
 

errata:  final dimensions add to 7 and not 6 as shown 

 

Evaluation of an Injection Molding Process Model Using the 

Calculus of Imprecision to Simultaneously Specify Tolerances and 

Process Parameters 

 

Ronald E. Giachetti 

Manufacturing Systems Integration Division 

National Institute of Standards and Technology 

Gaithersburg, MD, 20899, USA 

 

Abstract 

The strong interrelationship between part geometry, material properties, tolerances, and 

process parameters for injection molded parts hinders tolerance allocation and process 

specification.  The traditional design process of first optimizing tolerances and then setting process 

parameters to achieve these tolerances has the potential for sub-optimization.  Rather simultaneous 

tolerance allocation and process specification is required.  Unfortunately the injection molding 

modeling uncertainty hampers optimal tolerance and process specification.  Consequently methods 

are needed for directly incorporating imprecision into these models.  This paper advocates the use 

of imprecise quantities in existing analytical process models to simultaneously allocate tolerances 

and process specification for minimum manufacturing cost.  A set mathematical approach called 

the Calculus of Imprecision (CoI) is developed to provide a general framework for including 

imprecision directly in existing process models.  The CoI is a refinement of a worst-case interval 

approach but at various levels of plausibility with a reduced computational load. 

Keywords:  Design for manufacturing, manufacturing process modeling, fuzzy set theory, 

injection molding, model uncertainty, concurrent engineering, tolerance allocation, optimization. 
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Introduction 

The current market environment of rapid product development, short lead times, improved 

quality, and price competition has demanded more from product materials.  Engineering plastics 

have emerged as a principal material choice due to advantageous properties that enable them to 

compete in applications where metals were traditionally utilized.  Advantages of injection molding 

are the ability to combine several components into a single molded part to eliminate costly 

assembly operations [1], high production rates, high production volumes, and suitable mechanical 

properties at lower densities than competing metals.  As a result, plastic utilization in the aerospace 

and automotive industries has increased dramatically as these industries strive to reduce overall 

product weight.  Moreover, the broader market presence and increasing utilization of plastics have 

placed greater demands for increased quality and geometric complexity which has necessitated 

tighter part tolerances.  Design for injection molding, whereby the product’s functionality, 

tolerances, mold design, and process parameters are simultaneously considered, has emerged as a 

necessary design strategy [2].  Adherence to design for manufacturing heuristics such as found in 

Dixon and Poli [3] aid in reducing mold risk and product improvement.  However, for more 

intricate parts the rules are insufficient and simulation models or analytical models are often used to 

determine process parameters and improve product characteristics with respect to 

manufacturability.  Typically, designers optimize tolerance allocation based on functional 

requirements and then process engineers optimize the injection molding process to meet the design 

specification [4, 5].  Zhang [6] argues that both design and manufacturing must be simultaneously 

considered when allocating tolerances and demonstrates why in the machining domain.  In this 

paper, we incorporate design requirements into the injection molding process model to 

simultaneously perform tolerance allocation and process specification for minimum manufacturing 

cost.  The conceptualization of this approach is shown in Figure 1. 

Injection molding process models are based on empirical studies and have complex 

relationships.  Consequently, there exists a certain amount of model uncertainty.  Furthermore, 

plastics have extremely complex material properties:  non-Newtonian, non-isothermal rheology, and 

high correlation between parameters.  Due to less than perfect process control, variation about the 

process parameter set points will occur and consequently the dimensions will also vary.  The 

uncertainty and imprecision inherent in the process models cannot be ignored.  Manufacturing 

process model uncertainty occurs as either stochastic random variation which can be modeled using 

 2



 

statistics or as imprecision which can be modeled using fuzzy sets.  Traditionally, only statistical 

methods have been used to deal with injection molding model uncertainty.  There are, however, two 

major problems related to these methods:  first, they are very computationally intensive: for every 

input parameter a sample must be taken from the distribution to determine a value in the output 

parameter.  In a Monte-Carlo process simulation typically thousands of samples must be calculated.  

Second, even more importantly, these methods require that we know the probability distributions 

for each input parameter, and usually the exact values or shape of these probabilities are not known.  

