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Abstract : Smart Machining Systems (SMS) are an important part of Life Cycle Engineer-
ing (LCE) since its capabilities include: producing the first and every product 
correct; improving the response of the production system to changes in demand 
(just in time); realizing rapid manufacturing; and, providing data on an as needed 
basis. Thereby, SMS improve the performance of production systems and reduce 
production costs. In addition, an SMS not only has to improve a particular ma-
chining process, but it also has to determine the best optimized solution to pro-
duce the part faster, better, at lower cost, and with a minimum impact on the en-
vironment. In addition, new software tools are required to facilitate the 
improvement of a machining system, characterized by a high level of expertise 
or heuristic methods. A global approach requires integrating knowl-
edge/information about the product design, production equipment, and machin-
ing process. This paper first discusses the main characteristics and components 
that are envisioned to be part of SMS. Then, uncertainties associated with mod-
els and data and the optimization tasks in SMS are discussed. Robust Optimiza-
tion is an approach for coping with such uncertainties in SMS. Current use of 
machining models by production engineers and associated problems are dis-
cussed. Finally, the paper discusses interoperability needs for integrating SMS 
into the product life cycle, as well as the need for knowledge-based systems. The 
paper ends with a description of future research trends and work plans. 
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Knowledge bases, Ontologies 

1. Introduction 

Many manufactured products involve machining. For such products, 
machining systems play an important role in the product life cycle as part 
of the connection between design and the finished product.  The time and 
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cost of transition from specification/inception to commercial birth may 
significantly affect the remaining phases of the life cycle. Furthermore, the 
productivity and the responsiveness (agility) of production systems as well 
as the product quality are important factors affecting product life cycle. All 
these characteristics are critical outcomes of machining systems used in 
production. There has been a continuous improvement in machine tools 
and machining systems to respond to the needs for better quality products 
at lower costs. Evolution from manual machine tools to numerical control 
(NC) and computer numerical control (CNC) machine tools and introduc-
tion of various sensing and control improvements have enabled machine 
tools to be more capable, effective, and productive over the last several 
decades. Even after these improvements, machining systems still require 
long periods of trial and error to optimally produce a given new product 
design or component. They still require cryptic NC language to operate 
with limited knowledge of what they are producing or how well they are 
producing. Furthermore, they rely on inefficient vendor-specific interfaces 
to receive partial information about design intent and function of a product 
to be machined. They either break down unexpectedly or require costly pe-
riodic maintenance to avoid these breakdowns. These deficiencies cause 
significant delays in time-to-market, increase cost, and reduce productiv-
ity. Smart Machining Systems (SMS) are envisioned to have the capabili-
ties of: self recognition and communication of their capabilities to other 
parts of the manufacturing enterprise; self monitoring and optimizing their 
operations; self assessing the quality of their own work; and self learning 
and performance improvement over time. These attributes can be realized 
by seamless integration of various hardware and software components into 
new or existing machining systems. Some of these components have al-
ready been incorporated in existing machining systems in a limited fash-
ion. The current direction of SMS research at NIST [1] (National Institute 
of Standards and Technology) is to identify the barriers for complete inte-
gration and functioning of SMS with product life cycle and develop neces-
sary tools to overcome these barriers. Within this context, a Smart Machin-
ing System (SMS) provides the following capabilities: 1) producing the 
first and every product correct; 2) improving the response of the produc-
tion system to changes in demand (just in time); 3) realizing rapid manu-
facturing; 4) providing data on an as needed basis.  These characteristics 
make SMS appealing for Life Cycle Engineering (LCE). The purpose of 
the SMS program at NIST is to lead the development of an infrastructural 
capability for realizing these SMS capabilities for a broad range of 
products and processes. 

