
 1 Copyright © XXXX

Submitted to Proceedings of DETC'2005
2005 ASME Design Engineering Technical Conference

September 24-28, 2005, Long Beach, California, USA

DETC2005-85608

DISTRIBUTED MODELING AND FRAMEWORK FOR COLLABORATIVE EMBEDDED
SYSTEM DESIGN

Xuan F Zha*, Ram D Sriram

Manufacturing System Integration Division
National Institute of Standards and Technology

Gaithersburg, MD 20899

*

ABSTRACT
In this paper, we develop distributed design models and
framework for collaborative embedded system design. Based on
the component-based approach, a unified design-with-modules
scheme is proposed to model the embedded system design
process and a web-based distributed module modeling and
evaluation (WebDMME) framework is developed as a
collaborative cyber-infrastructure to support distributed
network-centric embedded system design. The framework
intends to link distributed, heterogeneous hardware/software
(HW/SW) design models and tools and assist designers in
evaluating design alternatives, visualizing trade-offs, finding
optimal solutions, and making decisions on the web. It also
enables designers to build integrated design models using both
the local and distributed resources (e.g., local and distributed
HW/SW modules) and to cooperate by exchanging services.
The client (browser) / knowledge server architecture allows
embedded system design models to be published and connected
over the web to form an integrated intelligent models/modules
network. Finally, as an illustration, a model for modular micro-
robotic systems design is developed.
 Keywords: Embedded system, hardware/software
modules, hardware/software co-design, component-based
approach, distributed module modeling and evaluation
(DMME), collaborative design, cyber-infrastructure

1. INTRODUCTION

As we progress closer to a knowledge economy, the need for an
infrastructure based upon distributed computing, information
and communication technology (i.e., a Cyber-Infrastructure),
becomes increasingly paramount. A recent report to NSF
indicates that such a Cyber-Infrastructure (CI) will play a

pivotal role in supporting and shaping future predictive product
realization systems and processes (http://www.nsf.gov/).
 Design process is a knowledge-intensive and collaborative
task. The knowledge intensive design support in a cyber-
infrastructure becomes critical and is recognized as a key
solution toward future competitive advantages in product
development. Integrated design requires skills of many
designers/ users and experts that each participant creates models
and tools to provide information or simulation services to other
participants given appropriate input information. It is the goal
that the network of participants exchanging services in a cyber-
infrastructure forms a concurrent integrated model for design.
 An embedded system is a hybrid of hardware and software,
which combines software’s flexibility and hardware real-time
performance. Many industries are witnessing a rapid evolution
toward solutions that integrate hardware and software or
incorporate complete systems on a single chip (SoC). Modern
embedded and hybrid systems have characteristics (ever-
increasing complexity and diversity for more functionality,
packed into smaller spaces consuming less power) that demand
new approaches to their specification, design and
implementation. Thus, embedded system design problems
embody significant levels of complexity, which make it unlikely
that a single designer can work alone on a complex design
problem. Knowledge-intensive collaborative design has
emerged as a promising discipline for dealing with the modeling
and decision-making processes in distributed embedded system
design. There exist many informal or semi-formal models and
methodologies for separate hardware/software design.
However, there is as yet no unified formal representation,
simulation, and synthesis framework. At NIST, in the project of
Representation for Embedded Systems (Zha and Sriram 2004),
we are developing a standards-based framework for modeling
information and knowledge in embedded systems design,
including hardware/software co-design methodologies; an

DRAFT

 2 Copyright © XXXX

integrated framework for design, modeling and testing; standard
representations and protocols for exchanging and reusing
system-level information and knowledge so as to enable
semantic interoperability between design software systems in
virtual, distributed and collaborative environments through the
entire lifecycle.
 This work aims to build up an information cyber-
infrastructure to facilitate the rapid construction of integrated
distributed design models for embedded systems. A unified
design-with-object scheme is proposed for modeling and
representing the distributed network-centric design process. A
distributed framework is developed for collaborative design of
embedded systems. A component-based topology and a feature-
based model structure are defined for integrated representation/
configuration of HW/SW components that constitute an
embedded system.
 The organization of this paper is as follows. Section 2 is the
current research status review. Section 3 gives an overview of
the proposed approach to collaborative embedded system
design. Section 4 discusses distributed module modeling and
evaluation for embedded systems design process. Section 5
proposes an integrated knowledge representation scheme.
Section 6 provides a description of the WebDMME framework.
The knowledge server architecture for supporting different
types of collaborative design activities in a distributed design
environment is described. In Section 7, a model for modular
micro-robotic systems design is built upon the WebDMME
framework. Section 8 summarizes the paper.

2. CURRENT RESEARCH STATUS

2.1. Collaborative Design Frameworks and Systems

Computer Supported Cooperative Design (CSCD) is the use of
computer technology assisting people working in the
engineering design field. King (1989) considers that the
fundamental issue of CSCD is focused on the computerization
to establish a concept-sharing and seamless coordination among
engineering design participants for concept formation. While
many individuals and organizations may provide services so
that an integrated product model can be constructed, it is not
likely that each participant will disclose the full details or
structure of their proprietary models and data. Providing a
means for encapsulating expert knowledge or know-how is
essential. An object-oriented approach provides a framework
for such knowledge encapsulation. Furthermore, an object-
oriented architecture is also highly suited to a distributed
computing environment (Toye et al 1993). Distributed object
technology, such as CORBA (Common Request Broker
Architecture) (Siege 1996) and DCOM / ActiveX (Chappel
1996) can be used to address the issue of distributed computing
environment. A computer platform and language-independent
interface definition allows software applications to