Instead, only the intervals of possible error values are known.  Injection molders generally do not 

have the data to support a statistical analysis.  Practitioners can try to estimate the probabilities, but 

if the guess is wrong the output probabilities will be erroneous.  More importantly, much of the 

process uncertainty is not of a stochastic nature but is due to the inherent model imprecision of ill-

defined parameters and relationships. 

An alternative approach is to directly model the imprecision as fuzzy sets or imprecise 

quantities.  There has been an increased interest in modeling imprecision other than what can be 

described by stochastic uncertainty in engineering applications.  The foundation of this approach is 

that many concepts cannot be accurately measured and modeled because imprecision is intrinsic to 

the parameters and relationships in these problems; such is the case for injection molding.  In these 

situations, parameters can be modeled as imprecise quantities that restrict the value of a parameter 

to a partially ordered set.  The injection molding process model relates machine control inputs such 

as mold temperature, melt temperature, and packing pressure with process outputs such as 

shrinkage and tolerances.  The machine control input parameters can be represented by imprecise 

quantities that map through the process model to induce possibility distributions on the output.  

Inversely, preference distributions can be specified for the output and mapped through the process 

model to determine the plausibility range to restrict the input.  Before set mappings through 

analytical injection molding process models can occur, two problems that arise due to the set 

operator’s mathematical properties must be addressed.  First there is, in general, no inverse for the 

extended algebraic operators addition and multiplication.  Consequently fuzzy equations cannot be 

solved by inverting the operators.  Second, when multiple occurrences of a parameter occur in a 

function the standard set mathematics overstates the imprecision of the result.  Consequently, the 

result contains the actual set as a subset.  These limitations hinder the application of traditional set 

mathematics.  Direct incorporation of imprecision into existing process models is enabled here via 

the Calculus of Imprecision (CoI).  The CoI overcomes the two limitations mentioned.  The merits 
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of modeling the imprecision are twofold:  mapping sets through the model is computationally 

efficient compared to statistical approaches, and a form of robust design is accomplished such that 

if the process parameters remain within the specified range then the tolerances will remain within 

their specified range. 

This paper examines the use of existing process models during the design process to determine 

optimal tolerance allocation and process parameter set points.  The next section introduces the 

notation of imprecise quantities and presents the two problems encountered when using imprecise 

quantities in engineering models and related work to overcome these problems.  Three operators; 

image, domain, and sufficient elements that comprise the CoI are presented to overcome these 

problems based on extensions from work conducted in interval analysis [7].  An injection molding 

process model is described and used as an example to demonstrate the benefits of the new operators 

for mapping imprecision in engineering models.  The problem of simultaneously allocated 

tolerances and process parameters for minimum cost is solved for an example part. 

Imprecise Quantities 

An imprecise quantity Q is a partially ordered set of real numbers.  Each element x Q∈  has an 

associated membership value μQ x( )  representing the degree x belongs to Q.  It is a mapping 

[ ]μQ x: → 0 1, .  Common practice is to impose restrictions on the shape of μQ x( )  to either a 

triangular or trapezoidal distribution [8, 9].  Here a triangular distribution will be used and is 

represented by a triple that defines the membership function’s endpoints as, 

x x x x→ , ,   (1) 

An imprecise quantity defines a set of closed intervals called α-cut sets that are described by, 

( ){Q x xQα μ= }α≥ , ∀ α ∈ (0, 1] .  The α-cut set at α is represented by the interval, 

Q x xα α α= [ , ]   (2) 

Figure 2 shows the representation of expression (1) and an α-cut set at 0.5.  The interval 

[x x, ] is the α-cut set at α=0 and is called the support set.  The α-cut set at α=1 is a single value x.  

Throughout this paper the single bar notation will be used to represent the endpoints of the support 

set. 
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Fuzzy sets can model two facets of imprecision, either preference or possibility.  Preference is 

when a designer specifies a range of acceptable values for a design parameter.  For example, a 

functional tolerance can be represented by expression (1) to describe a preference for values that 

decreases the further from nominal.  Thus, a fuzzy set tolerance is similar in concept to Taguchi’s 

quality loss function [10], but is its inverse.  Possibility is the plausibility that a parameter will 

assume a certain value.  An illustration is the mold temperature in injection molding where a 

variation around the set point is observed as a range with gradation and can be represented by a 

possibility profile using expression (1).  In injection molding the output in tolerances can be 

represented by preference distributions and the machine input controls by possibility distributions. 

