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In this chapter, we describe a hybrid decision model and a multi-agent framework for 
collaborative decision support in the design process. The proposed knowledge-based 
collaborative decision support model can quantitatively incorporate qualitative design 
knowledge and preferences for multiple, conflicting attributes stored in a knowledge 
repository so that a better understanding of the consequences of design decisions can be 
achieved from an overall perspective. The multi-agent framework provides an efficient 
decision support environment involving distributed resources to shorten the realization 
of products with optimal life-cycle performance and competitiveness. The developed 
model and framework are generic and flexible enough to be used in a variety of design 
decision problems. The framework is illustrated with an application in concept 
evaluation and selection in power supply product family design for mass 
customization. 

16.1. Introduction 

Engineering design is essentially a collaborative decision-making process that requires 
rigorous evaluation, comparison and selection of design alternatives as well as 
optimization from a global perspective on the basis of different classes of design 
criteria. Increasing design knowledge and supporting designers to make correct and 
intelligent decisions can increase design efficiency. Thus, a design strategy must be 
devised to specifically address all aspects of design including process modeling, 
knowledge modeling, decision support, and the inherent complexity arising from 
representing physical design problems using idealized computer-based models. Such a 
strategy can, then, lead to the identification and development of knowledge decision 
support techniques that play a critical role in enabling designers to make intelligent 
decisions towards improving the overall quality of the products designed.  
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This chapter aims to develop a knowledge supported decision support methodology 
for the smooth integration of stakeholders involved in collaborative product 
development and improved product performance. The goal is to develop a sound, 
robust, practical trade-off based design decision model that can quantitatively 
incorporate qualitative knowledge and preferences for multiple, conflicting attributes 
stored in a knowledge repository. The focus in this chapter is to establish a knowledge-
based decision model and framework for collaborative design.  

The organization of this chapter is as follows. Section 16.2 reviews the previous 
research related to design decision support and current status. Section 16.3 discusses 
the design decision support process and decision-based design. Knowledge intensive 
decision support for design process is highlighted. Section 16.4 proposes a knowledge-
based decision model. Section 16.5 discusses collaborative decision-making 
mechanisms. Section 16.6 proposes a multi-agent collaborative decision support 
framework. Section 16.7 provides the application of the proposed model in concept 
evaluation and selection. Section 16.8 provides a case study. Section 16.9 summarizes 
the chapter and points out opportunities for future work.   

16.2. Literature Review  

Design decision support problems necessitate the search for superior or satisficing 
design solutions (Simon 1976), especially in the early stages of design, when all of the 
information needed to model a system comprehensively may not be available. Current 
research in design decision support (particularly pertaining to decision-based design) is 
focused on enabling technologies to assist product designers to make decisions in the 
design process (Rosen et al. 2000, Mistree et al. 1995), where primary emphasis is on 
support for information management related to decision-making. Generally, the 
literature on design evaluation and selection decision support can be classified into six 
categories (Jiao and Tseng 1998): 1) multi-criteria utility analysis, 2) fuzzy set analysis, 
3) probability analysis, 4) the hybrid approach, 5) design analytic methodology, and 6) 
the information content approach (Suh 1990).  

With the emergence of collaborative design, researchers are addressing enabling 
technologies or infrastructure to assist product designers in the computer or network-
centric design environment (Sriram 2002, Rosen et al. 2000). Some recent techniques 
are intended to help designers collaborate or coordinate by sharing product information 
and manufacturing services through formal or informal interactions, while others are 
geared towards conflict management. Most decision support programs can only 
calculate satisfaction levels. There is a need for adding unique analysis and reporting 
features, including: probability that a particular alternative is the best choice; 
assessment of the level of consensus for each alternative; guidance on what should be 
done next; and documentation of the entire decision making process. In early stages 
design decisions are ill-structured and often supported with scarce information. 
Multiple potential solutions and limited predictability all contribute to the design 
complexity (Lambright and Ume 1996). Moreover, significant functional and technical 
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barriers often prevent the free flow of the necessary knowledge and information 
(Forgionne, 1994). Mathematical programming, utility analysis and algorithm-rigorous 
optimization modeling approaches (e.g., compromise decision support problem (cDSP) 
& goal programming techniques) are data and information based, and thus cannot 
handle knowledge by nature. They are only for quantitative (tangible) criteria but not 
for qualitative (intangible) criteria (difficult to quantify). A knowledge-based decision 
support model, however, as proposed here, overcomes many of the shortcomings 
discussed earlier.  