communicate with each other provided a neutral interface has
been agreed upon. For example, the WWW has gained its
popularity and momentum through a platform-independent
protocol (i.e., HTTP) and a language-independent scheme (i.e,
HTML) for presenting information. The software component
technology is adopted to build a collaborative CAD system.
Rosenman and his collaborators (1999) proposed an approach
to collaborative design based on the software component
mechanism. However, their work is only focused on the data,
not knowledge.
 Distributed design systems might have two distinct forms:
distributed designers with access to centralized resources, or
distributed designers with distributed resources (e.g.,
engineering models, databases, software applications, etc.)
“Decentralized” means that the coordination between design
participants and models is not centrally modeled or controlled
(analogous to the WWW). This is important because centrally
controlling the interactions of all distributed resources may
restrict system growth and flexibility. If there was a centralized
control over the WWW for linking the hyper documents, it
could not evolve so rapidly. Pahng et al (1997, 1998a-b)
developed a web-based framework for collaborative design
modeling and decision support, based on the distributed object
modeling and evaluation (DOME). In the DOME architecture,
the resultant service-exchange network forms an integrated
concurrent system model if module services are connected.
There are other architectures or frameworks for network-centric
collaborative design. These include the centralized multi-user
system architecture, e.g., the blackboard-based DICE (Sriram
and Logcher, 1993, Sriram 2002), DIS (Bliznakov et al 1995),
data and model exchange system, e.g., SHARE (Toye et al,
1993), EDN (Lewis and Singh 1995), MADEFast (1999), NIIIP
(1999), RaDEO (1998), and multi-agent distributed system
architectures (Sun et al. 2001).
 There are many information and distributed computing
systems that have been built to support the collaborative design
modeling and decision-making process. According to their
different purposes and/or focuses, these systems can be
generally grouped into the following categories (Li et al. 2004):
(1) Collaborative product data/information management

systems for engineers to timely obtain the necessary
product data and knowledge (Cheng and Liang 2000,
Hardwick et al. 1996, Kim et al. 2001, Chao and Wang
2001);

(2) Network based collaborative design systems which can be
further divided into web-independent (Pahng et al. 1998a-b,
Shyamsundar and Gadh 2001, Tan et al. 1996, Sun et al.
2001, Whitfield et al. 2002) and web-dependent systems
(Kim et al. 2001);

(3) Process-centered collaborative design and workflow
management systems (Lu et al. 2001, Jin et al. 1999);

(4) Conflict detection, management and resolution systems for
collaborative design (Jin et al. 1999, Wong 1997, Klein
1991);

 3 Copyright © XXXX

(5) Flexibility and security focused collaborative design system
(Camarinha et al. 2001);

(6) Interoperability approaches in heterogeneous collaborative
design systems (Abrahamson et al. 2000, Zhao et al. 2001,
Han et al. 1999)

Since most of them are developed for the needs of collaborative
design, the current systems can assist designers one way or
another in collaboration of embedded system design.

2.2. Electronic and Embedded System CAD Frameworks

Embedded and hybrid systems or integrated electronic systems
are among the most complex artifacts. Decades ago, when the
first integrated circuits were developed, small groups of
engineers could handle the design without sophisticated
computer aid. However, most of the current achievements rely
on the work of many designers and design automation tools.
From the need to support the numerous tools needed in a design
cycle of an embedded and hybrid system (even an integrated
circuit), the concept of electronic CAD frameworks/systems
was crafted. This concept has evolved over the years,
incorporating new engineering techniques to better serve its
purpose of:
(1) support tool developers by providing building blocks - to

accelerate implementation - and interfaces - to grant
interoperability with other tools and data repositories;

(2) support tool administrators by providing a platform where
tools and data repositories can be integrated and managed
together;

(3) support designers by providing an integrated environment
for the complete design flow.

(4) support designers by providing an integrated & distributed
collaborative environment for the complete design flow.

 It is clear that the next generation electronic CAD
framework/systems are to support designers by providing an
integrated & distributed collaborative design and development
environment for the complete design flow. Currently, there exist
some informal or semi-formal models and methodologies for
separate hardware/software design and several frameworks have
been proposed (Eggermont 2002). However, there is as yet no
unified formal representation, simulation, and synthesis
framework for supporting hardware and software co-design in a
distributed collaborative environment despite the progress made
in several research projects such as Ptolemy (Lee 2003) and
Metropolis (Balarin et al. 2003).
 From the literature review, we can summarize the current
research status of collaborative design modeling and support for
embedded systems design as follows. There are many research
efforts working on enabling technologies or cyber-infrastructure
to assist designers in the computer-aided network-centric design
environment. Some of them intend to help designers to
collaborate or coordinate by sharing product information and
manufacturing services through formal or informal interactions.
Others propose frameworks and develop systems that manage

conflicts between design constraints and assist designers in
making decisions. The overview of the current collaborative
design frameworks and systems shows that they can assist
designers in one way or another in collaboration and their
functionality can eliminate a large amount of work during the
design process such as data/information sharing and exchange.
However, they do not provide a structured and formalized
framework for modeling the characteristics of multidisciplinary
and multi-objective design problems, in particularly hardware
and software co-design in a complex embedded system. Thus,
they are unable to effectively and efficiently support and
coordinate highly distributed/decentralized collaborative design
and modeling activities for embedded systems. As a result, an
intelligent collaborative tool that can provide efficient
coordination and intelligent decision-making mechanisms for
designers is still needed.

3. COLLABORATIVE EMBEDDED SYSTEM DESIGN:
AN OVERVIEW OF THE PROPOSED APPROACH

As reviewed above, distributed design systems might have two
distinct forms: distributed designers with access to centralized
resources, or distributed designers with distributed resources
(e.g., engineering models, databases, software applications,
etc.). This work focuses on the latter architecture. Thus, the
coordination between design participants and models is not
centrally modeled or controlled (analogous to the WWW). The
motivation and vision of this research share some similar
themes with DOME (Pahng et al 1997, 1998) but emphasize
knowledge-level or knowledge intensive design modeling,
decision-making support, and search/optimization and
navigation. Even more, the proposed approach decomposes
design tasks into several HW/SW “design components” or
modules that can be developed separately by collaborative
developers. We investigate the application of the modular
design and development approach both for HW and SW
artifacts. The distributed module-based approach follows the
component technology and distributed object technology, which
is called distributed module modeling and evaluation (DMME)
framework. In the component technology, a component is a
reusable application whose data and methods is exposed and
can be accessed and operated by other applications. Thus, the
DMME framework asserts that multidisciplinary problems are
decomposed into modular sub-problems. Modularity divides
overall complexity and distributes knowledge and responsibility
amongst designers. It also facilitates the reuse of modeling
elements. Therefore, distributed modules allow designers to
define mathematical models or HW/SW modules and integrate
or interconnect them to form large system models. In DMME, a
multiple attribute decision method is used to capture
preferences and evaluate design alternatives from different
viewpoints. The resultant service-exchange network forms an
integrated concurrent system model if module services are
connected. The comparisons between the DMME architecture

 4 Copyright © XXXX

and other architectures or frameworks including DOME are
described as follows:
(1) DMME share some characteristics with DOME, but it

differs from the DOME architecture (Fig.1b) in that it
supports both hardware and software system modeling at
feature and knowledge level.