LCE [2] involves complex and timely communications of critical data 
on an as-needed basis. It also involves the large number of design and 
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manufacturing tools, as well as architecture for product life cycle man-
agement [3]. Since the SMS is such a central part of the production system, 
it requires a high level of interoperability and communications infrastruc-
ture. This requirement is not trivial to fulfil because a broad range of in-
formation sources must be considered such as design specifications, proc-
ess planning, machine specifications, cutting tool specifications, and 
cutting parameters as well as heuristic knowledge. Furthermore, SMS re-
lies on a broad range of expertise from various disciplines, both internal 
and external to the company, to constantly improve its performance and 
produce innovative products, technologies, and methods.  This drives the 
need for effective management of SMS-generated information for the 
product life cycle. Unfortunately, current machining systems are not capa-
ble of providing appropriate information for LCE. Given a means to share 
information appropriately, LCE tools should be able to capitalize on pro-
duction capability more effectively. In this paper, a general view of SMS, 
their characteristics and functional components, along with the associated 
issues related to their development and integration into the PLC, are dis-
cussed. 

2. Characteristics and components of SMS  

SMS must address the communication of all information needed to fab-
ricate a product that satisfies customer and market needs. A simple com-
ponent can be produced easily through a conversation between a customer 
and a machinist, with the machinist operating the machine. As the com-
plexity of the product, design and production process increase, the neces-
sary scope of communications encompasses more people and more sources 
of information. For complex products, it is virtually impossible to fully en-
capsulate all information needed for an SMS using tools and technology 
readily available today. The machining strategy defines the collection of 
issues related to fabricating a part such as the machining process plan or 
NC tool path. A machining strategy can vary in complexity depending on 
the machining feature, costs, part geometry, technology, etc. The SMS 
must optimize machining process plans before and during their realization, 
i.e., during its planning, as well as during their execution. A machining 
process plan indicates the immediate objectives (i.e., the tactical choices), 
their priorities, executing times, and necessary resources. Machining opti-
mization uses models and data that are incomplete or approximations, 
therefore any results will involve uncertainty. When these uncertainties 
lead to unexpected performance, the process monitoring and control 
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(PMC) will use adaptive control to return to optimal conditions. So for an 
SMS, design and development of optimization tools using robust methods 
coupled with on-line systems are a key issue. They would help enable an 
SMS to produce the first and every subsequent part on time and to specifi-
cation through a science-based understanding and monitoring of the avail-
able machining processes and equipment without significant time spent on 
process development or setup. The Smart Machining Systems program at 
NIST aims to develop, validate, and demonstrate the metrology, standards, 
and other infrastructural tools that enable the manufacturing industry to 
characterize, monitor, and improve the accuracy, reliability, and productiv-
ity of machining operations. Figure 1 provides a view of the SMS compo-
nents. From a machining system analyst point of view [4], a Conceptual 
Process Plan (CPP) is the main input to SMS.  The role of the CPP is to 
determine which and when general resources will be used. It represents the 
company's strategy for manufacturing and adds important global con-
straints to the future optimization tasks. Based on this a Detailed Process 
Plan (DPP) is built whose goal is to determine optimal machining parame-
ters, tooling systems, and fixturing elements in order to satisfy design 
specifications. Traditionally, DPP adjusts these parameters using different 
approaches, including: 1) physics based models; 2) numerical simulations; 
3) use of heuristic models; and 4) trial and error. Generally, conceptual and 
detailed process planning are more effective when the company's experi-
ence about its machining capabilities is used. The proper use of company’s 
experience is facilitated by LCE (see figure 1). In SMS, a Dynamic Proc-
ess Optimization (DPO) will optimize a DPP. To maintain an optimized 
system, the SMS has to assess the quality of its work and outputs as well 
as improve itself over time. The DPO builds and then satisfies objective 
functions using Machining Models (MM in figure 1), including process, 
control, and machine tool. The DPO includes constraints from design such 
as: dimensional and geometrical tolerances, surface integrity, and surface 
quality. PMC modules execute these optimized solutions, i.e. the opti-
mized DPP, and improve them over time. In the face of such optimization 
complexity, which can easily lead to ill-defined problems, we believe that 
a DPP will become more robustly optimized using an optimization um-
brella that can incorporate information from different types of models, 
such as numerical, theoretical, experimental, or heuristic models, and rep-
resent it in such a format that it would be unambiguously understood by 
LCE. In addition, a knowledge base for the DPO itself is used to properly 
construct the set of objective functions and constraints. Consequently, de-
velopment of optimization tools and associated models are key issues for 
SMS research. 
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Fig. 1. Components of SMS 