16.3. Design Decision Support Process 

16.3.1 Decision Support Process 

Generally speaking, decision is a choice, which is to realize a certain goal by analyzing 
subjective-objective conditions, generating alternatives, and choosing the most 
appropriate one among them. A generic decision support process can be described as 
having the following interactive aspects: intelligence, design, choice and 
implementation, as shown in Fig.16.1. It experiences the stages ranging from problem 
identification and classification, simplification of assumptions, data collection, model 
formulation, solution alternatives generation, evaluation, and selection, as well as 
model validation and verification and testing of the proposed solution to final plan 
implementation. The current research is focused on how knowledge support can aid the 
decision-maker to make a decision during the design process. Fig.16.2 illustrates a 
scenario of implementing knowledge-based decision support (DDS) from the 
perspective of decision knowledge management (DKM), in which knowledge 
management technologies include knowledge generation and acquisition, knowledge 
codification, and knowledge processing and utilization (reasoning), etc.   

16.3.2 Decision-Based Design Process 

The main role of a designer is to apply scientific and engineering knowledge to find 
(generate, evaluate and select) the solutions of design problems, and then optimize 
those solutions within the framework composed requirements and constraints set by 
physical, environmental and human-related considerations. We view design as the 
process of converting information that characterizes the needs and requirements for a 
product into knowledge about a product. Based on the principle of decision-based 
design, design equation can be expressed as follows (Mistree 1995): {K} = T {I}, 
where, K is knowledge output, I is information input, and T is transformation 
relationship, respectively. Thus, knowledge-intensive support becomes more critical in 
the design process and has been recognized as a key enabling technology for retaining 
a competitive advantage in product development.  
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Fig.16.1: Decision support process (from Simon 1976) 
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Fig.16.2: Decision support implementation scenario 
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In this chapter, we present the development of a knowledge intensive design 
decision support scheme, as depicted in Fig.16.3, in which design decision support is 
exploited from the synthesis of design process modeling (DPM), knowledge 
management (KM), and decision support (DS). From the motivations and an overview 
of the design decision- making support process, it can be seen that the decision theories 
for example game theory, utility theory, probability theory, fuzzy set theory and 
extension set theory, etc., play a key role during the process (see Hazelrigg 1996 for 
discussion of some of these techniques). 
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Fig.16.3: Knowledge intensive design support system (KIDSS) 

 

16.4. Hybrid Robust Decision Model 

In this section, we establish a hybrid robust decision model which may integrate one or 
more techniques such as cDSP, fuzzy system, neural networks, intelligent agents, data 
mining and knowledge discovery (e.g. fuzzy clustering algorithm), extension theory 
and genetic algorithm, etc., to solve both cooperative and non-cooperative, compatible 
and incompatible decision problems. Details of these techniques are provided below. 

16.4.1 Compromise Decision Support Model (cDSP) 

Decision support problems (DSPs) are generally formulated using a combination of 
analysis-based hard information and engineering judgment in the form of viewpoints, 
post solution sensitivity analysis, bounds, and context for decisions to be made. Two 
primary types of decisions are supported within the DSP technique: selection and 
compromise, and along with several combinations of these. The "selection" type 
decision actually includes evaluation and indication of preference based on multiple 
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attributes for one among several feasible alternatives, while the "compromise" type 
decision is the improvement of a given alternative through modification. Another 
aspect of the DSP technique that is particularly relevant to distributed collaborative 
design is the facility of expressing decisions that are linked together such as coupled 
and hierarchical decisions through combinations of selection and compromise DSPs 
(i.e., selection-selection, compromise- compromise, and selection-compromise) (Xiao 
et al 2002). These derived decision constructs are ideally suited for modeling networks 
of concurrent and sequential decisions that share information and knowledge. In the 
compromise decision support problem (cDSP) model, a hybrid of goal programming 
and mathematical programming is used to determine the values of design variables that 
satisfy a set of constraints and achieve as closely as possible a set of conflicting goals. 
For more details, please refer to (Mistree et al. 1993, 1995). 

16.4.2 Fuzzy Synthetic Decision Model (FSD) 

The problem of design evaluation and selection can be defined as: given a set of design 
alternatives, evaluate and select a design alternative that can satisfy customer needs, 
meet design requirements and fit the technical capabilities of a company. To combine 
expert judgment and process useful knowledge for decision-making, a fuzzy synthetic 
decision model is developed based on fuzzy AHP, ranking algorithms and inference 
mechanisms for engineering design evaluation and selection. 

