
A Tool Kit for Implementing XML Schema
Naming and Design Rules

Joshua Lubell, National Institute of Standards and Technology

Boonserm (Serm) Kulvatunyou, National Institute of Standards and
Technology

Abstract

A tool kit being developed at the National Institute of Standards and Technology (NIST)
encodes XML schema Naming and Design Rules in a computer-interpretable fashion,
enabling automated rule enforcement and improving schema quality.

Table of Contents
Motivation .. 1
Automating a Rule: An Example .. 2
An NDR Implementation Tool Kit .. 5
Conclusion ... 8
Bibliography ... 9
A. QoD Exchange Schema .. 9

RELAX NG Schema (Compact Syntax) ... 10
W3C XML Schema .. 11

Note

Commercial equipment and materials are identified in order to describe certain procedures. In no case does
such identification imply recommendation or endorsement by the authors or their organization, nor does
it imply that the materials or equipment identified are necessarily the best available for the purpose. Java
is a trademark or registered trademark of Sun Microsystems, Inc. Other company, product, and service
names may be trademarks or service marks of others.

Motivation
Organizations developing XML schemas [XSD] often establish Naming and Design Rules (NDRs) in order
to maximize interoperability and quality. NDRs are a good way to help enforce best practices, a particular
modeling methodology (such as the Core Components Technical Specification (CCTS) [CCTS]), or con-
formance to standards such as ISO 11179 (Naming and Design Principles for Data Elements) [ISO11179-
1][ISO11179-5]. But no single set of Naming and Design Rules can satisfy everyone's requirements. As
a result, NDRs are proliferating. And new groups embarking on XML schema development are asking,
“Should we create our own NDR, or should we use a pre-existing one?”

To complicate matters further, most NDRs are standardized as presentation-oriented documents to be read
by humans. They are not easily machine-interpretable. Ambiguities and lack of automation make rule en-
forcement difficult. On the other hand, if rules are encoded in a computer-interpretable form, then a single
implementation is chosen, ambiguities disappear, and the rules can be applied automatically as part of

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

XML schema validation. If schemas are automatically generated using a software tool, then NDR conform-
ance can be built into the schema generation process.

And that is not the worst of it. NDRs tend to be authored in proprietary binary word processor formats and
lack any explicit document structure. As a result, it is hard to compare NDRs with one another or to track
changes between different versions of an NDR. Therefore, NDR developers are inclined to “reinvent the
wheel” rather than maximize reuse of existing NDRs.

To summarize, the following barriers prevent NDRs from improving schema interoperability and quality.

• NDR proliferation

• Absence of NDR document structure

• Lack of automated rule enforcement

• Limited versioning and traceability

This paper explores methods for removing these barriers. We first discuss some implementation issues,
using a rule from the Universal Business Language (UBL) NDR as an example. Next, we present a meth-
odology for implementing NDRs and a prototype system using our methodology. We conclude with some
observations regarding our experience.

Automating a Rule: An Example
Consider the following rule from the UBL NDR [UBLNDR]:

[ELD1] Each UBL:DocumentSchema MUST identify one and only one global element declaration
that defines the document ccts:AggregateBusinessInformationEntity being conveyed
in the Schema expression. That global element MUST include an xsd:annotation child element
which MUST further contain an xsd:documentation child element that declares “This element
MUST be conveyed as the root element in any instance document based on this Schema expression.”

This rule says that the schema for a UBL document has to identify a single global element as the root element
and that this element's type must conform to the CCTS definition of an Aggregate Business Information
Entity (ABIE). A UBL document is an XML instance valid with respect to one of the set of XML schemas
in UBL for common business message structures, such as “Order”, “Invoice”, etc. [UBL] An ABIE is
defined to be “a collection of related pieces of business information that together convey a distinct business
meaning in a specific business context.” [CCTS]

An example of a schema conforming to this rule is the UBL Order schema. The relevant definitions are as
follows:

<xsd:element name="Order" type="OrderType">
 <xsd:annotation>
 <xsd:documentation>This element MUST be conveyed as the
root element in any instance document based on this Schema
expression</xsd:documentation>
 </xsd:annotation>
</xsd:element>

<xsd:complexType name="OrderType">
 <xsd:annotation>
 <xsd:documentation>
 <ccts:Component>

2

A Tool Kit for Implementing XML
Schema Naming and Design Rules

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 <ccts:ComponentType>ABIE</ccts:ComponentType>

 ...