Issues and Limitations of  Set Mathematics Applied to Engineering 

Systems 

This section discusses the two anomalies associated with directly including imprecision in  

existing manufacturing process models. 

 Mapping Imprecise Quantities 

Any crisp mapping function can be extended to fuzzy sets via the extension principle [11].  The 

membership function ( )μ x  is mapped by function f and induces μ( )y  defined via the extension 

principle as, 

( ) ( ){ }{μ μ μ( ) sup min , ( )y x m f= }x y=  (3) 

μ( )y = 0  if . f y− = ∅1( )

Alternatively, for an isotonic function f , the α-cut endpoints of the evaluated function are equal 

to that function evaluated on the α-cut endpoints of the individual parameters [12].  Formally, we 

state, 

( )[ ] ( )f Q Q f Q Q1 2 1 2 0 1, , ,α α α α= ∀ ( , ]∈       (4) 

Equation (4) provides the justification used to evaluate functions based on the imprecise 

quantity’s endpoints given by expression (1). 
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Figure 3 shows a monotonically increasing mapping (function)  and the inverse 

mapping .  Let 

f R R: →

f R− →1: R m → 15 2 2 5. , , . , x → 5 5 5 6, . ,  and if the function f is y m x= ⊗ , 

then the extended mapping follows the arrows from the x-axis to induce y → 7 5 10 15. , , .  When 

μ( )y  is mapped by the inverse, , then the extension principle follows the arrows from the y-

axis to induce 

f −1

μ( )′x  on R and not ( )μ x .  In Figure 3 the imprecise quantities x and  are shown 

on the horizontal axis and y on the vertical axis.  Note that x ⊆ 

′x

′x , i.e. x is more precise than ′x .  In 

engineering applications it is commonly desirable to retrieve x but this is not possible when strictly 

using the extension principle.  For example, if y was the desired tolerance output from injection 

molding then the correct constraint in the machine control input would be x and not .  Use of ′x ′x  

as a machine control restriction would lead to tolerance deviations greater than the desired y and 

thus an unacceptably low yield rate. 

The lack of an inverse is the first problem since algebraic equations of the form, A X B⊕ =  

cannot be solved for unknown X as X B= A.  The reason is the set operators for addition and 

multiplication,  are not group operators, but form a semi-group with identity 0 and 1 

respectively [12].  The reason imprecise mappings lack an inverse is apparent when you consider 

that there is more than one forward mapping from the input to a single output value. (e.g.  there are 

two combinations of x and m values, {10, 1.5} and {6, 2.5} that map through y=mx to y = 15).  The 

extension principle does not differentiate between which values are desired in the mapping but in 

physical systems there is an important distinction.   

⊕ and ⊗

A second problem when mapping imprecise quantities through analytical models is that the 

multiple occurrence of a parameter in an expression causes incorrect results.  Let g x x
x

( ) =
− 2

 and 

an equivalent representation of the function is f x
x

( ) = +
−

1 2
2

.  If x → 3 4 5, ,  then 

g x( ) , ,→ 1 2 5  and f x( ) . , ,→ 167 2 3 .  The function g(x) is called an improper representation of 

the function because it treats each occurrence x as a separate parameter with the same range, when 

the intent is that it is the same parameter.  Therefore, g(x) obtains more imprecise results (a larger 

set of values) than f(x), the proper representation [12]. 
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These mathematical properties pose significant hurdles to modeling imprecision directly in 

analytical models.  Consequently, an alternative approach to including imprecise quantities in 

analytical process models is required. 