16.4.2.1 Fuzzy Analytic Hierarchy Process 

The AHP mechanism proposed by Satty (1991) is widely recognized as a useful tool to 
support multi-attribute decision-making. It is a compositional approach where a multi-
attribute problem is first structured into a hierarchy of interrelated elements, and then a 
pairwise comparison of elements in terms of their dominance is elicited. The weights 
are given by the eigenvector associated with the highest eigenvalue of the reciprocal 
ration matrix of pairwise comparisons. Using AHP, a designer is capable of choosing 
weights by comparing the importance of two criteria subjectively. The pairwise 
comparison ratio which is comparison of the importance of criterion i and criterion j, 
that is wi and wj, is defined as:  

aij= wi /wj                                                     (1) 
Considering a pairwise comparison matrix A = [aij] and an importance index 

(weight) vector W = [wi], their relationship can be described according to:  
AW =nW                                                        (2) 

When A is given, W and n are calculated as an eigenvector and an eigenvalue of A, 
respectively. In this study, each agent has its own matrix A, and exchanges the matrix 
between agents to cooperatively adapt to changes in the design process. In AHP, the 
pairwise comparison matrix should be examined for reliability of consistency. The 
consistency index (CI) is calculated as:  
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CI = 
1

max

−
−

n

nλ
                                                      (3) 

where, maxλ is the maximum value of 0. If the value of CI is higher than 0.1, the 

matrix should be reset by comparing importance again. Therefore, we should focus on 
the comparison matrix A. Currently, most of researchers compose AHP comparison 
matrix A according to user’s individual and flexible preferences. In a flexible 
negotiation environment, however, most of agents may change their offers according to 
counter offers. Hence, there is a need to build the comparison matrix A dynamically. In 
this work, we combine fuzzy membership functions with the AHP to pursue the 
preference of agents dynamically, and as a result, we propose the fuzzy comparison 
matrix A. 

16.4.2.2 Fuzzy Ranking for Evaluation 

Using the design solution clustering techniques (e.g., cDSP model above) at the 
conceptual design stage, a reasonable number of possible design alternatives can be 
obtained. Once this is achieved, one needs to examine the design alternatives against 
marketing and econo-technical as well as ergonomic criteria and aesthetic criteria. This 
is actually a multi-criteria decision-making problem. One of the well-known methods 
for multi-criteria decision-making is the traditional procedure for calculating a 

weighted average rating ir  by use of value analysis or cost-benefit analysis (Pahl and 

Beitz 1996): 
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n

j
j

n

j
ijj wrw

11
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where, i=1,2,…,m, j=1,2,3,…, n , rij denotes the merit of alternative ai according to 
the criterion Cj; wj denotes the importance of criterion Cj in the evaluation of 

alternatives. The higher ir  is, the better is its aggregated performance.   

  However, the above traditional procedure is not applicable for situations where 
uncertainty exists and the available information is incomplete. For example, the terms 
“very important,” “good,” or “not good” themselves constitute a fuzzy set. Here, we 
give an example of the problem of fuzzy ranking in terms of evaluating a set of 
alternatives against a set of criteria (Zadeh 1965, Kickert 1978, Gui 1993). Let a set of 
m alternatives A={a1, a2,...,am} be a fuzzy set on a set of n criteria C={C1,C2,...,Cn } to 

be evaluated. Suppose that the fuzzy rating ijr~  to certain Cj of alternative ai is 

characterized by a membership function )~(~ ijR
r

ij
µ , where, Rrij ∈~ , and a set of weights 

}~,...,~,~{
~

21 nwwwW = is fuzzy linguistic variables characterized 
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where, o∧ is the calculation operator of taking minimum. Thus, through the 

mapping RRzg n
ii →2:)( , the fuzzy set iZ

~
induces a fuzzy rating set iR

~
 with the 

membership function 

Rrzr iiZrzgZiR iiiii
∈= = ),~(sup)~( ~~)~(~ µµ                                            (7) 

The final fuzzy rating of design alternative ai can be characterized by this 

membership function. But it does not mean the alternative with the maximal )~(~ iR
rµ is 

the best one. The following procedure can be employed to further characterize the two 
fuzzy sets as (Gui 1993):  