(2) For the DMME/DOME architecture, the distinct
characteristic is that when module services are connected,
the resultant service exchange network forms an integrated
concurrent system model.

(3) For the centralized multi-user system (Fig.1a), multiple
users have access to the centralized main system, which
stores and manages information such as product design
models, design information and design history. Although
powerful, a central system is less suited for loose and
flexible collaborations as it is not an open environment and
does not allow for true knowledge encapsulation.
However, such architecture could be supported within a
module of a larger DMME/DOME network.

(4) The data and model exchange system architecture (Fig.1c)
tends to provide an "over-the-wall" sequential interaction
between designers and models. When a designer receives a
model or data from another designer, he/she works on the
design and sends the result of design modification to
others. Therefore, this architecture is not intended to
provide concurrent system modeling functionality.

(5) Multi-agent based architectures are more appropriate for
loosely coupled environments where mutual interactions
between objects are not well defined. In the
DMME/DOME architecture, the interactions between sub-
problems are explicitly defined through design negotiation
so that a communicating object paradigm is appropriate.
However, within the DMME/DOME, agents are useful
when designers are not certain about what modules can
provide the service they require. Agents could locate
appropriate modules.

More details about the proposed approach are discussed below.

4. DISTRIBUTED MODULE MODELING AND
EVALUATION FOR EMBEDDED SYSTEM DESIGN
PROCESS

In this section, based on the component-based approach, a
design with modules scheme is proposed for embedded system
design and a distributed module modeling and evaluation
(DMME) framework is developed for modeling the network-
centric embedded system design process.

4.1 Design with Modules Scheme for Embedded Systems

Over half of industrial products have subsystems or modules or
components as a part of their basic designs. The modularity
design concept has been widely used in design for flexibility,
rapid responsiveness, ease of maintenance, and rapid

deployment. As a matter of fact, during the design process,
information processing is inherently model-based because the
design object is structural in type. Therefore, an object
orientation scheme is employed so that both calculating and
reasoning work in design can be carried out. The integrated
design object model is, in fact, an attempt to set up a knowledge
intensive framework in such a way that it becomes possible to
process various types of knowledge in a top-down design
process (Gero 1990). Object-oriented programming technique
allows designers to look at a design problem as a collection of
objects/components/modules or sub-problems linked together
by rules. Thus it provides the designers with an expressive
power to represent complex problems or information in an
effective manner. If a designer can break a design problem in
the form of well defined, clearly operable chunks with their own
self-containing information which are interrelated through a
series of rules and constraints, then these problems lead
themselves well to object-oriented programming application
and conveniently to be solved (Pahng et al 1998).

User A
User B

User C

Centralized

Main System

(a)

Local Model
B

(b)

Internet
Backbone

User A User B

User C (c)

Local Model
C

Local Model
A

 Fig.1: Interactions between modules exchanging
services

Evaluation Schema
(E)

Functions,

Requirements, and

Constraints
(FRC)Design Model

(S)

HW/SW Co-Design
Algorithm

(A)

Design Object

(O)

Design Model
k

S
1

1
o

2
o

i
o

Import

Inherit

Message passing

Design Process Model

System partitioning

(P)

Fig.2: Overall architecture of the design with modules

scheme for embedded systems

 5 Copyright © XXXX

 The central embedded system design process inherent in the
design-with-modules scheme proposed in this work could be
represented as the architecture as shown in Fig.2 with six main
types of objects involved, namely, design models (S), design
objects (O), co-design algorithms (A), functions (requirements
and constraints) (FRC), system partitioning (P) and the
evaluation schema (E). Object operators can express the
relationship between these objects: inheritance, import, and
message passing. The architecture in Fig.2 shows how the
particular instance of a design model, S1

k, is obtained from the
HW/SW co-design algorithm, system partition, evaluation
schema, requirements, constraints and the design model object.
For the pure formulation design or creative design, a new
design model object, S, is defined that describes the form of the
model. A specific instance, S1

k, of this design model can then be
created. For pure parametric design then the design model
object S has already been defined and the design process
therefore only involves the determination of a specific instance,
S1

k, of the design model. Note that additional objects can be
defined within the overall architecture.

4.2 Module-based Design and Modularization/ Partitioning
Process

A design model is created using object attribute variables and
relations between them. Modules are variable containers.
Variables can be grouped together into modules according to
logical, functional or physical component-based decompositions
(Senin et al. 1997a). This grouping process is normally a
bottom up decomposition as elementary entities are aggregated
to build more complex entities. A designer may also prefer to
use a top-down approach by defining high-level modules first
and then detailing the low-level variables and relations. Using
the bottom-up and top-down techniques, integrated design
models are built by interconnecting modules corresponding to
different sub-problems. Modules interact by service calls. A
module might request information from other modules to
perform internal computations and then provide the results as
services to other modules. In fact, a HW/SW module can be
seen as a collection of HW/SW components that covers one or
more sub-functions. For example, an electro-mechanical
product (e.g. modular robot) module can be defined by a
combination of bill-of-materials (BOM) and technical drawings.
Thus, physically, a modular product system is a collection of
interchangeable modules (e.g., link and joint modules in
modular robots) that can be assembled into many different types
and configurations of products. The modular design of products
provides the ability to achieve product variety for customer
requirements through the combination/configuration and
standardization of modules.
 A module is a building block capable of performing
calculations and performing information through service calls
invoked by its user. Defined as shown in Fig.3, a module
represents knowledge related to different aspects of the design
in the form of variables and relations. The variables contained

in the module are represented as interconnected circles. The
directed arcs imply dependency. The outputs and inputs to the
module constitute the interface of the module. Modules can be
interconnected through interfaces. The calculations internal to a
module constitute its embedded model. Customer-created
computer programs and third-party applications (software
modules), such as domain specific analysis tools or CAD
systems, can also be embedded into a module. Modules interact
with each other by exchanging information and services,
reacting to each other's changes for an integrated system model.
Modules can distribute over the network and collectively form a
distributed model for a collaborative, multidisciplinary and
concurrent design evaluation.