 Related Work in Set Mathematics 

Buckley and Qu [13] examine the problem of solving linear and quadratic equations and 

present the conditions governing the existence of a solution when using the α-cut method.  Dong 

and Wong [14] used a combinatorial interval analysis scheme to account for multiple occurrences of 

a parameter as part of an algorithm for computing fuzzy weighted averages (FWA).  Inverses of 

functions can be determined by the FWA discretization algorithm using the internally stored 

discretized points only after the forward mapping is calculated.  Thus, it is not possible to solve 

equations using this algorithm.  Wood, et al., [15] and Otto, et al. [16] have extended this approach 

to encompass more functions and combination metrics.  Klir [17] proposes constrained fuzzy 

arithmetic to overcome these problems, such that when a parameter appears multiple times in an 

algebraic expression then an equality constraint is included in the operation.  This approach requires 

the modeler to add algebraic constraints to properly model the physical system. 

The absence of an inverse and the multiple occurrence of parameters are well known problems 

in the domain of interval analysis [18, 19].  Ward, et al., [20] have extensively examined the use of 

interval analysis in the mechanical engineering design domain.  They developed three operators, the 

range operator and three inverses to range that are used to solve interval equations of three 

parameters.  Finch and Ward [7] extended these results to arbitrary relationships over n parameters 

and show how to obtain useful information pertinent to the analysis of physical systems.  They 

accomplish this by making an important distinction between physically dependent and independent 

parameters.  It is this later work that is extended to imprecise quantities incorporated into existing 

analytical models that is presented in this paper. 

 Models of Physical Systems 

The parameters in engineering application models have a domain specific connotation.  The 

causality between the imprecise engineering parameters can be exploited to achieve better results in 

these domain specific models.  Dubois, et al., [21] discuss the significance of controllable versus 

uncontrollable parameters in the context of job-shop scheduling.  If the parameter is controllable 

then the fuzzy set represents preference for a value.  Fuzzy sets of uncontrollable parameters 
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represent a possibility distribution that constrain the values the parameter can assume.  Likewise, 

the partitioning of parameters into design, tuning, and noise parameters has been advantageously 

applied by Otto and Antonsson [22] for mechanical engineering design.  The distinction of the 

causality of parameters is significant to the interpretation of these engineering models.  Physically 

independent parameters are those that temporally occur first and determine the physically 

dependent parameter values.  The physically dependent parameters cannot be directly specified by 

the designer or process engineer.  This notion of physical dependency does not correspond to the 

typical mathematical definition and will be demonstrated in the next section for analyzing the 

injection molding process. 

 Calculus of  Imprecision 

This section presents three operators adapted from [7] in the terminology relevant to imprecise 

quantities that will be used in analytical process models. 

 Definition 1:  Decreasing Parameters Subset 

The decreasing parameters subset,  is the subset of parameters for the function f such that 

the function  with n parameters q is monotonically decreasing.  is 

monotonically decreasing w.r.t. x if and only if for x > 

Df

(f q qn1 , . . . , ) ( )f x q qn, , . . . ,1

′x  and when qi,...,qn is constant, then 

<  [23]. ( )f x q qn, , . . . ,1 ( )f x q qn′, , . . . ,1

 Definition 2:  Increasing Parameters Subset 

The increasing parameters subset,  is the subset of parameters for when the function 

 is monotonically increasing.  A function 

I f

(f q qn1 , . . . , ) ( )f x q qn, , . . . ,1  is called monotonically 

increasing w.r.t. x if and only if for x > ′x and when qi,...,qn is constant, then  ≥ 

[23].  

( )f x q qn, , . . . ,1

( )f x q qn′, , . . . ,1

 Definition 3: Image 

The image determines the possibility distribution of the physically dependent output from the 

input domain.  This is equivalent to the extension principle and is considered “pessimistic” since it 
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finds the largest possible set resulting from the physically independent parameters.  It is included 

here to maintain a consistent notation with the inverses to image. 

( )Image: , . . . ,f q q pn1 =  then 

( ) ( ) ( )p f D I f D I f D If f f f f f→ , , , , ,  

If  then the notation x D f∈ D f  denotes the parameters in  at their Df x  values according to 

expression (1). 

 Definition 4: Domain  

An inverse of the image is the domain operator.  Domain determines the physically 

independent parameter such that the forward mapping will always be restricted by the physically 

dependent parameter p. 