(1) a conditional fuzzy set is defined with the membership function: 
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(2) a fuzzy set is constructed with membership function: 
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A combination of these two fuzzy sets induces a fuzzy set in which one can determine 
a best design alternative with the highest final rating, i.e.,  

)~...~()~,...~|(sup)( ,1

o

1/~,...~
1 mRmRIrrI rrrrii

m
µµµ ∧=                (10) 

Comparing with Eq.(4), the fuzzy ranking for design alternatives is more flexible and 
presents uncertainty better. Based on this method, a designer can now effectively and 
consistently incorporate linguistic rating and weights such as “good,” “fair,” 
“important,” “rather important,” etc., in design alternatives evaluation.  
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16.4.2.3 Evaluation Function and Index for Selection 

The design space for a complex system is very large. The designer is often required to 
consider not only the product functionality, but also other criteria including 
compactness and other life-cycle issues, such as manufacturability, maintainability, 
reliability, and efficiency. Some of these criteria may contradict each other. Designers 
should analyze the trade-offs among various criteria and make the “best” selection 
from available alternatives. As such, it is important to have a powerful search strategy 
that will lead to a near optimum solution in a reasonable amount of time. The A* 
search algorithm constitutes such a method (Sriram 1997). In the proposed approach, 
the system first calculates the weighted performance rating aggregation of each 
retrieved alternative by analyzing the trade-off among various criteria. Then, it 
calculates the evaluation index of each design alternative by considering all the 
weighted performance ratings. After calculating the numerical weighted performance 
ratings of all design alternatives, the evaluation index is used as a heuristic evaluation 

function hf , by considering all the weighted performance ratings ir  (i=1,2, …, m)  of  

its constituent members and the number k of its unsatisfied customer requirements, as 
follows: 

∑
=

+=
m

i
ih krf

1

)/1(                                    (11) 

where, ir ∈ [0,1] is the numerical weighted performance rating of the design 

alternative ai ; ),1(/1 +∞=ir is defined as the performance cost of design alternative 

ai. A higher-weighted performance rating of a design alternative corresponds to a lower 

performance cost. ∑
=

m

i
ir

1

)/1( represents the accumulated performance cost of a design 

alternative along the search path thus far. k is a heuristic estimate of the minimal 
remaining performance cost of a design alternative along all the possible succeeding 

search paths. hf  is the estimate of the total performance costs of a design alternative. 

hf  is also called the evaluation index or the heuristic evaluation function. In Eq.(11), a 

higher ir , i.e., a better-aggregated performance of each retrieved design alternative ai, 

and a lower m or k, i.e., a higher compactness of a design alternative, will result in a 

lower evaluation index of a design alternative hf . Thus, at each step of the A* search 

process, the best design alternative, i.e., the one with the lowest value of the heuristic 
evaluation function is selected, by taking into account multi-criteria factors including 
design compactness and other life-cycle issues, such as manufacturability, 
assemblability, maintainability, reliability, and efficiency. 
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16.4.3 Integration and Cooperation of Decision Models  

All available algorithms for optimization and constraint satisfaction have weaknesses; 
more rigorous algorithms tend to be too slow, heuristics, too unreliable. Rather than 
attempting to design a new algorithm without weaknesses, a task that is difficult if not 
impossible, some researchers have been working on ways to organize algorithms so 
that they can suppress their respective weaknesses through cooperation, and together 
achieve what separately they might not (Talukdar et al. 1996, Zha 2003). As stated 
above, the cDSP model is basically data and information centric and more appropriate 
for implementation in conjunction with tangible (quantitative) criteria rather than for 
intangible (qualitative) criteria. The FSD model is knowledge based and able to handle 
both intangible and tangible criteria (e.g., from fuzzy requirements to crisp design). 
The synthesis of the cDSP and FSD models can generate a more powerful robust 
decision model. The scheme or mode of integration and coordination could be either 
“loose,” or “tight.” In the loose mode, two or more models are combined and they work 
together but complement each other. Depending on the nature of the decision problem, 
an adaptor is employed in the model and served as a regulatory switch to adapt the 
decision problems by shifting the paradigms from one decision method (e.g., cDSP) to 
another (e.g., FSD). Together with a genetic algorithm (sGA), a systematic knowledge-
based adjustment method for parameters is developed for the decision maker in the 
complex system design. The regulatory switch is implemented using sGA and the 
knowledge-based guidance (Lu et al. 2000). In the tight mode, two or more models co-
exist and are integrated into a single hybrid model, for example, fuzzy cDSP, fuzzy 
neural networks or the neuro-fuzzy system above, etc.  Fig.16.4 provides a schematic 
view of the hybrid robust decision model integrating cDSP and FSD models. This kind 
of knowledge-based model can manage design decision knowledge and provide real-
time or on-line support to designers in the decision-making process: 1) overcome 
shortcomings of cDSP; 2) suggest solutions and provide explanations to the designer; 
3) may be used in the early design stage; and 4) stimulate the designer to generate new 
design ideas (with learning).  