Input 1

Input 2

Input n

Output 1

Output 2

Output m

Embedded Model

Message

Message

Input Interface Output Interface

Internal Variables and Relations
(Input Port) (Output Port)

(Input Port)

(Output Port)
Fig.3: Module definition and embedded model

Decomposing the problem into modules and defining how
modules are related to one another creates the model of a design
problem. This is actually a modularization/partitioning process.
The modularization/partitioning process is fulfilled through the
following steps:
(1) Functional specification analysis is carried out from the

customer requirement viewpoint using design functions
deployment technique and Hatley/Pirbhai technique
(Sivaloganathan et al 2001; Rushton & Zakarian, 2000). A
function-function interaction matrix is generated.

(2) The combination of heuristic and quantitative clustering
algorithms is used to modularize/partition the
product/system architecture, and a modularity matrix is
constructed.

(3) All modules are identified through the modularity matrix,
and the types of all these modules can be further identified
according to the module classifications (HW/SW modules).

(4) Functional modules are mapped to structural modules using
the function-structure interaction matrix. Module attribute
parameters or features can represent its structure (Zha and
Sriram 2004).

(5) Hierarchical building blocks (modules) are used to represent
the product/system architecture from both the functional and
the structural perspectives.

(6) Optimization algorithms are used to optimize the
product/system architecture to achieve one main objective.
Other design objectives are transformed into constraints for
modules and their attributes as well as their assemblies or

 6 Copyright © XXXX

configurations. In addition, the cost or profit models can
also be built as system constraints.

4.3 Distributed Co-Design Modeling and Evaluation

In a distributed design environment, each group of designers
can define their own HW/SW modules, loading them into their
local work area and eventually connecting them to the other
parts of the design problem through appropriate networked
interfaces. Fig.4a shows a distributed co-design model
involving two designers and three modules. Designer 1 defines
HW modules A and B while Designer 2 defines SW module C.
Two domains communicate through an Internet connection.
Once the whole problem is loaded and interconnected, each
group of designers typically has write access to local parts of
the model, i.e., they can exert decisions within their local range
of influence, and read access to relevant aspects of remote parts
of the model. This allows designers to see the remote effects of
their local decisions. Fig.4b shows that both Designers 1 and 2
might see the complete problem, but with different access
privileges. Designer 1 can see modules A and B as local and
module C as remote. Conversely, module C is local to Designer
2. The remote part seen by Designer 2 could show modules A
and B or just a single distributed object (AB) if Designer 1
restricts their visibility/access.

Designer 1 Designer 2

A B C

Internet Backbone

(a)

(b)

A B

C

Designer 1

A B

C

Designer 2

Fig.4: Distributed modules

 The modeling and implementation layers are illustrated in
Fig.5. The user-visible layer or modeling layer is the designer's
viewpoint. At this level the designer defines the problem in
terms of modules and interactions among modules (Fig.5a). In
this example, an implementation is provided only for the local
HW modules A and B, while SW module C is remote. The
designer provides location constraints for compatible modules
that may be used as C. The unseen implementation layer
(Fig.5b) is created to provide the functionalities described in the
modeling layer. This layer locates remote modules. The remote
modules must be distributed objects capable of communicating
via a standard communication protocol. A distributed interface

is wrapped around the group of standard modules (A and B) to
allow the local and distributed modules to communicate with
each other. This distributed module’s external interface offers
service calls to and from the remote module. A design problem
model sees the distributed module as a separate application that
is capable of providing services upon request. Fig.6 shows an
implementation for module network.
 The interactions between distributed modules can be
achieved by publishing and subscribing services. The term
publish refers to making the services of one's local model
visible together designers. The term subscribe refers to making
use of published services. Such design problem models are
mixed variables, where independent parameters within modules
are set and catalog selections might be used to substitute entire
modules. Design solutions can be assessed and compared with
each other using the decision-making tool embedded in the
framework.

Local service call XDesign Problem Model
(Workspace)

X

y z

X

y

z

Remote communication

X

A

B

C

A

B

C

Local module

Remote module

Distributed module wrapper

Workspace boundary

(a)

(b)

Fig.5: Module network modeling

Fig.6: Module network implementation

5. INTEGRATED KNOWLEDGE REPRESENTATION
SCHEME

During the design process, both product and design process
design knowledge representations are needed to be dealt with
(Gorti et al 1998). Since the design knowledge is very
extensive, we focus only on the product/system and some
selected activities in the design process. A systematic
methodology is developed for knowledge modeling and

 7 Copyright © XXXX

management in the design process, as shown in Fig.6. In our
previous work, we have developed an object-oriented model
(OESM) for representing embedded systems (Zha and Sriram
2004, Zha and Sriram 2005). OESM is extended from the NIST
core product model (Fenves 2001). Specifically, a complete
information model is defined, which consists of customer
requirements, design specifications, HW/SW modules (artifacts,
functions-behaviors, geometry and material for HW form,
architecture and code for SW form), module interfaces, etc., as
follows:
Embedded System Model {
 Requirements;
 Specifications;
 HW/SW Artifacts;
 HW/SW Features;
 HW/SW Functions-behaviors-forms;
 HW/SW Performance objectives and constraints;
 Relationships;
 Design rationale;
}

Process Metal Model

Process
Model:

Activities
Compound
Elementary

Design
Process
Model

Strategic Knowledge

Tasks on Goals

Dynamic Knowledge CategoryDesign
Process

Knowledge

Product Meta Model

Generic
Product Model

Case Specific
Product Model

Product
Model Product Meta Knowledge

Generic
Knowledge

Case Specific
KnowledgeProduct

Knowledge

Activities

Rules

Design Process Model

Entities

Constraints

Product Model
Illustrations

Fig.7: Product, design process, and knowledge

 Based on the OESM, an integrated knowledge
representation approach is proposed for embedded system
design in this work. In what follows, we concentrate on
introducing the integrated knowledge representational scheme
related to the design process. It deals mainly with declarative
representation, production rules and object-oriented concepts.
Procedural representation using conventional languages such as
C was not emphasized. Integrating knowledge in its multiple
forms, multiple levels and multiple functions can fulfill design
processes and activities, especially the more complex type. The
integration is very challenging, as the overall effect may be
greater than the sum of its parts. The integrated knowledge can
solve problems, which cannot be attained by the individual
knowledge alone. Based on a combination of elements of
semantic relationships with the object-oriented data model, a
multi-level hierarchical representation schema (enterprise-level,
system level, component-level, feature level) is adopted to