( )Domain: f q q p qn k
− =1

1, . . . , ,    

{ } { }( )

{ } { }( )

for thenp I q

f D p I p

f D p I p

f D p I p

f k

f f

f f

f f

∈ →

∪ −

∪⎧⎨⎩
⎫⎬⎭

−⎧⎨⎩
⎫⎬⎭

⎛
⎝⎜

⎞
⎠⎟

∪ −

−

− −

− −

− −

−

−

−

1

1 1

1 1

1 1

1

1

1

, ,

, ,

,

 

{ } { }( )

{ } { }( )

for thenp D q

f D p I p

f D p I p

f D p I p

f k

f f

f f

f f

∈ →

− ∪

−⎧⎨⎩
⎫⎬⎭

∪⎧⎨⎩
⎫⎬⎭

⎛
⎝⎜

⎞
⎠⎟

− ∪

−

− −

− −

− −

−

−

−

1

1 1

1 1

1 1

1

1

1

, ,

, ,

,

 

Where {D f − −1 }p  denotes the set of parameters when the expression  is 

decreasing less the parameter p.  

( )f q q pn
−1

1,..., ,

{ }I f − ∪1 p  denotes the set of monotonically increasing 

parameters and the parameter p. 
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 Definition 5:  Sufficient Elements 

The independent parameters are partitioned into uncontrolled ′q and controlled ′′q  subsets.  

Sufficient elements is an inverse of the image that determines the physically independent parameter 

sets in one partition such that adjusting the parameters in the second partition will map to every 

value in the physically dependent output set p. 

( )SufElements: f q q p qk
− ′ ′′ =1 , ,   

( )

( )

for p D then q

f I D p D I

f I D p D I

f I D p D I

f k

f f f f

f f f f

f f f f

∈ →

′ ∪ ′′ ∪ ′ ∪ ′′

′ ∪ ′′ ∪ ′ ∪ ′′⎛
⎝⎜

⎞
⎠⎟

′ ∪ ′′ ∪ ′ ∪ ′′

−

− − − −

− − − −

− − − −

−

−

−

1

1 1 1 1

1 1 1 1

1 1 1 1

1

1

1

, ,

, ,

,

 

( )

( )

for p I then q

f D I p I D

f D I p I D

f D I p I D

f k

f f f f

f f f f

f f f f

∈ →

′ ∪ ′′ ∪ ′ ∪ ′′

′ ∪ ′′ ∪ ′ ∪ ′′⎛
⎝⎜

⎞
⎠⎟

′ ∪ ′′ ∪ ′ ∪ ′′

−

− − − −

− − − −

− − − −

−

−

−

1

1 1 1 1

1 1 1 1

1 1 1 1

1

1

1

, ,

, ,

,

 

These three operators show how to obtain the parameters of expression (1).  The entire 

membership function can be obtained via two methods, discretization [14, 15, 16] or the 

parametered fuzzy numbers approach [24].  Both methods are approximations but they reduce the 

computational complexity and obtain useful results.  Giachetti and Young [24] analyzed fuzzy 

algebraic operators and set forth guidelines for determining the accuracy of the parametered fuzzy 

number approach.  They defined a spread ratio, as ( )λ = x
x  for the left spread and ( )ρ = x

x  for 

the right spread.  When λ < 3.67 and ρ > 0.5 then a linear approximation for α-cut endpoints 

between 0 and 1 yields results within 10% of the actual value.  In the problems considered here this 

is always the case. 

Injection Molding Process Model 

Part shrinkage that occurs during the solidification stage is a significant factor determining 

tolerances.  Shrinkage is a function of the material properties, part geometry, and the processing 
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conditions temperature, pressure, and volume [25].  The relationship between shrinkage and 

tolerances is such that dimensions where shrinkage is more sensitive to process variation should be 

allocated looser tolerances than dimensions where shrinkage is not sensitive to process variation. 

Volumetric shrinkage is, 

S
v v

vv
o e

o
=

−
  (5) 

where  is the specific volume when the gate freezes and v  is the specific volume at room 

temperature (i.e. complete cool down).  The linear shrinkage is approximately 1/3 of the volumetric 

shrinkage, 

vo e

S
S

L
v=
3

  (6) 

In injection molding, specific volume v is determined from PVT data and is estimated by an 

equation derived by Spencer and Gilmore [26] from empirical data, 

v R T
P

w=
′ −
+

+
( )

( )
τ
π

  (7) 

where T is temperature (K), P is pressure (MPa), and the constants are given from PVT data for 

polypropylene,  w = 0.62 g/cm3, π = 162 MPa, τ = 0 K, and ′ =R 0 202.  MPa-cm3/g-K.  Fuzzy 

values are an appropriate representation to model the imprecision of the process parameters of 

temperature, pressure, and volume since equation (7) defines a curve fitted to empirical data and 

consequently is intrinsically imprecise. Furthermore, machine control is less than perfect so small 

variations will occur about the process parameters set points.   