16.5. Collaborative Decision Making Mechanisms  

 Coordination is the central problem of multi-agent systems (MAS), which includes 
cooperation and conflict resolution problem. In fact, the conflict problem is non-
cooperative problem, so the conflict resolution is the key technology for MAS. The 
common ways to solve the conflicts are arbitration and negotiation. The arbitration is 
based on the classic mathematic theory and reasoning rules according to the concept of 
characteristic function which means that “to be or not to be, (yes, no) or (0,1),” while 
the negotiation means is based on fuzzy set theory and reasoning rules according to the 
concept of membership function which means that the membership’s degree of “to be 
or not to be, [yes, no] or [0,1].” Both ways result in the cost of sacrificing individual 
agents’ interests with different degrees. In this section, two mechanisms, the 
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transforming bridge and regulatory switch (Zha et al 2003), are used for solving 
conflict or incompatible problems and collaboration/negotiation between designers/ 
decision-makers in design.  
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Fig.16.4: Hybrid robust decision support model 

16.5.1 Transforming Bridge  

The transforming bridge method is proposed to deal with conflict or incompatible 
decision problems. Two disputing factions require a bridge to span the river that 
separates them. The river is the neutral territory and therefore the bridge must 
physically transform to serve as a place for conflict resolution. When transformed, the 
“room” must no longer function as a bridge. The typical imaginary example for using 
this method is how people in Hong Kong solve the so-called “connections between 
right side drive and left side drive” problem. Thus, the concept of transforming bridge 
enables the two incompatible sides to prevail in maintaining their two own specific 
interests. It is neither a solution method based on competition nor the one that trade-off 
and balance are out their interests.  

We deal with the conflict problems as opposite (compatible and incompatible) 
problems. Transformation is based on the reasoning rules according to the concept of 
dependent (transfer) function, which means “to be or not to be can be interchanged”. 
Based on the principles of “go the contrary way” and “disport frequency of multiple 
branches” a transforming bridge can be devised to solve multi-agent resource conflict 
problems and dynamic design conflict problems. Specifically, a design-transforming 
bridge, which can play a connected and transformable role, is designed between two 
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players so that the conflict can be resolved and therefore two players can gain their 
satisfied solutions. By handling the incompatible problems, the searching range will be 
expanded step by step according to the degree of conflict of the to-be-solved problems.  
For example, the chess playing process could be analyzed using this bridge. When 
more than one piece of chess is in danger, by normal optimal algorithms the smallest 
loss will be calculated and the piece with the smallest loss will be abandoned. By 
means of an extension strategy, the already calculated smallest loss will be used to 
extend the set and search for a new chance among those pieces that are momentarily 
not in danger but have an opportunity to start a new attack. The price of this new attack 
must be even smaller than the calculated loss before. 

16.5.2 Regulatory Switch 

Traditionally, the designer usually depends on a human’s knowledge and trial-and-error 
when determining a parameter value. However, these methods are not easy to apply 
when there are too many system parameters with potential relationships. A genetic 
algorithm has the advantage of searching optimum and avoids local values. Together 
with a genetic algorithm, a systematic adjustment method for parameters is developed 
for a decision maker in a complex system design. The sGA (Dasgupta and McGregor 
1994) design representation uses regulatory genes that act as a switch to turn genes on 
(active) and off (passive). Each gene in higher levels acts as a switchable pointer that 
has two possible targets: when the gene is active (on) it points to its lower-level target 
(gene), and when passive (off) it points to the same-level target. At the evaluation stage 
only the expressed genes of an individual are translated into the phenotypic 
functionality, which means that only the genes that are currently active contribute to 
the fitness of the decision. The passive genes do not influence fitness and are carried 
along as redundant genetic material during the evolutionary decision making process. 
Therefore, the utilization of the sGA approach to collaborative design decision can be 
summarized as follows. First, genes represent decision modules or subsystems that are 
either active or passive, depending on whether or not they contribute to the decision 
problem. Then, a family of decision solutions relied on the addition or subtraction of 
decision modules could be evaluated by alternating different "active" and "passive" 
modules or subsystems. A family of solutions would thus correspond to decision model 
variants that have different active and passive combinations of modules or subsystems. 