represent the embedded system design process knowledge. To
effectively manage and utilize the design process knowledge, a
generalized design knowledge matrix is proposed for organizing
design knowledge. All tasks in the design process are listed in
column while all information and design knowledge are
categorized in rows. The contents of design knowledge for each
task are recorded in the corresponding cells of the design
knowledge matrix with appropriate representations.
 More specifically, the object-oriented knowledge
representation is based on a mixed representation method and
object-oriented programming (OOP) techniques (Sriram 2002),
and allows designers to look at the design problem as a
collection of objects or sub-problems linked together by rules.
Thus it provides the designers with an expressive power to
represent complex problems or information in an effective
manner. If a designer can break the design problem into the
form of well-defined, clearly manipulative chunks with their
own self-containing information, which is interrelated through a
series of rules and constraints, then the problem can be easily
solved. The basic structure of this representation is described as
a module. The class of an object and its instances are described
by the module structure. An object-oriented module is
composed of four types of slots, which are the attribute slot,
relation slot, method slot and rule slot as follows (Sriram 2002):
1) The attribute slots are used for describing the static attributes
(variables) of design object. 2) The relation slot is used for
describing the static relations among objects. With the help of
the relation slot and according to the relation of classification,
the design object can be described as a hierarchical structure. Its
classes and subclasses can share the knowledge in super class.
The messages that control the design process can be sent among
all instances of objects. In addition, if needed, other kind of
relation slots can be defined, such as the resolution, position
and assembly, etc. These slots create the foundation for
describing a graph in design. The hierarchical structure of
object oriented knowledge representation is formed. 3) The
method slot is used for storing the methods of design, sending
messages and performing procedural control and numerical
calculation. 4) The rule slot is used for storing sets of
production rules. The production rules can be classified
according to the differences among objects being treated and
stored respectively in rule slots in the form of slot value. Thus,
the integrated knowledge representation scheme realizes the
advantages of both object-oriented representation and rule-
based representation.

6. KNOWLEDGE INTENSIVE FRAMEWORK FOR
COLLABORATIVE EMBEDDED SYSTEM DESIGN

In this section, a web knowledge server based distributed
module modeling and evaluation (WebDMME) framework is
proposed for collaborative embedded system design.

6.1 WebDMME Framework Architecture

 8 Copyright © XXXX

The widespread use of the Internet and WWW provides an
opportunity for making expert systems widely available. By
implementing knowledge-based expert systems as knowledge
servers that perform their tasks remotely, developers can
publish expertise on the web. Technologies and cyber-
infrastructures that make this approach feasible are emerging.
Simultaneously, the interest in AI support for network
navigation services is growing. The internet and WWW now
allow developers to provide intelligent knowledge servers
(Eriksson 1996). Knowledge-based expert systems running on
servers can support a large-scale group of users who
communicate with the system over the network. In this
approach, user interfaces based on web protocols provide
access to the knowledge servers, and users do not need special
hardware or software to consult these services with appropriate
web browsers. To make knowledge servers available,
developers must distribute the software front ends that allow
users to communicate with the servers. The remaining parts are
concerning how expert systems technology can be used to assist
designer in navigating design knowledge present on the WWW,
drawing on an alternative view of KBS, and making decisions
in the design process.

Problem Solver
Knowledge Base

Database

User-Interface
Front End

Knowledge
Server

Client

Network Connection

End User

Client-Knowledge Server Architecture

Internet

WWW

DMME Server Model Base Server

Workspace

Model Base
DMME
Server

Interface

Knowledge Server

GUI
Model Base

Interface

Users/Designers

(b)

(a)

Fig.8: (a) Client-knowledge server architecture (b) and

main components for WebDMME

 The proposed web based design framework (WebDMME)
adopts the design with modules, modules network, and
knowledge server paradigms in which the knowledge server
utilizes the connectivity provided by the internet to increase the
size of the user base whilst minimizing distribution and
maintenance overheads. Therefore, HW/SW modules under
WebDMME framework are connected together so that they can
exchange services to form a larger integrated model. The
module structure of WebDMME leads itself to a client
(browser) / knowledge server oriented architecture using the
distributed object technology. Fig.8 shows the main system
components of the proposed client (browser) and knowledge

server architecture. Each of these components interacts with one
another using a communication protocol (e.g. CORBA) so that
it is not required to maintain the elements on a single machine.
As a gateway to provide services, the interface of a system
component invokes the necessary actions to provide requested
services. To request a service, a system component must have
an interface pointer to the desired interface (Pahng et al
1998a,b). In the WebDMME architecture, the resultant service-
exchange network forms an integrated distributed concurrent
system model for embedded systems when module services are
connected over the web. The distinct characteristics of the
WebDMME architecture are described as follows:
(1) It is well suited for loose and flexible collaborations as it is

an open environment and allows for true knowledge
encapsulation. The centralized multi-user system
architecture could be supported within a module in a larger
WebDMME network so that multiple users have the ability
to access to the centralized module.

(2) WebDMME architecture is intended to provide concurrent
system modeling functionality, i.e., concurrent interactions
between designers and models. When a designer receives a
model or data from another designer, he/she works on the
design and sends the result of design modification to others.

(3) In the WebDMME architecture, the interactions between
sub-problems are explicitly defined through design
negotiation so that a communicating object paradigm is
appropriate. Within the WebDMME, agents are useful when
designers are not certain about what modules can provide
the service they require. Agents could locate appropriate
modules (Li et al. 2004).

6.2 Module Interactions for Exchanging Services

The WebDMME architecture is designed to allow designers or
experts to publish and subscribe to design modeling and
decision support services on the web. These services operate
when information is received from other clients or knowledge
servers. When module services are connected, the resultant
service exchange network forms a concurrent integrated system
model. Any service request in the module network can invoke a
chain of service requests if needed to provide correct
information. When a design alternative is evaluated, the local
model asks for the services of subscribed models. If the
subscribed models themselves need services from other models
in order to provide the request services, they again request those
services from their own network to remote models. Thus, the
service requests are propagated through the connected modules.
However, the complete system may not be visible to any given
model. Since modules can only interact through services, it is
possible for a module or local model to encapsulate its internal
modules and hide intellectual property (IP) if desired. Before a
designer publishes his/her model(s), they can assign access
privileges for their services. Three levels of models access are
required: owner, builder, and user. The owner is the original
creator of the model and has access to all the services defined in

 9 Copyright © XXXX

the model and control over their publication. The builder can
see the internal details of a model the owner chooses to make
public and can add new modules. However, they cannot destroy
modules created by the owner or other builders. The users can
subscribe only to the published services.