</xsd:complexType>

Some observations regarding this rule:

• The rule's label, ELD1 (Element Declaration Rule #1), is a unique identifier, but only with respect to
other rules in the UBL NDR. Another standards body or group of schema developers could give the
same label to a completely different rule.

• Rule ELD1 cannot be understood in isolation. Its semantics depend on other rules, for example rules
saying that the XML Schema namespace has to use “xsd” as its prefix, and Core Components Technical
Specification metadata has to use the “ccts” namespace prefix. As a result of this context dependence,
enforcing ELD1 requires background knowledge of the UBL NDR as a whole, as well as familiarity
with the CCTS.

• Although ELD1 is clearly written, it is written in English and thus requires human interpretation. If
the rule were written in a computer-interpretable language, ELD1 enforcement could be automated.

• ELD1 is really two rules in one. The first sub-rule stipulates that there shall be a single global root
element. This rule's context is the entire schema. The second sub-rule requires that this root element
be an ABIE. This rule's context is limited to the schema's global root element (as determined by the
first sub-rule).

This example shows that a seemingly simple rule can become more complex upon closer examination.
The complexity becomes even more pronounced when we attempt to implement the rule. As our imple-
mentation method, we choose Schematron [ISOSch], a schema language for XML. Schematron can be
used to validate any XML document, including an XML schema itself. Schematron differs from most
other schema languages in that it is rule-based and uses XPath [XPath] expressions instead of grammars.
Instead of creating a grammar for an XML document, a Schematron schema makes assertions applied to
a specific context path within the document. If an XML document fails to meet the assertion, a diagnostic
message supplied by the author of the Schematron schema can be displayed. Because Schematron supports
assertions about arbitrary patterns in XML documents, and because diagnostic messages are author-supplied,
Schematron is more expressive than grammar-based schema languages.

The following Schematron schema, which shows Schematron's expressive power, implements rule ELD1:

<schema xmlns="http://www.ascc.net/xml/schematron">
 <ns prefix="xs" uri="http://www.w3.org/2001/XMLSchema"/>
 <ns prefix="ccts" uri=
"urn:oasis:names:specification:ubl:schema:xsd:CoreComponentParameters-
1.0"/>
 <key name="complex-type" match="xs:complexType" path="@name"/>

 <pattern name=
"UBL-100 [Rule ELD1] One root element is defined in a Control schema"
 id="eld1">

 <rule context="xs:schema">
 <assert test=
"count(xs:element[normalize-space(xs:annotation/xs:documentation) =
'This element MUST be conveyed as the root element in any instance
document based on this Schema expression'])=1">

3

A Tool Kit for Implementing XML
Schema Naming and Design Rules

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The document schema MUST identify one and only one global root
element containing the documentation, "This element MUST be
conveyed as the root element in any instance document based on
this Schema expression".
 </assert>
 </rule>

 <rule context=
"xs:schema/xs:element[normalize-space(xs:annotation/xs:documentation) =
'This element MUST be conveyed as the root element in any instance
document based on this Schema expression']">
 <assert diagnostics="root-elt-name" test=
"normalize-space(key('complex-type', @type)//ccts:ComponentType) =
'ABIE'">
The global root element MUST be an Aggregate Business
Information Entity.
 </assert>
 </rule>

 </pattern>

 <diagnostics>
 <diagnostic id="root-elt-name">Global root element
'<value-of select="@name"/>' is not an ABIE.</diagnostic>
 </diagnostics>

</schema>

If we remove <ccts:ComponentType>ABIE</ccts:ComponentType> from the OrderType
complex type definition in the UBL Order schema, this Schematron schema produces the following dia-
gnostic message:

error: assertion failed:
The global root element MUST be an Aggregate Business
Information Entity.
Global root element 'Order' is not an ABIE.

Removing xsd:element's xsd:annotation child element results in the following Schematron output:

error: assertion failed:
The document schema MUST identify one and only one global
root element containing the documentation, "This element
MUST be conveyed as the root element in any instance document
based on this Schema expression".