16.5.3 Negotiation Support  

During the decision-making between multiple designers, it is crucial to negotiate on 
multiple attributes of a design deal such as material, manufacturing method, parameters 
values, cost, quantity, quality, and relative preference. The negotiation is a form of 
decision-making with two or more actively involved agents who could not make 
decisions independently, and therefore must make concessions to achieve a 
compromise. Therefore, negotiations for an enormous volume of transaction on the 
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Internet became a fundamental mechanism to automating collaborative design. 
Furthermore, the flexibility and adaptability of the negotiation mechanism may be used 
as a plausible source of motivation and framework for the design of intelligent and 
autonomous agent systems (Kim et al. 2003). In this work, the negotiation mechanism 
using the FSD model is composed of the following six phases:  
(1) The negotiation mechanism is started with the ‘initial offers for a design deal’ of 

agent (designer). In this phase, each negotiation agent offers their negotiation 
conditions reflecting their relative preference for a deal. The design deal is 
composed of quantitative conditions such as parameters values and cost. However, 
the fuzzy values for these conditions are changed by fuzzy membership functions 
reflecting qualitative conditions such as relative preference.  

(2) After the initial offers of agent, ‘fuzzy membership functions’ are used to support 
the construction of fuzzy pairwise comparison matrix A. Using this fuzzy 
membership function, designer’s relative preferences are transformed into fuzzy 
membership values. During the transformation process, bell-shaped (or Z, λ, π and 
S-type) fuzzy membership functions can be adopted.   

(3) The ‘pairwise comparison matrix A’ is constructed. In this phase, the AHP 
comparison matrix is used to compute the relative importance about each 
alternative (deal). As a result, each agent’s offers are fully compared.  

(4) This phase is for ‘selection of preferred offer’ of the negotiation agent. Based on 
the result of comparison in phase (3), the preferred offers are selected by one or 
some designers. However, this is the first step of dynamic negotiation process.  

(5) The fifth phase is for ‘revision of offers and negotiation’. In this phase, each agent 
revises their ‘initial offer’ and continues to negotiate with their counterpart. For 
this purpose, the ‘goal-seeking’ methodology is used to revise the initial offers.  

(6) The final phase is to suggest the ‘optimal offer’. The fuzzified pairwise 
comparison matrix A and the AHP inference mechanism are used to suggest the 
optimal offer, and then go to the phase (5) to lead a consensus with their 
counterpart. As a result, each designer could satisfy with the final offers. 

16.6. Multi-Agent Collaborative Design Decision Support 
Framework 

The overall knowledge-intensive multi-agent design decision support scheme proposed 
in (Zha 2003) is shown in Fig.16.5. This secheme consists of a design process 
modeling and management agent, a knowledge capture agent, a knowledge repository, 
co-designers, a decision support agent, etc. The communication, negotiation and 
execution mechanisms between these agents are modeled with contract nets. The core 
of the scheme is the decision support agent which is the focus of discussion. The 
knowledge repository is used to store, share, and reuse the corporate design knowledge 
(Szykman 2001). A prototype web-based design decision support system has been 
developed to verify and demonstrate the developed methodologies (algorithms) and 



14 Xuan F Zha, Ram D Sriram 

framework. The decision support agent could be used as an autonomous agent to be 
finally integrated into a web-based product design and realization framework to support 
collaborative decision-making in the product development process (design chain). The 
decision support agent should be able to make autonomous decisions concerning: 1) 
spawning an agent to search in a given direction, 2) killing an agent that is not very 
successful, 3) negotiation between agents (unless they need to consult the designer), 4) 
recognition of novelty of a solution (eventually consulting the knowledge repository or 
database of existing solutions) and turning designer’s attention towards it, 5) when to 
consult the designer, etc.  