Information pertinent to injection molding tolerance capabilities can be obtained by evaluating 

expressions (5), (6), and (7) with the image, domain and sufficient elements operators.  Using the 

terminology of [7] the parameters in the injection molding example are classified based on their 

physical causality.  The shrinkage is a physically dependent parameter since it is determined by the 

specific volume which is determined by the machine’s packing pressure and melting temperature.  

Consequently, shrinkage is determined using the image operator.  Both temperature and pressure 

are physically independent in expression (7) since they are determined first by the manufacturing 

expert and adjusted on the injection molding machine.  If a desired shrinkage is specified first (i.e. 
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as a preference function) using expression (1) then the physically independent volume to achieve it 

can be found with the domain operator.  In expression (7) pressure and temperature are classified as 

controllable since they are adjusted on the machine but for a given material such as polypropylene 

the parameters w, π, τ, and ′R   are classified uncontrollable.  These terms are used in the sufficient 

elements operator to solve for the pressure such that for any temperature in the set T then every 

value in volumetric shrinkage could be achieved.  Note that this notion of physical dependency is 

different than mathematical dependency since expression (7) could be rewritten to solve for T as a 

function of v and P but T would still be physically independent even though it becomes 

mathematically dependent in the rewritten equation. 

 Evaluation of Injection Modeling Process Model 

The proceeding examination of the injection molding model and introduction of the three 

operators suggest a formal methodology for applying the CoI to analytical process models.   

1. Identify physical dependency conditions of model parameters. 

2. Identify parameters that are controllable and those that are uncontrollable. 

3. Determine appropriate operator based on classification.  If solving for y and then:  

if y is dependent use image, if y is independent use domain, and if y is independent and 

controllable use sufficient elements. 

y f qk= ( )

4. Determine the increasing subset  and the decreasing subset  for each equation. I f D f

5. Solve model using the three operators. 

The following sections demonstrate the application of the three operators image, domain, and 

sufficient elements to mapping imprecise quantities through analytical process models. 

 Image 

The physically dependent volumetric shrinkage is determined using the image operator.  Let 

vo → 0 86 0 87 0 88. , . , .  g/cm3 and ve → 0 83 0 84 0 85. , . , .  g/cm3 which are obtained from plastic 

PVT data for polypropylene.  According to definitions 1 and 2 the set of decreasing variables  is 

 and the set of increasing variables  is 

D f

{ }ve I f { }vo .  The image of expression (5) is, 
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S
v v

v
v v

v
v v

vv
o e

o

o e

o

o e

o
→

− − −
, ,  

Sv → 0 0116 0 0345 0 0568. , . , .  cm/cm 

This is the induced possibility distribution of volumetric shrinkage that can be expected if the 

specific volumes are ill-defined and represented by possibility distributions.  Even though v  

occurs multiple times in expression (5) it is treated here as a single parameter.  If the extension 

principle is used then the result is, 

o

Sv
′ → 0 0114 0 0345 0 0581. , . , .  cm/cm 

The extension principle, as previously noted, does not distinguish that  is a single parameter 

and treats it as two separate values to obtain an incorrect range 

vo

Sv
′ .  The extension principle, 

without accounting for the physical realization of the model incorrectly overestimates the plausible 

range of shrinkage values, i.e. S Sv v⊆ ′ .   