As one can see, the Schematron implementation of ELD1 is nontrivial. The trickiest part of the implement-
ation is supplying the correct XPath expressions for the assertions and rule contexts. On the other hand,
once a rule is implemented, it can be automatically enforced as part of the schema development processes.

Although Schematron's rule-based syntax and use of XPath make it particularly handy for NDR implement-
ation, some Naming and Design Rules require additional capabilities. For instance, rules constraining
names of elements, attributes, or types might require a dictionary lookup. UBL General Naming Rules #1
and #7 are examples of such rules:

4

A Tool Kit for Implementing XML
Schema Naming and Design Rules

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

[GNR1] UBL XML element, attribute and type names MUST be in the English language, using the
primary English spellings provided in the Oxford English Dictionary.

[GNR7] UBL XML element, attribute and type names MUST be in singular form unless the concept
itself is plural.

Rules GNR1 and GNR7 would be most easily implemented using an interpreted scripting language sup-
porting regular expressions and allowing system calls to external applications (such as a local or online
electronic dictionary). Compared with Schematron, interpreted scripting languages have an advantage of
greater expressiveness to implement more complex rules. Scripting languages can interact with other ap-
plications and systems. They allow complex branching logic. They can process regular expressions. Their
major disadvantage is that they are not XML native; consequently, it is more difficult to write XML schema
Naming and Design Rules. Rather than expressing XPaths directly, the scripting language must use an
application programmer interface (API) to access the XML. As a result, scripting language implementations
are likely to be more verbose and difficult to understand than Schematron implementations.

An NDR Implementation Tool Kit
So far we have provided examples of rules and discussed alternative implementation methods. We have
not yet talked about the issues of NDR proliferation and difficulties with reuse of rules. To help address
these issues, the National Institute of Standards and Technology (NIST) is building a “Quality of Design”
(QoD) software tool kit [QoD] [Kul04a] to make it easier for schema developers to choose and apply an
appropriate NDR set. A Web-based prototype allows users upload a schema and to select rules from a
cross-section of NDRs to check the schema against. The prototype's purpose is to provide a user-friendly
environment for checking XML schema design quality in a collaborative environment.

The rules are encoded in either the Schematron assertion language or in the Jess (Java Expert System Shell)
[Jess] expert system rule language. Other rule or scripting languages may be supported in the future. Because
QoD is implemented in Java™, any interpreted language implemented in Java should be easy to incorporate
into QoD's architecture. For example, Jython [Jython], a Java implementation of the Python scripting lan-
guage (which has numerous XML processing libraries) could be supported.

Jess is a forward chaining rule engine and scripting environment. Using Jess, one can build Java software
that has the capacity to “reason” using knowledge supplied in the form of declarative rules. Jess scripts
can also contain embedded Java code. QoD converts the XML document to be tested into a Jess knowledge
base. The person writing Jess rules needs to understand this transformation. Discussion of the transformation
and examples of Jess rules are beyond the scope of this paper, but the QoD currently includes an imple-
mentation of UBL rule GNR1 (see previous section).

The QoD architecture is based on a detailed analysis [Kul04b] NIST conducted of NDR documents from
a variety of standards bodies and industry groups. For each rule, NIST determined the ease of making the
rule computer-interpretable, the rule's rationale, and the rule's scope (i.e., whether the rule has a local
context, applies to grouping of definitions such as a complex type, or applies to an entire schema collection).
This NDR metadata not only helped us choose which rules to initially encode for the QoD, but also could
be useful to XML developers in assembling an NDR for their project from already-existing NDRs.

QoD uses a test profile mechanism for grouping rule implementations into a related set of requirements.
When the user executes a test profile, all the included implementations are executed (except those not ap-
plicable according to the scope specified by the user). Test results generated from test profile executions
are stored for subsequent reviews. Users may also add additional encoded rules to the QoD repository, as
well as save and view test results. Figure 1 illustrates the design of the QoD Web application and shows
the interactions and data relationships between test profiles, the Schematron and Jess-implemented rules,
the application server, and the user's browser client.