Designer A Designer B

Workspace
in DMME Servers

CORBA Communication
Layer (Internet, WWW)

Modeling Layer GUI

Service request
Change

RequestedService provision

Fig.9: Service exchanges between distributed

modules.

A1

A2

Module A B1

B2

Module B A2

B1

Module AB

Module relationship &
configuration governing
equations:

B2=f2(b1) (1)

A2=f1(a1,b2) (2)

B1

A2

Remote
Module AB

C2

C1 Module C

Module relationship &
configuration governing
equations:

C2=f3(a2,c1) (3)
A1

A2

Module A B1

B2

Module B

C2

C1 Module C

(a)

(b) (c)

Module AB

IF (…)
THEN (…)

IF (…)
THEN (…)

IF (…)
THEN (…)

IF (…)
THEN (…)

Fig.10: Simple distributed design model with two

modules and a remote module: (a) Modules A and B,
(b)-(c) remote module AB

 The WebDMME framework provides methods and
interfaces needed for the interaction with other modules in the
networked environment. These interactions are graphically
depicted in Fig.9. When Designer B makes a change, the
service corresponding to the request from Designer A will
reflect this change. The enumerated request shows the sequence
for obtaining the service needed by Designer A. The light gray
module seen by Designer A is a remote module published by
Designer B.

6.3 Modules Network Formulation

As discussed above, the modularization/partitioning process
decomposes a design problem into HW/SW modules and

defines how HW/SW modules are related to one another. The
relationships amongst modules specify how outputs of a module
are connected to the inputs of other modules. The embedded
model of a module produces outputs using its internal design
resources as well as inputs from other modules. Fig.10
illustrates a simple distributed module network model used for a
design process. The variables of the model are governed by a
set of equations and/or rules. The interface connections between
variables in different modules (e.g. modules A, B) can be
established interactively or defined explicitly using the Model
Definition Language (MDL) (Siegel 1996, Phang et al. 1998).
The embedded models defined with the variable declaration can
also be created separately and linked to the model definition
using keywords. Modules A and B are local to the problem.
Using the remote module AB, a new design model (ABC) can
be created. As such, the problem model is made available for
use as a distributed module with the outward appearance in
Fig.10a. These distributed modules allow users to utilize
variables and their dependencies such as Module A (A1, A2,
�a1, �a2), Module B (B1, B2, �b1, �b2), Module C (C1, C2,
�c1, �c2), and Module AB (A1, A2, B1, B2, �a1, �a2, �b1,
�b2). Fig.10b illustrates the model from the viewpoint of the
ABC designer. Module C is local to the designer. Fig.10c
illustrates the true integrated model created when the remote
module AB and the local module C are connected. The problem
model ABC is thus created, which requires additional
information such as the distributed module’s name and IP
address. The description of the distributed model can be
illustrated in Table 1.

Internet, WWW

Design Information
Exchange

Integration and
collaboration bus

AB

C

Embedded Model of C

Embedded Model of AB

C2=f3(a2,c1)

A2

designABC.mdl updateABC.C

Design Model ABC
IF (…)
THEN (…)

A

B

Embedded Model of A

Embedded Model of B

A2=f1(a1,b2)

B2=f2(b1)

designAB.mdl

Design Model AB

IF (…)
THEN (…)

?

?

Embedded Model

Embedded Model

Design Model ?

IF (…)
THEN (…)

Fig.11: Module network configuration under the

WebDMME framework

It is shown that the relations between modules do not need to be
changed even if the embedded mathematical model of a remote
module (i.e., module AB) is changed. This flexibility enables a
designer to define a model independently from the actual
location (i.e., local or remote) of embedded models. When the
designer utilizes the remote module AB in conjunction with the
local module C, the resulting integrated model forms a
distributed computing system comprised of two autonomous

 10 Copyright © XXXX

computing elements. Fig.11 illustrates the configuration process
for distributed modules using the system components/modules,
including the internet and web resources. The embedded model
of the module AB in design problem model ABC contains an
object connector that manages the design information exchange
with the distributed design object AB.

Table 1: The description of the distributed model
Local Module Integration Remote Module

Integration
module: “A” (
 Variable "A1"()
 Variable "A2"()
 Dependency "a1"
 Dependency "b2"
 EmbeddedModel
"calculateA2"(A2=f1(a1,b2))
 RuleSet “A” (Rule A1:
 IF (a1=)
 THEN (…)
)
)
module: “B” (
 Variable "B1"()
 Variable "B2"()
 Dependency "b1"
 EmbeddedModel "calculateB2"
(B2=f2(b1))
 RuleSet "B" (Rule B1:
 IF (…)
 THEN (…)
)
)
Design: Two-module design (
 Module: A
 Module: B
}

module: “Remote_AB” (
 URL: 159.69.1.19 // IP address
 Receive "a2"
 RuleSet “AB” (Rule AB1:
 IF (…)

THEN (…)
)
)
module: “C” (
 Variable "C1"()
 Variable "C2"()
 Dependency "c1"
 Dependency "a2"
 EmbeddedModel
"calculateC2" (C2=f3(a2,c1))
 RuleSet"C" (Rule C1:
 IF (…)
 THEN
(…)
)
)
Design: Design with a remote
module (
 Module "AB"()
 Module " C"()
 }

7. CASE STUDY

To verify and validate the proposed modeling approach and
framework, we carried out a few case studies, including the
hydraulic measurement and control system for car ABS
(Antilock Brake System), intelligent e-maintenance and service
system, robotic system (controller), micro/medical device, etc.
In this section, the design of micro robotic system is used as an
example to illustrate the distributed modeling for embedded
system design. The case is chosen because of its embedded but
relatively simple nature. The research results from this particular
case can be generalized to cover other designs that require
collaboration and integration of multiple domains. The focus of the
illustration is on how designers from different teams may
participate to create an integrated design model: modules, modules
network and HW/SW module configurations.
 The design session creates modules in the design workspace.
Designers can use any commercial web browser to access and
work on these modules. As the robot system design and
operation are tightly coupled, it would make sense for designers
in these groups to share a common model. Thus, while
designers from different groups are in remote locations, they

can access into the same workspace, which is referred as a
shared workspace. Fig.12 shows the design workspace as
viewed by the designers from the robot system design team and
the robot operation team. The robot system design team is
connected to the robot and gripper manufacturing teams so that
their robot system design integrated with the gripper and robot
models can be tested. In this implementation and demonstration,
the robotic system is assembled through the use of predefined
fixed types of HW modules (joint and link modules) and SW
modules (control system) in distributed HW/SW module
inventories (repositories). These modules are published and can
be accessed.