Knowledge 
Capture Agent

Design Process 
Modeling and 

Management Agent

Designer

Design Support 
Agent

Design Knowledge 
Management  Agent

Designer
Designer

Designer

Knowledge Repository

 
Fig.16.5: The overall multi-agent knowledge intensive decision support framework 

 
The comparative ranking of alternatives and decision-making discussed in section 

16.4.2 is a fundamental component of the design decision agent. As stated previously 
several formal decision models exist (Section 16.2). Utility theory (Keeney and Raiffa 
1976) and AHP (Saaty 1991) are well known examples.  The decision agent, illustrated 
in Fig.16.6, is a container specialized in providing evaluation services. It contains 
criteria which pair design attributes (variable modules) with preference modules (a type 
of variable module used to define preference functions).  The decision agent provides 
an overall multiple attribute evaluation service while each criterion evaluates a single 
attribute. The relations of the criterion and decision agent are not user defined. The 
criterion relations calculate the worth of the design attribute based upon the preference 
model, while decision agents automatically generate relations to aggregate single 
attribute evaluations for multiple attribute decision. Thus, there are different types of 
decision agents for each decision theory. In the prototype implementation the decision 
agent has been developed by integrating the cDSP technique with an expert/knowledge 
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model into a hybrid robust decision support model for criterion/argument analysis and 
fusion 

Criterion

Criterion

Criterion

Multiple 
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Evaluation

Decision

Overall 
Evaluation

Agent 1 Agent 2

Agent 3

Agent 4

A C

ED

B

F
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Preference
Search 
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Output

Agents
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K

K

(a) Agent cooperation and designer interaction 

(c) Criterion and decision-making agent

(b) Agents in the design context

Single 
EvaluationSingle

Attribute 
Evaluation

Design 
Attribute

Preference 
Function

  
Fig.16.6: Decision support agent.  

16.7. Application in Conceptual Design Decision Support  

During the conceptual design stage (Fig.16.7), a family of product concepts (or product 
concept variants) can vary widely by the selection and assembly of modules or pre-
defined building blocks at different levels of abstraction so as to satisfy diverse 
customers’ requirements. A wrong or even a poor selection of either a building block or 
module can rarely be compensated for at later design stages and can give rise to a great 
expense of redesign costs (Pahl and Beitz, 1996). Thus, concept evaluation and 
selection is crucial in this stage. We propose a knowledge decision support approach to 
concept evaluation and selection, as shown in Fig.16.8. The kernel of the knowledge 
decision support scheme is the hybrid decision support model discussed above. This 
model is used for design concept evaluation and selection, in which the cDSP model is 
used to cluster/classify design alternatives or variants and determine similarity and 
commonality between modules, product variants and product families; while the FSD 
model is used to evaluate and select a design alternative that satisfies customer needs, 
meets design requirements and complies with the technical capabilities of a company. 
The knowledge resource utilized in the process extensively includes differentiating 
features, customers' requirements, desires, preferences and importance (weights), trade-
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offs (e.g., market vs investment), and utility functions, and heuristic knowledge, rules, 
etc.  

Assign Tasks

• Generate Alternatives

• Evaluate Alternatives 

• Select Alternatives

(Make Decisions)

Find Solutions

Conceptual Design Stage

 
Fig.16.7: Concept evaluation and selection in design 
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Fig.16.8: Knowledge decision support for concept evaluation and selection  

16.8. Case Study  

The above proposed knowledge support scheme has been used for decision making in a 
power supply family design for customization. Specifically, the cDSP model is used to 
cluster/classify power supply family product design alternatives or variants and 
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determine similarity and commonality between modules and product variants. The FSD 
model is used to evaluate and select the power supply design alternatives that satisfy 
customer needs, meet design requirements and comply with the technical capabilities, 
in which the negotiation is involved.   

 From a customer’s point of view, a power supply product is defined based on the 
following required features (RFs): power, output voltage (OutV), output current 
(OutC), size, regulation, mean time between failure (MTBF), etc.  From an engineers' 
point of view, the power supply product is designed by determining these variables 
(parameters) (DPs): core of transformer (Core), coil of transformer (Coil), switch 
frequency (SwitchF), rectifier, heat sink type (TypeHS), heat sink size (SizeHS), 
control loop (Control), etc. Using the cDSP model and fuzzy clustering, three different 
clusters are obtained. Three product families I, II and III are generated based on three 
different clusters, which have 4, 5 and 3 base products (BPs) respectively. Each cluster 
has its own range/limitation with regard to particular product features and/or design 
parameters. When the product configuration is carried out, the design requirements and 
constraints are satisfied especially in terms of product functions or functional features.  