5

A Tool Kit for Implementing XML
Schema Naming and Design Rules

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Figure 1. QoD Web Prototype Design

QoD helps ensure that XML schemas comply with designated sets of best practice rules and organizational
specific XML schema design requirements. Best practice rules may be drawn from published NDR docu-
ments, experienced system integrators, or XML architects. Tests within this category seek to enhance the
usability, reusability, and interoperability of the schema such as by increasing the schema's ability to capture
and enforce desired semantics, extensibility, its ease of maintenance, and its implementation and processing
efficiency. Subsets of those requirements have been implemented and stored within the repository of the
Web-based prototype.

Figure 2 shows a QoD screen shot of a user checking the UBL Order schema against a test profile created
specifically for our ELD1 example. The Schema Type checkboxes near the bottom of the figure give
the user the option of limiting the application of rules in the test profile according to their locality. This is
needed because not all rules are applicable for all schemas. For example, rule ELD1 should only be applied
to document schemas and should not be applied to “library” schemas containing reusable components
imported by multiple document schemas. In Figure 2, the user has chosen to apply all rules in the test
profile.

Figure 2. Executing a UBL NDR Test Profile

6

A Tool Kit for Implementing XML
Schema Naming and Design Rules

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

QoD also facilitates the management of rules and their implementations. Users may specify more than one
rule for a test requirement, associate a version (e.g., “draft” versus “final”) with each rule. Rules can have
more than one implementation, allowing for deprecated implementations, or the possibility of alternative
implementation languages for a single rule. For example, a rule could have a cursory Schematron imple-
mentation as well as a more thorough Jess implementation. The Schematron implementation, even though
it only partially enforces the rule, has the advantage that it could be reused in testing environments without
access to a Jess engine.

It is important to remember that the most valuable part of QoD is its knowledge base of implemented
Naming and Design Rules. While the QoD Web application is useful for experimentation, it does not serve
the needs of users who need their own local NDR testing environment, or who want to keep their test history
private. Nor does it serve the needs of users who need to test a collection of schemas against a single test
profile, or who want an off-line environment for schema testing.

To give schema developers more flexibility, we have created a QoD XML exchange format so that QoD
can export to or import test profiles from other testing applications. We provide a schema governing this
format in an appendix. The exchange format attempts to capture QoD metadata that could be useful in
third-party testing environments. An XML exchange document representing a UBL NDR test profile might
appear as follows:

<testProfile>
 <source id="ubl">
 <organization>OASIS</organization>
 <orgURL>http://www.oasis-open.org</orgURL>
 <title>Universal Business Language (UBL) Naming and Design
Rules</title>
 <version>1.0</version>
 <date>2004-11-15</date>
 <docURL>http://docs.oasis-open.org/ubl/cd-UBL-NDR-1.0.1</docURL>
 </source>
 <ruleSet id="ELD">
 <name>Element Declaration Rules</name>
 <rule id="ELD1">
 <coverage>full</coverage>
 <schema>D</schema>
 <rationale>structural clarity</rationale>
 <requirement>Each UBL:DocumentSchema MUST identify one and
 ...
 </requirement>
 <implementation file="example.scmt#eld1" type="schematron"/>
 </rule>

 ...

</testProfile>

The child elements within rule provide the following metadata:

SemanticsElement

full means that the rule is fully verifi-
able. Alternatively, a rule may be par-
tially verifiable or unverifiable.

coverage

7

A Tool Kit for Implementing XML
Schema Naming and Design Rules

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsElement

D indicates the rule is applicable to doc-
ument level schemas, i.e., schemas con-

schema

sisting mainly of global element declar-
ations and complex type definitions.
Other schema types are low level
schemas and aggregate level schemas.
See [Kul04b] for additional explanation
regarding schema types.

Provides one or more reasons justifying
the rule, from a list of nine possible jus-
tifications.

rationale

The text describing the rule, taken ver-
batim from the NDR document.

requirement

Specifies the Uniform Resource Indicat-
or (URI) of the computer-interpretable

implementation

representation of the rule as well as the
implementation method.