DMME Server
Model Repository

Robot
Workspace

Model Base

Microrobot Manufacturer Host

DMME Server
Model Repository

Gripper
Workspace

Model Base

Microgripper Manufacturer Host

DMME Server
Model Repository

Robot System
Workspace

Robot
system

Robot

Gripper Model Base

Microrobot System Host

Microrobot System Design Team Host

Microrobot System Designer

Micro-

gripper

Micro-
robot

Microrobot System Operation Team Host

Microrobot System Operator

Micro-
gripper

Micro-
robot

DMME Server Model Repository

Robot System
Workspace

Robot
system Model Base

Microrobot System Manager Host

Microrobot System Manager

Micro-
robot

system

Fig.12: Shared design workspace

Module Inventory

rθ mθ

mω

dh
dofn

From
sensor

to
actuator

Robot

Reconfigurable
Modular Robot

mθ
mX

dh

dofn

Forward
Kinematics

mθ

rX

dh

dofn

Inverse
Kinematics

rθ mθ

mω

dh
dofn

Simulated
response

Data to
actuator

Robot
rX

dX rV

mX

Cartesian
Trajectory

Interpolator

Internet, WWW

Workstation
Simulator

Generic Components
(Modules)

mθ
mX

dh

dofn

Forward
Kinematics

mθ

rX

dh

dofn

Inverse
Kinematics

rX

dX rV

mX

Cartesian
Trajectory
Interpolat

or

Note: dofn - the number of degree-of-freedom; dh-D-H parameters; mX -the

measured configuration; rX -the real configuration; dX -the dynamic

configuration; mθ -the measured joint variable (vector); rθ -the real joint

variable; mω -the measured joint velocity; rω -the real joint velocity; rV -

the real linear velocity

Fig.13: Robot design analysis modules and modules
network

 11 Copyright © XXXX

The users or operation team can share their workspaces with
the design team. The design team creates modules while the
robot system operation team makes the rest design. In this case
the design team owns the session and the operation team have
joined as a builder. Although builders cannot modify the
modules created by other builders or owners, they can add new
modules and utilize all services. For example, the operation
team can use a service from a design module to obtain the robot
accuracy and the open distance of the gripper and can build new
modules in the workspace that utilize this information.
Similarly, the design team can also use services from the models
published by the robot and gripper manufacturing team.
Utilizing models provided by other designers is referred as
subscribing to a model. It is the responsibility of the design
team to provide these data or to locate other models that can
provide these data as services. The robot system managers want
to evaluate the design from in term of costs and they may link
their models to the design module to obtain the information
services needed by their models. The design team has only
published cost related aspects of their models. This means that
the robot system managers can only observe elements of the
design models that were published, as the designers wanted to
protect their proprietary models.

Fig.14: HW/SW modules configurations in robotic

system design

The problem of robotic system simulation and design are also

tightly coupled so that the design and simulation teams should
share a common model and access into the same workspace,
although these teams may be in remote locations. The robot
system can be operated by means of a virtual robot
manipulation system constructed in the web scheme, in which

3D models of the components are manipulated virtually in a
computer graphics. The robotic system simulator developed by
the simulation team provides a new design tool for designers in
the design team to carry out the flexible assembly and the
intuitive operations and simulations. This can help the designers
to verify the design. When a simulation sequence is running,
users or designers can control positions and orientations of the
robot and the components, and open-close states of the gripper
by clicking on them. The user interface graphically displays
robot configurations, gripper states, and the component states.
The simulation results can also help the designers in the design
team to modify and redesign the design if necessary. Fig.13
shows the robotic system design and analysis modules and
modules network. Fig.14 gives HW/SW module configurations
in the robotic system design.

8. SUMMARY AND CONCLUSIONS

In this paper, we presented a design with modules scheme and a
knowledge intensive cyber-infrastructure framework
(WebDMME) for collaborative embedded system design
modeling and support. Because of the heterogeneous structure,
the design and simulation processes require different grades of
abstraction and need the cooperation and collaboration of
different disciplines and resources. The developed framework
can provide distributed designers with a tool for collaboratively
building integrated models. The advantage of the demonstrated
modular concept consists in the flexibility of the program
structure and the reduction of costly software support by
integrating design tools and simulators. Large problems are
decomposed into sub-problems with modules. Models or other
software applications are encapsulated in modules. A module
can provide information services through its interface, and the
network of modules exchanging services form a concurrent
design model. Therefore, the behavior of complex systems and
the interactions of components can be analyzed and optimized
during the design process, resulting in shorter manufacturing
cycles.
 As the knowledge-server based framework was built to
provide the module network architecture for integrating
modeling services available on the network, it can
accommodate top-down and bottom-up approaches in the
context of both the traditional HW/SW separate design process
and the HW/SW co-design process. In the module network,
design resources, models, data, and activities are not centralized
nor concentrated in one location. They are distributed among
many companies, designers, or design participants working
together over the Internet/Intranet. Thus, the module network
architecture is extended to a computer network environment,
focusing on the web-based knowledge intensive and
collaborative design modeling and support. Fully implementing
the locally- defined modules and subscribing to the services of
the remote modules create design modules and modules
network. In the module network architecture, when modules
services are connected, the resultant service exchange network

 12 Copyright © XXXX

creates an integrated concurrent system model or module
network that invoke a chain of service requests if needed to
provide correct information.
 Compared to existing research efforts, the framework
presented in this paper differs in its focus to create an intelligent
design modeling scheme that handles the different variable
types and knowledge needed in embedded system design,
integrate multiple objective evaluation and optimization with
design models, and provide an object oriented design
methodology to facilitate the intelligent integration of design
models and their utilization in an open and distributed
intelligent design environment.

Disclaimer
No approval or endorsement of any commercial product,
service or company by the National Institute of Standards and
Technology is intended or implied.