3. Optimization issues  

Computer-based simulation and modeling will be an increasingly 
important part of the future in machining. There have been many studies 
looking at future manufacturing. One example from the 1990s states:  “The 
Next Generation Manufacturing company will be characterized by its use 
of modeling and simulation, often coupled with agile and flexible 
manufacturing processes and equipment. …Modeling and Simulation will 
be pervasive throughout the enterprise as a new way of doing business. 
The modern manufacturing enterprise is the sum of the large and small 
decisions made by people and so-called intelligent machines.”[5] The 
Smart Machining Systems program at NIST will address some of the 
important decisions involved in improving and optimizing machining 
processes. 
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Optimization trends 

A general machining optimization problem consists of determining de-
cision variables 1 2, , , nx x xK , such as feed, depth of cut, spindle speed, in 
such a way that a set of given constraints are satisfied and a desired objec-
tive function is optimized. The constraints are determined by both empiri-
cal, heuristic, and theoretical considerations, and they can usually be ex-
pressed as a system of inequalities. If we denote by x the vector of decision 
variables and by 0 ( )f x  the objective function, then the optimization prob-
lem can be written as 

Minimize  (1) )(0 xf
subject to mixfi ,...,2,1,0)( =≤  (2) 

An example of an objective function that we would like to minimize in 
machining may be the cutting tool deflection. The above general form of 
an optimization problem can also handle objective functions that we would 
like to maximize, like the material removal rate. This is accomplished by 
replacing 0 ( )f x  with  - 0 ( )f x  in (1). If the objective function 0 ( )f x , as 
well as the functions 1 2( ), ( ), , ( )mf x f x f xK  defining the constraints (such 
as cutting force, machine tool power and torque, tool life, surface rough-
ness, and spindle speed) are linear in the decision variables, then the opti-
mization problem (1)-(2) becomes a linear programming problem (LP) that 
has been extensively studied, and for which efficient algorithms are known 
[6]. However, in most applications both the objective function and the 
functions defining the constraints are nonlinear.  By introducing an addi-
tional variable 0x , we can always consider that the objective function is 
linear. Indeed it is easily seen that the optimization problem (1)-(2) is 
equivalent to  

Minimize 0x  (3) 
subject to 

0 0( ) 0 , ( 4 )
( ) 0 , 1, 2 , , . (5 )i

f x x
f x i m

− ≤
≤ = K  

While in a traditional deterministic setting, where 
0 1( ), ( ), , ( )mf x f x f xK  are considered determined precisely, the form (3)-

(5) can be conveniently extended to deal with uncertainty in the data defin-
ing the optimization problem. Indeed, in real applications the functions 

0 1( ), ( ), , ( )mf x f x f xK  depend on some parameters 1 2, , , pς ς K ς  that are 
only approximately known. In some cases we can define an "uncertainty 
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set", or set of possible parameter values,  that contain all possible 
values of the parameter vector 

pU R⊂
ς . If U contains a single vector then we are 

in the traditional deterministic setting. Otherwise, we consider the robust 
optimization problem 

Minimize 0x  (6) 
subject to  

0 0
( , ) 0 , ( 7 )

( , ) 0 , 1, 2 , , , ( 8 )
i

f x x U

f x i m U

ς ς

ς ς

− ≤ ∀ ∈

≤ = ∀ ∈K  
The robust optimization problem above aims at determining the vector 

of decision variables x such that the objective function is minimized and 
the constraints are satisfied for all possible values of the parameter vector 
ς . Although this solution seems hopeless, recent progress in optimization 
theory and practice shows that for many engineering problems we can 
formulate robust optimization problems that can be efficiently solved by 
modern optimization algorithms [7]. An alternative way to deal with un-

certainty is to consider that the parameters 1 2, , , pς ς ςK  are random vari-
ables with given probability distributions. Then the optimization problem 
becomes a stochastic optimization problem (see the recent monograph [8] 
and the references therein). While for some problems of this type, like the 
stochastic linear programming problems, good solution methods are 
known, though they are in general more difficult to solve than their robust 
optimization counterparts. Another optimization paradigm in SMS is pro-
vided by multicriteria optimization. In this approach one aims at determin-
ing decision variables that satisfy the given constraints and simultaneously 
minimize several objective functions. For example we would like to simul-
taneously minimize the cutting tool deflection and to maximize the mate-
rial removal rate [9]. This can be accomplished by constructing a "master" 
objective function as a weighted combination of the given objective func-
tions, or to formulate the problem as a Pareto optimization problem [10-
11]. A recent application of Pareto optimization in machining is presented 
in [9]. In the following sub-sections we introduce the types of models we 
will use in our optimization in the future. 