Conclusion
Initial experience with the QoD approach is promising. The Web application has successfully exposed
design issues in various organizations' XML exchange schemas, including the US Department of Defense.
QoD has also been used to assemble test profiles corresponding to subsets of UBL and other NDRs,
providing a convenient conformance testing platform. The QoD XML exchange format enables test profiles
to be shared with third party applications, expanding the utility of implemented rules in the QoD knowledge
base. The exchange mechanism also enables developers of XML schema generation tools to leverage im-
plemented rules to guarantee that generated schemas meet interoperability and quality guidelines.

In the Motivation section, we listed four obstacles to NDR effectiveness: proliferation, lack of structure,
lack of automation, and limited versioning/traceability. QoD clearly addresses lack of automation and,
through its test profile mechanism and ability to distinguish between multiple versions of rules and multiple
implementations of a rule, provides a foundation for ensuring traceability. Although QoD does not provide
a direct solution for the lack of structure in NDR documents, a variant of the QoD exchange schema could
be used as an XML schema for structuring NDR documents. And although QoD alone will not stem the
proliferation of NDRs, it does facilitate reuse of rules from existing NDRs. By encouraging implementation,
the QoD approach can add more discipline to NDR development.

A major issue that QoD does not address is ensuring the correctness of rule implementations. In the
Automating a Rule section, we showed that implementing rules is non-trivial and potentially error-prone.
How can a developer be sure that an implementation actually checks what the rule says should be checked?
A rigorous testing framework is needed. Perhaps existing approaches to software testing can be adapted
for this purpose.

But as difficult as NDR implementation is, automating rules is easy relative to the challenge of agreeing
on a set of rules in the first place. Developing a consensus standard requires political skills as well as
technical skills. Our approach does not by itself foster agreement among disparate organizations with a
need to exchange data. However, QoD should at least make it clearer to standards developers specifically
what it is they are agreeing to.

8

A Tool Kit for Implementing XML
Schema Naming and Design Rules

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bibliography
[CCTS] United Nations Centre for Trade Facilitation and Electronic Business, Core Components Technical Specification

- Part 8 of the ebXML Framework, 15 November 2003, Version 2.01.

[ISO11179-1] ISO/IEC 11179-1:2004(E), (2nd edition) Information technology Metadata Registries (MDR) Part 1:
Framework, 2004. Available at http://metadata-standards.org/11179/.

[ISO11179-5] ISO/IEC 11179-5:1995(E), (1st edition) Information technology Metadata Registries (MDR) Part 5:
Naming and identification principles, 1995. Available at http://metadata-standards.org/11179/.

[ISOSch] ISO/IEC FDIS 19757-3:2004, Document Schema Definition Languages (DSDL) - Part 3: Rule-based valid-
ation - Schematron, 2004. Available at http://www.schematron.com.

[Jess] Jess, the Rule Engine for the Java™ Platform, http://herzberg.ca.sandia.gov/jess.

[Jython] Jython Home Page, http://www.jython.org.

[QoD] Manufacturing Systems Integration Quality of Design Tool, http://www.mel.nist.gov/msid/QOD.

[Kul04a] Kulvatunyou, B., Ivezic, N., and Bhuwan, J., Testing Requirements to Manage Data Exchange Specifications
in Enterprise Integration - A Schema Design Quality Focus, 8th World Multiconference on Systems, Cyber-
netics and Informatics (SCI), Orlando, Florida, July 2004. Available at http://www.nist.gov/msidlibrary/doc/test-
ing_design.pdf .

[Kul04b] Kulvatunyou, Boonserm, Morris, KC , XML Schema Design Quality Test Requirements, National Institute
of Standards and Technology, NIST IR 7175, 2004. Available at http://www.nist.gov/msidlib-
rary/doc/Schema_Design.pdf .

[RELAXNG] OASIS, RELAX NG Compact Syntax, Committee Specification, 21 November 2002, http://www.oasis-
open.org/committees/relax-ng/compact-20021121.html .

[Trang] Trang, http://www.thaiopensource.com/relaxng/trang.html.

[UBL] OASIS, Universal Business Language 1.0, cd-UBL-1.0, 15 September 2004. Available at http://docs.oasis-
open.org/ubl/cd-UBL-1.0.

