for

switching between a less expensive, less accu-

rate simulator, and a more expensive, more

accurate simulator during optimization, based

on the magnitude of the gradient. [Bouchard

et al. 1988] describes ways in which expert sys-
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tems could be applied to the parametric design

of aeronautical systems. [Hoeltzel and Chieng

1987] describe a system for digital chip design

in which design is done at an abstract level,

using machine learning to estimate the per-

formance that would be obtained if the design

were carried out at a more detailed level. [Ore-

lup et al. 1988] describes a system called Do-

minic II that uses an expert system to switch

among various strategies during numerical op-

timization. None of these e�orts is focused di-

rectly on the problems of prototype selection

and formulation selection addressed in this ar-

ticle.

Simulated annealing (SA) and genetic al-

gorithms (GA) are able to deal with certain

pathologies, such as nonsmoothness, but they

tend to be much slower than gradient-based

optimization. They tend to require thousands,

or even tens of thousands, of simulations, and

are thus not practical when each simulation is

expensive.

Powell [Powell 1990, Tong et al. 1992,

Powell and Skolnick 1993] has built a module

called Inter-GEN, part of the ENGINEOUS

system [Tong 1988], that seeks to combine the

ability of genetic algorithms to handle multiple

local optima with the speed of numerical opti-

mization algorithms. It contains a genetic al-

gorithm, and a numerical optimizer, and uses

a rule-based expert system to decide when to

switch between the two. Powell has tested his

system on a realistic jet engine design prob-

lem. He does not, however, address the issues

of prototype selection or formulation selection.

8 Future work

One area for future work is the application

of our techniques to harder problems. For

example, we need to study how our proto-

type selection approach scales up as the li-

brary size increases. Also, the yacht domain

results presented here apply to a constrained

class of yacht-design goals, those comprised

of a �xed number of legs. Applying this

approach to courses with a variable number

of legs would raise an interesting machine-

learning question, since describing a multi-leg

race-course requires a variable number of at-

tributes, and thus traditional learners such as

C4.5 do not directly apply. Learning meth-

ods operating on more expressive represen-

tations, such as inductive logic programming

systems like FOIL [Quinlan 1990], may en-

able going beyond the simple representation

of goals used here and handling more compli-

cated goals. Further, in the results presented

here, we assume that the only change between

the previous design sessions and the current

design session is the design goal (for exam-

ple, expressed as a (wind speed; heading) pair
for formulation selection in the yacht domain).

An interesting question is what would happen

if in addition to changing the goal, we also

changed the constraints, or the simulator, or

the form of the goal. We would need to �nd

a way to encode as a set of attributes for the

learner whatever had changed.

Other more-di�cult problems might in-

volve a less-smooth search space, a higher-

dimensional goal space, or a less reliable op-

timizer. Such problems may arise when we

test this method in still other domains.

It would be interesting to see if learning per-

formance could be improved by using neural

networks, nearest-neighbor methods, statisti-

cal regression, or an \oblique" decision tree

learner (such as OC1 [Murthy et al. 1994]).

Another approach to improving learning per-

formance is to integrate background knowl-

edge into the learning process. One form of

background knowledge that is often available

ismodality constraints. This is knowledge that
expresses the modality of the learned class

with respect to the attributes. For example, in

the yacht-design domain, we believe that opti-
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mal beam is monotonically increasing in wind

speed, and monotonically decreasing in head-

ing. We also know that the activity of any con-

straint of the form f(x1; x2; : : : ; xn) � k must

be monotonic in k, so, for example, the ac-

tivity of a cost constraint must be monotonic

in the cost threshold. One open question is

how such knowledge could be integrated into

learning. One approach would be to use such

modality constraints to remove from the train-

ing data points that violate the constraints (on

the assumption that these points are noise). A

second approach is to modify the tree induc-

tion algorithm so that it will never construct

a tree that violates the constraints. A similar

approach was used to constrain decision lists

in [Clark and Matwin 1993].

Finally, even after our learning approach

is applied, every additional future optimiza-

tion can serve as an additional training point

for the learning. Thus learning methods that

can work in an incremental fashion might also

prove useful for this task. In addition, it may

prove useful to develop methods that select

suitable data prior to learning. For exam-

ple, when there are not enough existing opti-

mizations to achieve adequate learning results,

additional optimizations can be performed to

generate further training data. Rather than

performing these new optimizations for ran-

dom goals or for a set of goals that span

the goal space, one could allow the learner to

choose the goals to be used in the new train-

ing data. Background knowledge | such as

modality constraints | could prove particu-

larly useful in selecting such goals.