Machining models 

The variety of criteria used in machining optimization involves material 
removal rates, chatter avoidance, dimensional and form accuracy, surface 
integrity of the machined part, and tool wear. Generally two main catego-
ries of machining models are used to represent such criteria; models de-
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scribing the cutting process and models describing the machine tool and its 
components.  These two categories are represented in figure 2 where the 
hatched zone represents the cutting process, i.e., the tool workpiece ine-
traction. Of course other models are used to describe the interaction occur-
ing between those two categories. The cutting process is the interaction be-
tween the cutting tool and the workpiece and is the excitation source for 
the machining system. Extensive research has been done in these two do-
mains. Here we provide a brief overview of the approaches that will be 
used in SMS. The first set of models generally involves decisions in speci-
fying cutting parameters by predicting cutting forces and controlling cut-
ting process quality criteria. Thereby, one of the keys to making good de-
cisions is to accurately predict cutting forces in a particular machining 
process. By accurately predicting cutting forces, the power and torque 
needed for a specific machining operation can be calculated. Knowing the 
cutting forces is also important for fixturing and tooling decisions. From 
cutting force predictions, the total energy input by the machining process 
can be calculated, which is essential for predicting cutting temperatures 
and tool wear. Approaches to predicting cutting forces include (a) tradi-
tional experience-based models; (b) machining experiment methods using 
mechanistic models; and, (c) models that use standard material properties 
rather than specific machining experiments. The experienced-based mod-
els, including the use of “physical models”, is the oldest approach.  Any-
time there is an existing machining process similar to the one being stud-
ied, this may be the best approach to accurately predict cutting forces. 
Recently, a set of standards for describing a method to realize such ex-
periments in industry has been developed [12]. This ideal scenario is rarely 
the case in product development. Models that use generally accepted mate-
rial properties such as hardness or ultimate strength, rather than machining 
generated properties, have an advantage for predicting cutting forces in 
situations where the process or material are new to the company. Starting 
in the 1940s, approaches of this type have been developed that are based 
on simple geometry and rather simple material models, such as the well 
known Merchant model [13-14] or Lee and Shaffer's study [15], Since the 
1980s, Finite Element Methods (FEM) have been developed that can han-
dle both the complicated geometrical aspects of metal cutting as well as 
sophisticated material relationships. These FEM models [16] can be ex-
tremely accurate at predicting cutting forces, but require a great deal of 
knowledge about the cutting tool geometry and other machining parame-
ters plus highly accurate constitutive models for the material. The FEM 
approach can also be very effective at predicting temperatures in the cut-
ting zones and residual stresses in the workpiece after machining. The use 
of FEM machining models may be limited in SMS applications because of 
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the time required to solve a problem - several hours to days of computer 
time - and current limitations of adequate constitutive material models. 
Current work at NIST [17] and several other laboratories, is aimed at de-
termining reasonable values of the flow stress and constitutive model pa-
rameters for machining modeling. The NIST work includes using a high 
strain-rate testing device, called a split Hopkinson Pressure bar or Kolsky 
bar, with electric pulse heating to determine flow stress values useful for 
predicting cutting forces [18]. This work is aimed at providing flow stress 
values to aid the simple model force predictions, as well as providing de-
tailed constitutive models expressing the stress as a function of strain, 
strain rate, temperature, and heating rate that will aid the use of finite ele-
ment approaches. The dimensional and form accuracy of a machined part 
is affected by the quasi-static performance of the machine tool, as well as 
environmental effects on both machine tool and the machined part [19-22].  
Quasi-static performance of machine tools includes positioning accuracy 
and repeatability, geometric errors of linear and rotary motions, as well as 
alignment and locations of moving axes with respect to each other. The 
environmental effects are primarily in the form of temperature changes and 
gradients resulting in deformation of machine structure.  In addition, errors 
associated with the coordination of multiple axes during the creation of 
complex tool paths are also contributors to machine performance.  Fur-
thermore, static and dynamic stiffness of the machine tool/cutting 
tool/workpiece structural loop contributes to the accuracy of the machined 
part. Similar to modeling the cutting process, there are various approaches 
to modeling machine tool performance.  Most models are based on a com-
bination of a kinematic model and experimental data [23, 24].  Such a 
modeling approach uses sample performance data along the main axes of 
the machine, and then uses kinematic models to estimate performance in 
the whole work zone of the machine (in 2D or 3D).  Other models rely 
more on correlating the representative measurable inputs to the machine 
performance [25].  These models are used for improving the accuracy of 
machine tools and processes [26]. Research  at NIST aims to incorporate 
these diverse models and the associated measurement data into the avail-
able set of objective functions and contraints used by SMS and its dynamic 
optimizer. Ideally, a sophisticated Smart Machining System will utilize all 
of these types of approaches from time to time. It will also need to recog-
nize the limitations and range of uncertainty based on the different meth-
ods. Finally it will have to identify what information is needed by each of 
the modeling approaches and how to exchange it effectively with the other 
parts of LCE. 
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3.1. Improving robustness of machining process models 