[UBLNDR] OASIS, Universal Business Language (UBL) Naming and Design Rules, cd-UBL-NDR-1.0.1, 15
November 2004. Available at http://www.oasis-open.org/committees/ubl.

[XPath] World Wide Web Consortium, XML Path Language (XPath) Version 1.0, W3C Recommendation, 16
November 1999. Available at http://www.w3.org/TR/xpath.

[XSD] World Wide Web Consortium, XML Schema: Primer Second Edition, W3C Recommendation, 28 October
2004. Available at http://www.w3.org/TR/xmlschema-0/.

A. QoD Exchange Schema
We present a proposed exchange schema for representing the Naming and Design Rules in a QoD test
profile. The schema is provided both in RELAX NG [RELAXNG] and in the World Wide Web Consortium
(W3C) XML Schema Definition Language, the latter generated from the former using James Clark's Trang
[Trang] software.

9

A Tool Kit for Implementing XML
Schema Naming and Design Rules

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://metadata-standards.org/11179/
http://metadata-standards.org/11179/
http://www.schematron.com
http://herzberg.ca.sandia.gov/jess
http://www.jython.org
http://www.mel.nist.gov/msid/QOD
http://www.nist.gov/msidlibrary/doc/testing_design.pdf
http://www.nist.gov/msidlibrary/doc/testing_design.pdf
http://www.nist.gov/msidlibrary/doc/Schema_Design.pdf
http://www.nist.gov/msidlibrary/doc/Schema_Design.pdf
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.thaiopensource.com/relaxng/trang.html
http://docs.oasis-open.org/ubl/cd-UBL-1.0
http://docs.oasis-open.org/ubl/cd-UBL-1.0
http://www.oasis-open.org/committees/ubl
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xmlschema-0/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

RELAX NG Schema (Compact Syntax)
$Id: xml2005.xml,v 1.11 2005/08/29 21:40:06 lubell Exp $

start =
 element testProfile { TestProfile }

specifies a unique identifier
id.att =
 attribute id { xsd:ID }

specifies a cross-reference to a unique identifier
ref.att =
 attribute ref { xsd:IDREF }

collection of sets of naming and design rules
TestProfile =
 element source { Source }+,
 element ruleSet { RuleSet }*

information describing a naming and design rules document
Source =
 id.att?,
 element organization { text },
 element orgURL { xsd:anyURI }?,
 element title { text },
 element version { text }?,
 element date { xsd:date }?,
 element docURL { xsd:anyURI }?

collection of naming and design rules
RuleSet =
 id.att?,
 element name { text },
 element owner { text }?,
 element ownerEmail { xsd:anyURI }?,
 element source { ref.att }?,
 element rule { Rule }+

individual naming and design rule
Rule =
 id.att?,
 element coverage { "full" | "partial" | "not applicable" }?,
 element schema { "L" | "LA" | "A" | "AD" | "D" | "LAD" }?,
 element rationale { Rationale }*,
 element source { ref.att }?,
 element requirement { text },
 element implementation { Implementation }*

computer-interpretable code implementing a rule
Implementation =
 attribute type { "jess" | "schematron" },
 attribute file { xsd:anyURI }

10

A Tool Kit for Implementing XML
Schema Naming and Design Rules

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

justification for a rule
Rationale =
 "validation and model clarity" |
 "structural clarity" |
 "clarity" |
 "extensibility" |
 "common symbolic syntax" |
 "maintainability" |
 "performance" |
 "interoperability" |
 "model validity"

W3C XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <!-- $Id: xml2005.xml,v 1.11 2005/08/29 21:40:06 lubell Exp $ -->
 <xs:element name="testProfile" type="TestProfile"/>
 <xs:attributeGroup name="id.att">
 <xs:annotation>
 <xs:documentation>specifies a unique identifier</xs:documentation>
 </xs:annotation>
 <xs:attribute name="id" use="required" type="xs:ID"/>
 </xs:attributeGroup>
 <xs:attributeGroup name="ref.att">
 <xs:annotation>
 <xs:documentation>specifies a cross-reference to a unique
identifier</xs:documentation>
 </xs:annotation>
 <xs:attribute name="ref" use="required" type="xs:IDREF"/>
 </xs:attributeGroup>
 <xs:complexType name="TestProfile">
 <xs:annotation>
 <xs:documentation>collection of sets of naming and design
rules</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" name="source" type="Source"/>
 <xs:element minOccurs="0" maxOccurs="unbounded" ref="ruleSet"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ruleSet" type="RuleSet"/>
 <xs:complexType name="Source">
 <xs:annotation>
 <xs:documentation>information describing a naming and design
rules document</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="organization"/>
 <xs:element minOccurs="0" ref="orgURL"/>
 <xs:element ref="title"/>