We have applied inductive learning to sev-

eral decisions that must be made when set-

ting up an optimization, including choosing

a starting protype and a formulation of the

search space, and predicting whether a design

goal is achievable. There are other parts of

the setup process to which inductive learning

might be applicable. For example, one might

try to use inductive learning to choose an op-

timization algorithm, or a good value of the

optimizer's stopping tolerance, or a good step

size to use in gradient computation, or a good

box within which to randomly generate start-

ing prototypes, or a good number of random

starting prototypes to generate, or the right

level of accuracy to use in the simulator. For

each of these decisions, it would need to be

determined whether the best choice depends

on the design goal. Finally, more experiments

need to be done to explore the impact on opti-

mization performance of using inductive learn-

ing to simulataneously make multiple choices

within the optimization setup problem.

9 Dimensions of Machine

Learning in Design

This section attempts to categorize our work

on using machine learning to initialize an opti-

mization in terms of the \dimensions" of ma-

chine learning in design presented in [Grecu

and Brown 1996].

9.1 What can trigger learning?

In the experiments described in this paper, we

ran the learner manually when we felt that we

had data from enough optimizations to learn

something useful. The decision on when to run

the learner was thus one of human judgment.

Learners that are invoked manually should be

added to Grecu and Brown's taxonomy. We

envision a system that uses our techniques to

learn incrementally (see Section 8). In such a

system, learning would be triggered every time

an optimization is completed. It would learn

both from successful optimizations and from

unsuccessful optimizations. Hence, in Grecu

and Brown's taxonomy, learning would be trig-

gered by both success and failure.
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9.2 What are the elements sup-

porting learning?

When learning to initialize an optimization,

our system learns from the results of previ-

ous optimizations. These results include the

design goal, the design parameters of the op-

timal design, and the output of the simulator

when applied to the optimal design. In Grecu

and Brown's taxonomy, these results could be

characterized as \feedback provided after com-

pleting the design task." However, the \feed-

back" is provided by the system's simulator,

rather than by a person or something else that

is external to the system.

9.3 What might be learned?

Our system learns rules that it uses to ini-

tialize future optimizations. In Grecu and

Brown's taxonomy, this knowledge might be

described as \preferences in selection tasks"

or \design rules."

9.4 Availability of knowledge for

learning

Our system learns from the stored results of

previous designs. In Grecu and Brown's tax-

onomy, it learns from \repositories of design

and interaction histories."

9.5 Methods of learning

Our system uses induction; speci�cally, it uses

decision tree induction.

9.6 Local vs. Global Learning

Our system does not currently use a multi-

agent approach to learning; it thus does local

learning according to Grecu and Brown's tax-

onomy.

9.7 Consequences of learning

The learning in our system can result both

in improvement in the quality of the resulting

designs (\design improvement" in the taxon-

omy), and in decreases in the amount of CPU

time needed to produce those designs (\im-

provement of the design process" in the tax-

onomy).

9.8 Critique of the taxonomy

We suggest two additions to the taxonomy.

First, we would add the following new dimen-

sion: To what type of design process are the

learning techniques applied? Is it, for exam-

ple, a numerical optimization process (as in

our case), or a search through a discrete space

of designs, or a rule-based procedure to pro-

duce a new design without any search?

Second, for inductive learning systems, it is

important to ask whether the system does dis-

crete class learning (as in our prototype selec-

tion work), or continuous class learning (as in

our prototype synthesis work). This distinc-

tion could be added to the taxonomy by sub-

stituting \discrete induction" and \continuous

induction" for \induction" in the \methods of

learning" section of the taxonomy.

10 Conclusion

Gradient-based methods do not perform well

when optimizing designs using simulators that

have pathologies. We have described and

demonstrated the utility of four techniques

that improve optimization performance in

such situations by using inductive learning to

make decisions when setting up the design op-

timization. Two of these are methods of choos-

ing an initial prototype for optimization. Pro-

totype selection is especially appropriate in do-

mains such as the yacht domain in which there

is a database of previous designs available, and
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the available simulators are noisy. Prototype

synthesis is especially appropriate in domains

such as the aircraft domain in which �nding

a feasible design is di�cult. The third tech-

nique, feasible goal prediction, is similarly use-

ful in such a domain.

We tested the fouth technique, formulation

selection, in both the yacht domain and the

aircraft domain. We showed that using this

technique can make design optimization faster,

because the reformulation reduces the dimen-

sionality of the search space, and more reliable,

because the reformulation can make the search

space smoother.
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