In order to provide meaningful improvement to the robustness of predic-
tions from machining process models, we must first define and distinguish 
the various sources and forms of uncertainty and variability involved in the 
models, the predictions, and the machining process. The performance of 
any machining process has some level of inherent variability. This per-
formance can be characterized through various measurements. There is 
uncertainty associated with how well the measurement represents the 
process performance.  If the process is continued or repeated, additional 
measurements will demonstrate some degree of variability with some sta-
tistical distribution. If process parameters such as feed or depth of cut are 
adjusted, the distribution may shift or change shape. Empirical machining 
models are based on experimentally derived relationships between process 
parameters and process measurements.  Given values for process parame-
ters, this type of model typically produces an exact value.  In order to re-
late this exact value to an expected distribution of future measurements, 
we must combine our uncertainty associated with the model and our uncer-
tainty associated with the variability associated with the process itself.   
Balancing these factors against the various priorities of the overall strategy 
will be handled through robust optimization, as described in section 3.1. 
We are changing the form of mechanistic and empirical constraints to in-
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corporate the inherent uncertainty of machining process models and the 
inherent variability of the machining process. For example, a typical force 
constraint has the following form: 

Fc =Kf  f rap
s  (9) 

where values for the constants Kf (4500 N/mm2), r (0.7), and s (1) have 
been determined experimentally.  As a way of coping with the uncertainty 
in mechanistic and empirical models, we propose to redefine the constants 
as random variables with unknown distributions. Estimations of the distri-
butions are then formed on the combined basis of the inherent variability, 
of the process and our uncertainty associated with the model’s prediction 
of process behavior. With subsequent observations of actual process be-
havior, these estimations must be updated and anytime adequate informa-
tion has been obtained to change our estimations of the expected distribu-
tions, the optimization problem can be revisited. Our initial formulation of 
the machining optimization problem will involve a weighted sum of pro-
duction time, cost, and product quality, where the weighting of each factor 
depends on the strategy and priorities indicated by production and design.  
A collection of constraints of the same type as the force constraint in Equa-
tion (9) will be used to fully define the problem, including allowable cut-
ting power and torque, a surface roughness constraint, and a tool life con-
straint.  Additionally, upper and lower limits will constrain the cutting 
speed Vf and the feed f.  More details of this formulation are presented in 
[27]. 

Integration issues in SMS 

This section gives a general description of the implementation to be 
accomplished with the intention to automate and integrate the SMS 
information within the product life cycle management tools. The most 
important issues concern dynamic modification and maintenace of the 
system according to heuristic knowledge, which is generally changing in 
production environment.  