11

A Tool Kit for Implementing XML
Schema Naming and Design Rules

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 <xs:element minOccurs="0" ref="version"/>
 <xs:element minOccurs="0" ref="date"/>
 <xs:element minOccurs="0" ref="docURL"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID"/>
 </xs:complexType>
 <xs:element name="organization" type="xs:string"/>
 <xs:element name="orgURL" type="xs:anyURI"/>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="version" type="xs:string"/>
 <xs:element name="date" type="xs:date"/>
 <xs:element name="docURL" type="xs:anyURI"/>
 <xs:complexType name="RuleSet">
 <xs:annotation>
 <xs:documentation>collection of naming and design
rules</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element minOccurs="0" ref="owner"/>
 <xs:element minOccurs="0" ref="ownerEmail"/>
 <xs:element minOccurs="0" name="source">
 <xs:complexType>
 <xs:attributeGroup ref="ref.att"/>
 </xs:complexType>
 </xs:element>
 <xs:element maxOccurs="unbounded" ref="rule"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID"/>
 </xs:complexType>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="owner" type="xs:string"/>
 <xs:element name="ownerEmail" type="xs:anyURI"/>
 <xs:element name="rule" type="Rule"/>
 <xs:complexType name="Rule">
 <xs:annotation>
 <xs:documentation>individual naming and design rule</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element minOccurs="0" ref="coverage"/>
 <xs:element minOccurs="0" ref="schema"/>
 <xs:element minOccurs="0" maxOccurs="unbounded" ref="rationale"/>
 <xs:element minOccurs="0" name="source">
 <xs:complexType>
 <xs:attributeGroup ref="ref.att"/>
 </xs:complexType>
 </xs:element>
 <xs:element ref="requirement"/>
 <xs:element minOccurs="0" maxOccurs="unbounded" ref="implementation"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID"/>
 </xs:complexType>
 <xs:element name="coverage">
 <xs:simpleType>

12

A Tool Kit for Implementing XML
Schema Naming and Design Rules

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 <xs:restriction base="xs:token">
 <xs:enumeration value="full"/>
 <xs:enumeration value="partial"/>
 <xs:enumeration value="not applicable"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="schema">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="L"/>
 <xs:enumeration value="LA"/>
 <xs:enumeration value="A"/>
 <xs:enumeration value="AD"/>
 <xs:enumeration value="D"/>
 <xs:enumeration value="LAD"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="rationale" type="Rationale"/>
 <xs:element name="requirement" type="xs:string"/>
 <xs:element name="implementation">
 <xs:complexType>
 <xs:attributeGroup ref="Implementation"/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name="Implementation">
 <xs:annotation>
 <xs:documentation>computer-interpretable code implementing
a rule</xs:documentation>
 </xs:annotation>
 <xs:attribute name="type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="jess"/>
 <xs:enumeration value="schematron"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="file" use="required" type="xs:anyURI"/>
 </xs:attributeGroup>
 <xs:simpleType name="Rationale">
 <xs:annotation>
 <xs:documentation>justification for a rule</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:enumeration value="validation and model clarity"/>
 <xs:enumeration value="structural clarity"/>
 <xs:enumeration value="clarity"/>
 <xs:enumeration value="extensibility"/>
 <xs:enumeration value="common symbolic syntax"/>
 <xs:enumeration value="maintainability"/>
 <xs:enumeration value="performance"/>
 <xs:enumeration value="interoperability"/>

13

A Tool Kit for Implementing XML
Schema Naming and Design Rules

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 <xs:enumeration value="model validity"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

14

A Tool Kit for Implementing XML
Schema Naming and Design Rules

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