 Domain 

The physically independent specific volume is determined such that it is restricted to map 

forward into the desired volumetric shrinkage output.  Expression (5) is rewritten as, 

v
v

So
e

v
=

−1
          (8) 

In this expression the decreasing subset of parameters  is D
f −1 { }Sv  and the increasing subset 

of parameters  is { .  The physically dependent parameter p from expression (5) is , 

consequently .   The domain operator is used, 

I
f −1 }ve Sv

p I
f

∈ −1

v
v

S
v

S
v

So
e

v

e

v

e

v
→

− − −1 1 1
, ,  

 and the packing volume is obtained as,  

vo → 0 86 0 87 0 88. , . , .  g/cm3
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This result is identical to the original specification and demonstrates that the domain operator is 

an inverse to the image operator.  If the extension principle was used then the resulting packing 

volume would be, 

vo
′ → 0 84 0 87 0 90. , . , .  g/cm3

This represents a greater range than the original i.e. 

v vo o⊆ ′  

vo
′  is incorrect and occurs since the image of f −1  is not the inverse of the image of f. 

 Sufficient Elements 

The sufficient elements is used to determine the packing pressure such that the temperature can 

be adjusted and still yield the desired volumetric shrinkage.  Equation (7) is rewritten as a function 

of T and v, 

P R T
v w

=
′ −
−

−
( )

( )
τ π          (9) 

Let T → 420 425 430, ,  K.  The relevant classification of subsets is:   is {T}, ′′−I
f 1 ′ −I

f 1  is {w, 

′R },  is { , and  is {π, τ }.  The physically dependent parameter p is v and 

.  The sufficient elements operator is applied, 

′′−D
f 1 }∅ ′ −D

f 1

v D
f

∈ −1

( )
( )

( ) ( )
( )P

R T
v w

R T
v w

R T

v w
→

′ −

−
′ −
−

′ −

−

τ τ τ
,

( )
,  

P → 172 181 191, ,  MPa 

This is the range over which P can be adjusted with T to obtain every value in v.  Otherwise 

using the extension principle, 

′ →P 164 181 199, ,  MPa 

P P⊆ ′with the possible result of falling outside of the desired range of volumetric shrinkage if 

was used.  These three examples demonstrated the necessity of the three operators image, 

domain, and sufficient elements to obtain more accurate results. 

′P

 14



 

Simultaneous Tolerance Allocation and Process Specification 

A non-linear optimization problem is formulated to simultaneously allocate tolerances and 

specify process parameters.  The example problem, a polypropylene hinge to be injection molded, is 

shown in Figure 4.   

The tolerance capabilities of dimension xj are related to linear shrinkage by, 

( )x x x Sj j j L− ≥   (10) 

The model constraints are given in Table 1.  Not shown are constraints that provide lower and 

upper bounds on the values that a parameter can assume.  The proposed CoI methodology is used 

and the model parameters classification is given in Table 2. 

The objective is to minimize the cost given as, 

( ) ( ) ( ) ( )
Min

a

x x

b

T T

c

T T

d

P P

j

j j o oj

n

e e−
+

−
+

−
+

−=
∑ 2 2

1
2 2     (11) 

where a is a cost constant for dimension j and b, c, and d are cost constants for the injection 

molding process.  The first term captures the concept that tighter tolerances require more expensive 

machining operations for fabricating the mold [27].  The last three terms model the inverse 

relationship that better process control requires more expensive and sophisticated injection molding 

equipment.  In this example a = 0.1 for all dimensions and b = c = d = 2000.  The explicit separation 

of mold machining costs and of injection molding equipment costs provide a means to achieve an 

optimal balance between the two. 

A solution to the nonlinear optimization problem was found using the generalized reduced gradient 

algorithm [28] and is shown in Table 3.  The tolerances determined agree with handbook 

suggestions as provided by [29].  In this example, if the process parameters are allowed to vary 

more than 10.7 C for temperature or 8.3 MPa for pressure than the geometric constraints cannot be 

assured.  It is noted that without the new operators defined in the previous section the constraints 

would obtain incorrect results, i.e. the traditional application of set propagation would result in 

larger ranges.  Exploitation of the physical causality of the injection molding process model enables 

a more aggressive approach of assigning tolerances and process parameters.  Optimizing tolerances 

separately from process parameters would probably result in different tolerances and it is unlikely 
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that a manufacturing engineer could determine the optimal process parameters by an iterative select 

and test method.  Consequently, this problem demonstrates the importance of simultaneously 

considering process parameters and tolerances.  