Software development needs 

Each model previously described in section 3.2 and 3.3 presents a small 
part of an optimized solution. In order for an SMS to be robustly optimized 
over time, and in addition to the use of robust optimization algorithms, 
these models must be integrated such that the product life cycle engineer 
views one coherent optimization. This coherence must be performed  
automaticly selecting  the particular models used into the optimization. In 
addition, the software that implements the previously described models 
must be able to work seamlessly as a unified package with other product 



12        L. Deshayes et al. 

life cycle software. To accomplish this goal of seamless integration, the 
software must be interoperable and there must be additional software that 
enables each company’s strategy. SMS is envisioned to facilitate the 
information integration to the rest of the product life management tools. 
Interoperability is achieved through a common understanding of the 
semantics and the syntax of the data passed between software components. 
The easier problem is syntax, and today there are a variety of 
representations such as XML to handle syntax. The more difficult problem 
is semantics. Because people frequently communicate with each other1, 
many have difficulty understanding why getting the semantics correct for 
software is so difficult. The reason is that software is precise. Any small 
differences in meaning may become exaggerated and cause software to 
cease working, or behave in an unexpected way. The current state of 
semantics in manufacturing and engineering is described in the next 
section. Enabling a company’s strategy in machining to be followed means 
that there is a way for the product life cycle engineer to communicate with 
the SMS such that a coherent and global optimization will be formed by 
the machining decisions that are made at various points along the product 
life cycle. To bridge the gap between what is needed for each company’s 
product life cycle, we believe knowledge-based software will require that 
can both communicate the strengths and weaknesses of the different 
models to a life cycle engineer, as well as capture what is important to the 
engineer, so that the best machining decisions can be proposed. 
Knowledge-based software is described in the last subsections. 

3.2. Towards a semantic world in machining  

Currently the most developed level of exchange for product information 
during its life cycle concerns data models and notably through ISO 10303, 
informally known as the STandard for the Exchange of Product model data 
(STEP) [28]. The objective of this standard is to allow the development of 
new application protocols, on the basis of integrated resources and by 
applying the STEP description and implementation methods. This standard 
must allow representatation of  product data from its conception, through 
its realization and ultimate recycling. Although work has been done to 
develop STEP models for manufacturing and machining processes [29-31], 
it must be recognized that this approach is at present limited to modeling 
the product structure information such as geometry, dimensions and 
                                                      

1 Getting the semantics right for people is also difficult. People regularly have semantic arguments 
and use dictionaries to make certain that they understand. Many interactions between people are simple 
and either do not require precise communication or are so simple that precision is easy to achieve. 
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tolerances [32-34]. For this type of information, risks of nonsense (or 
miscomunication) are relatively limited. Information relative to different 
professions with high degrees of specific knowledge are difficult to 
represent in a uniform way. It is often very complex to represent a 
consensual schema of data which does not cause misunderstanding. The 
case of machining is concerned with such context [35] and to be 
competitive, companies need to represent their knowledge using different 
approaches [36]. This is mainly the reason why some researchers work on 
defining machining process concepts. In the USA, standards for data 
specifications, such as the ANSI B5.59-1[37] for machine tool 
performance tests and the ANSI B5.59-2 [38] for properties of machining 
and turning centers, represent data using the XML syntax which gives 
more definition to the concepts. For cutting resources the ISO 13399 [39] 
effort provides a glossary of terms for tooling and recently, data models 
have been proposed using some STEP parts and application protocols.  
The last example concerns STEP NC [31] whose role is to clearly define 
Numerical Control information in order to integrate it with STEP models. 
This approach seems promising for SMS to capture on-line information 
and make it available during the product life cycle. To exemplify the 
problem that these researchers are facing, the description of a cutting tool 
can be taken as an example.  Some experts will see only the insert in the 
end of the tool, while others will be more concerned with the combined 
insert and tool holder, or still others will focus on their semantics for the 
active part of the tool constituted only of two faces and a cutting edge. 
This difficulty is more prevelant today due to the globalization of partners, 
which means that a company does not deal only with local partners but 
with worldwide practices and knowledge. Ontologies allow capturing both 
the semantic and the syntax description of the information. The purpose of 
ontologies engineering is to make explicit, for a given domain, the 
knowledge contained in engineering software and in business or 
companies’ procedures [40]. An ontology expresses, for a particular 
domain; a set of terms, entities, objects, classes, and relations among them. 
It supplies formal definitions but also axioms whose role is to constrain the 
term interpretations. An ontology allows one to represent a very rich 
variety of structural and non-structural relations such as generalization, 
inheritance, aggregation, and instantiation. It can supply a precise model 
for software applications. Finally, an ontology is able to represent relations 
defined in taxonomic or data models by adding to it axioms which 
constrain the interpretation or implicit relations of terms. Ontologies are 
generally represented by using a wide variety of legible and logical 
languages which are understandable both by humans and machines. Such 
as shown in [41] Propositional Logic (PL) is one way to model ontologies, 
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but PL lacks the expressive power to model concisely an environment with 
many objects and facts. First Order Logic (FOL) has much more 
expressivity and can represent much more complex relations between 
objects. The Ontology Web Language (OWL) is the language widely used 
by the semantic web community. In comparison to FOL, OWL is weightier 
and based on a taxonomic model. Some attemps concerning process 
ontologies [42] and machining [35, 43] have been done and are intended to 
be used as base models for the SMS implementation. 