Fuzzy Rules: 

IF   MTBF is small and 
Price is high and  
without Special Offer

THEN  Non-rational (not acceptable)

…...

IF   MTBF is high and 
Price is medium and  
with Special Offer 

THEN  Rational (acceptable) 

MTBF Price Specials

NLP40-7610 150 36

NSF40-7610 170 32

NSF40-7910 170 40

NSF42-7610 230 20 Auto-Restart

Knowledge Source 1

Knowledge Source 3

Knowledge Source 2

Knowledge Source 4

MTBF

Utility
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Utility

Special

Utility

Knowledge Repository

No

No
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Fig.16.9: Knowledge used in power supply product design for customization 

decision 
With reference to the knowledge decision support scheme for product evaluation, a 

scenario of knowledge support for power supply product evaluation for customization 
in Family I is shown in. The customers’ requirements for Family-I power supplies 
include AC/DC, 45W, 5V & ±15V, 150khrs, $20-50, etc. The knowledge decision 
support system first eliminates unacceptable alternatives and determines four 
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acceptable alternatives: NLP40-7610, NFS40-7610, NFS40-7910, and NFS 42-7610. 
The final design decision can be reached based on the knowledge resources given in 
Fig.16.9, including differentiating features (MTBF, price, and special offer) and their 
utility/membership functions, fuzzy rules, etc. The final design decision made by the 
system is NFS42-7610 as it has maximum MTBF, medium price and special offer of 
auto-start function, and it is acceptable based on the rules.  Table 16.1 gives weights 
and partial performance ratings for each criterion (for NLP40-7610) and evaluation 
results. Fig.16.10 shows a screen snapshot for the power supply product evaluation and 
selection for customization. 

 
Fig.16.10: Screen snapshot for power supply product evaluation and selection for 

customization   
Table 16.1: Weights and partial performance ratings  
Criterion 

No. 
Criterion 

Item 
Criterion Weight Partial Performance Rating  

 Linguistic 
Term 

Fuzzy Number Weight 
Value 

Linguistic 
Term 

Fuzzy Number Rating Crisp 
Value 

1 MTBF High (0.7,0.8,0.8,0.9) w1=0.80 Medium (0.4,0.5,0.5,0.6) r11=0.500 
2 Price Fairly High (0.5,0.6,0.7,0.8) w2=0.65 High  (0.7,0.8,0.8,0.9) r12=0.800 
3 Special Offer Medium (0.4,0.5,0.5,0.6) w3=0.50 Very Low  (0.0, 0.0,0.1,0.2) r13=0.075 

Evaluation Results: 
No. Family I Evaluation Index (h) Rankings 
1 NLP40-7610 2.128 3 
2 NFS40-7610 2.041 2 
3 NFS40-7910 2.222 4 
4 NFS42-7610 1.449 1 

  

16.9. Conclusions and Future Work 

In this chapter we presented a hybrid decision model and a multi-agent framework for 
collaborative decision support in the design process. The hybrid decision model 
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presented in this chapter provides a clean and effective digital interface and design 
decision templates for a series of decisions in design process in the knowledge 
intensive and distributed collaborative environment. The knowledge-based decision 
support model can manage design decision knowledge and provide real-time or on-line 
knowledge support to designers in the decision-making process. It can compensate for 
typical barriers to the decision-making process, including incomplete and evolving 
information, uncertain evaluations, inconsistency of team members’ inputs, etc. The 
robust decision assessment process can be used and refined for the product 
development process mapping, constraint and gap identification, tracking the 
information development and flow, and measuring the effectiveness of current 
processes.  Designers, especially novices, can benefit from retrieval of knowledge 
about previous designs by abstracting information and applying it to a new design or by 
gaining insight into how an earlier related product was designed. By making use of the 
design knowledge, companies are expected to improve the design process for more 
innovative products and reducing product development cycle time. As a kernel of the 
knowledge supported design system, the design decision support system (agent) can 
help design teams make better decisions. The application in concept evaluation and 
selection in design for mass customization illustrates the feasibility and potentials of 
the developed methodology and framework. The developed methodology is flexible 
enough to be used in a variety of decision problems.  

 
Disclaimer: Commercial equipment and software, many of which are either registered 
or trademarked, are identified in order to adequately specify certain procedures. In no 
case does such identification imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor does it imply that the materials or 
equipment identified are necessarily the best available for the purpose. 
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