The results shown in Table 3 obtained ranges of values within which adjustments can be made 

to the process control parameters.  The current injection molding technology can maintain control 

set points for temperature and pressure well within the given solution ranges for these parameters.  

Therefore, this solution can be considered a phase one optimization.  A second optimization can be 

performed with this solution setting bounds on the results.  A typical secondary objective would be 

to minimize cycle time and a technique such as recursive constraint bounding [30] could be used to 

determine control parameter set points based on quality measurements of the output.       

Conclusion 

In traditional design processes the tolerance allocation would be optimized first and then the 

manufacturing engineer would optimize process parameters based on those tolerances.  This 

technique has the potential of sub-optimization.  In this paper we advocate using nonlinear 

optimization techniques to minimize manufacturing cost while simultaneously allocating tolerances 

and process parameters.  Consequently, process information is included in the design phase and 

sub-optimization is avoided.  Impediments to accomplishing this is the inherent uncertainty of 

empirically developed process models.  The primary contribution of this paper was the set 

mathematical approached called the Calculus of Imprecision for representing parameters as 

imprecise quantities in existing injection molding process models.  The direct incorporation of 

imprecision into the existing process model was accomplished by extending the operators of image, 

domain, and sufficient elements developed by Finch and Ward [7] to imprecise quantities.  The 

Calculus of Imprecision methodology was demonstrated to overcome two common problems 

encountered when analyzing uncertainty in analytical manufacturing process models; the lack of an 

inverse and the multiple occurrence of parameters in a relationship.  The use of the three operators, 

image, domain, and sufficient elements obtained accurate results whereas traditional set mappings 

may lead to results that while mathematically correct are inconsistent with the physical process.  

The operators are particularly suited to process models where the physical causality of the model 

can be exploited to obtain improved results.  While the process parameter variation may be better 

modeled by stochastic random variables, the set mathematical analysis refines a worst-case interval 

analysis but at various levels of plausibility that bound the actual solution.  The worst-case interval 
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analysis would require 2n calculations for n parameters and the results are overly conservative.  The 

approach advocated here is accomplished with a reduced computational load compared to both 

traditional interval analysis and statistical methods (e.g. Monte-Carlo simulation) since sets of 

information are being manipulated instead of single values [31].  Further work is required to 

classify engineering parameters and physical dependency to better evaluate models that contain 

imprecision. 
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 Figure 1.  Conceptualization of simultaneous optimization of product and process  
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 Figure 2.  Triangular distribution for an imprecise quantity  
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 Figure 3.  Mapping imprecise quantities  
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 Figure 4.  Injection molded hinge assembly  
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Table 1.  Tolerance optimization constraints 

constraint description 

y y y1 2 3 6+ + =  design function 

requirement 

x x x1 2 3 6+ + =  design function 

requirement 

x y1 1≤  mating requirement 

y x2 2≤  mating requirement 

x y3 3≤  mating requirement 

x x1 3=  symmetry requirement 

y y1 3=  symmetry requirement 

x y2 2 0 07− ≤ .  fit requirement 

( )x x x Sj j j L− ≥  processing requirement for 

each dimension j 

v R T
P

w=
′ −
+

+
( )

( )
τ
π

 volume at given 

temperature and pressure 

S
v v

vv
o e

o
=

−
 shrinkage given volumes 

 

 

Table 2.  Combined Part and Process Model Parameters 

Parameter Physical Dependency Controllability 

x x x y y y1 2 3 1 2 3, , , , ,  dependent uncontrollable 

Sv   SL dependent uncontrollable 

T T Po e o, ,  independent controllable 
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v vo e,  dependent uncontrollable 

 

 

 

Table 3.  Solution to tolerance optimization problem 

parameter value 

x1  〈2.843, 2.876, 2.909〉 cm 

x2  〈1.215, 1.248, 1.281〉 cm 

x3  〈2.843, 2.876, 2.909〉 cm 

y1  〈2.888, 2.921, 2.954〉 cm 

y2  〈1.125, 1.158, 1.191〉 cm 

y3  〈2.888, 2.921, 2.954〉 cm 

To  440 ± 10.7 K 

Te  340 ± 9.2 K 

Po  180 ± 8.3 MPa 
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