3.3. Knowledge-based models 

In the previous section the concept of an ontology was introduced to 
help an SMS deal with interoperability problems. An ontology helps us 
deal with issues surrounding the semantics of terms and their precise 
usage. As such an ontology represents one kind of knowledge. Earlier in 
section 3, mathematical optimization trends and how an SMS might take 
advantage of those trends was discussed. This represents a different type of 
knowledge, that of solving problems that fall into the category of 
mathematical optimization. This is a critical component of machining 
process improvement. There is a third type of knowledge that helps with 
both the tactics and the strategy of improving the machining process. 
Tactics from the the point of view of helping a mathematical optimizer 
compute one of the functions the optimizer is evaluating. As described in 
section 3.1 there are different ways of computing cutting forces: (a) 
traditional experience-based models; (b) machining experiment methods 
using mechanistic models; and, (c) models that use standard material 
properties rather than specific machining experiments. When the 
mathematical optimization program needs a cutting force function, a 
tactical decision must be made about what is the best way to compute that 
function. The decision depends on: (a) what data is available; (b) how 
difficult is the data to obtain; (c) what stage of life cycle the product is in; 
and (d) various other questions that may depend on the organizations 
capitalized experience. This type of decision-making is based on heuristic 
knowledge. Frequently this knowledge is hard-coded into a system based 
upon interactions between domain experts and system analysts. The 
difficulty with this approach is that one ends up with a system that 
represents one view point, and for which there is difficulty representing 
multiple and changing viewpoints. The approach is to move away from 
capturing this knowledge as one unified program, but rather to use a 
mechanism that allows smaller fragments of knowledge to be captured at 
about the level of single sentences in a natural language. The formal 
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languages used to capture this knowledge are the same as those used in 
ontologies described earlier. This has the advantage of allowing the 
domain expert and the system analyst to focus on single components of the 
knowledge base. When the tactical and strategic knowledge are captured, 
then generic programs (theorem provers, production rule / blackboard 
systems) can be used to make the tactical or strategic decisions. In 
conclusion, knowledge based systems will play two roles in SMS. First the 
role of helping to decide what to opitimize in the detailed process plan, and 
second what tactics to apply when optimizing the detailed process plan 
during its realization, i.e., using on-line monitoring and adaptive controls. 

4. Conclusion and discussion of future work 

The research presented in this paper is in its initial stages.  Although 
significant information related to performance of machine tools, machining 
processes, cutting tools, and materials already exist, there is no unified 
methodology to combine this information to generate optimum machining 
conditions with expected outcomes. Our research aims to address this need 
by developing necessary tools and architectures.  During this development, 
we plan to assess the robustness of available models and provide further 
improvements  in models and data. For example, recent improvements in 
both FEM modeling techniques and sensors such as high speed visible 
light and thermal cameras are rapidly improving our ability to verify and 
improve machining models.  Improvements in chip formation modeling 
are also expected as a result of this effort.  Our immediate effort will be 
focused on demonstrating a simple version of the dynamic process opti-
mizer with a specific example in turning including a knowledge base and 
mechanistic models. Loaded with high fidelity process and performance 
models and optimization tools, SMS will behave in a predictable and 
controllable manner well integrated with the rest of the manufacturing 
enterprise and life cycle engineering. 

Disclaimer 

Any commercial equipment and materials are identified in order to 
adequately specify certain procedures. In no case does such identification 
imply recommendation or endorsement by the National Institute of 
Standards and Technology, nor does it imply that the materials or 
equipment identified are necessarily the best available for the purpose. 
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