REFERENCES
Abrahamson, S., Wallace, D., Senin, N., Sfereo, P., Integrated design

in a service marketplace, Computer-Aided Design 32 (2) (2000)
97–107

Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C.,
Vincentelli, A.S., Metropolis: An integrated electronic system
design environment, Computer, IEEE Computer Society, pp. 45-
52, 2003

Bidarra, R., van den Berg, E., Bronsvoort, W.F., Collaborative
modeling with features, Proceedings of 2001 ASME Design
Engineering Technical Conferences, Pittsburgh, Paper No.
DETC2001/CIE-21286

Bliznakov, P. I., Shah, J. J., Jeon, D. K. and Urban, S. D., Design
information system infrastructure to collaborative design in a large
organization, Proceedings of ASME DETC 95, Boston, MA, 1: pp.
1-8, 1995.

Camarinha-Matos, L.M., Afsarmanesh, H., Osorio, A.L., Flexibility
and safety in a web-based infrastructure for virtual enterprises,
International Journal of Computer Integrated Manufacturing 14 (1)
(2001) 66–82.

Chappel, D., Understanding ActiveX and OLE, Redmond, WA:
Microsoft Press, 1996

Chao, P.-Y., Wang, Y.-C., A data exchange framework for networked
CAD/CAM, Computers in Industry 44 (2) (2001) 131–140.

Cheng, K., Pan, P.Y., Harrison, D.K., Web-based design and
manufacturing support systems: implementation perspectives,
International Journal of Computer Integrated Manufacturing 14 (1)
(2001) 14–27.

Chen, Y.M. Liang, M.W., Design and implementation of a
collaborative engineering information system for allied concurrent
engineering, International Journal of Computer Integrated
Manufacturing 13 (1) (2000) 11–30.

Eggermont, L. D.J. (ed.) (2002), Embedded Systems Roadmap 2002,
Vision on Technology for the Future of PROGRESS, 30 March

Eriksson, H., Expert systems as knowledge servers. IEEE Expert,
14(3): 14-19, 1996

Fenves, S. J. (2001), A core product model for representing design
information, NISTIR 6736, NIST, Gaithersburg, MD

Gero, J.S., Design prototypes: a knowledge representation schema for
design. AI Magazine, 11(4): 6-36, 1990

Gorti, S. R., Gupta, A., Kim, G. J., Sriram, R. D., and Wong, A., 1998,
An object-oriented representation for product and design process,
Computer-Aided Design, 30(7): 7, pp. 489–501

Hardwick, M. Spooner, D.L. Rando, T. Morris, K.C., Sharing
manufacturing information in virtual enterprise, Communications
of the ACM 39 (2) (1996) 46–54

Han, C.S., Kunz, J.C., Law, K.H., An internet-based distributed
service architecture, Proceedings of the 1999 ASME Design
Engineering Technical Conferences, Las Vegas, NV, 12–15
September 1999 (CD).

Hassani, Mehrdad, A Component-based Methodology for Real-time
Decision-making Embedded Systems, PhD Dissertation,
University of Maryland, 2000

Jin, Y., Zhao, L., Raghunath, A., ActiveProcess: a process-driven and
agent-based approach to supporting collaborative engineering,
Proceedings 1999 ASME Design Engineering Technical
Conferences, Las Vegas, NV, 12–16 September 1999 (CD).

Klein, M., Supporting conflict resolution in cooperative design
systems, IEEE transactions on systems, Man and Cybernetics 21
(6) (1991) 1379–1390.

Kim, Y., Kang, S.-H., Lee, S.-H., Yoo, S.B., A distributed, open
intelligent product data management system, International Journal
of Computer Integrated manufacturing 14 (2) (2001) 224–235

Kim, C.-Y., Kang, S.-H., Kim, N., O’Grady, P., Internet-based
concurrent engineering: an interactive 3D system with markup,
Proceedings of ASME 18th Computers in Engineering Conference,
Atlanta, GA, 13–16 September 1998 (CD)

Kim, H., Lee, J.Y., Han, S.-B., Process centric distributed
collaborative design based on the web, Proceedings of ASME 19th
Computers in Engineering Conference, Las Vegas, NV, 12–15
September 1999 (CD)

King, S., Co-design: a process of design participation, New York: Van
Nostrand Reinhold, 1989

Konduri, G. and Chandrakasan, A., Framework for collaborative and
distributed web-based design, Proceedings of Design Automation
Conference, Proceedings of the 1999 36th Annual Design
Automation Conference (DAC), p.898-903, Jun 21-Jun 25 1999,
New Orleans, LA, USA

Kusiak, A. and Wang, J., Dependency analysis in constraint
negotiation, IEEE transactions on systems, Man and Cybernetics,
25 (9) (1995) 1301–1313

Lander, S. E., Issues in multi-agent design systems, IEEE Expert:
Intelligent System & Their Application, 12(2), 1997

Lee, J.Y., Kim,H., and Han, S.B., Network-centric feature-based
modeling, Proceedings of Pacific Graphics’99, pp. 280-289, Seoul,
Korea, 1999

Lee,Edward A., Overview of the Ptolemy Project, Technical
Memorandum No. UCB/ERL M03/25, University of California,
Berkeley, CA, 94720, USA, July 2, 2003.

Lewis J. W. and Singh, K. J., Electronic design notebooks (EDN):
Technical issues, Proceedings of Concurrent Engineering: A
Global Perspective, McLean, VA, pp. 431-436, 1995

Li, Y.L., Shao, X.Y., Li, P.G., and Liu, Q., Design and
implementation of a process-oriented intelligent collaborative
product design system, Computer in Industry, 53, pp.205-229,
2004

 13 Copyright © XXXX

Lu, S.C.Y., Cai, J., Burkett, W., Udwadia, F., A methodology for
collaborative design process and conflict analysis, Annals of CIRP
49 (1) (2000) 69–73

MADEFast, http://madefast.stanford.edu/, 1999

NIIIP, 1999, http://www.niiip.org/

O'Grady,P., Liang, W.Y., An object oriented approach to design with
modules, Iowa Internet Laboratory Technical Report TR98-04,
1998

Pahng, F., Senin, N. and Wallace, D. R. Modeling an evaluation of
product design problems in a distributed design environment, CD
ROM Proceedings of ASME DETC, Sacramento, CA, 1997

Pahng, .F., Senin, N., and Wallace, D.R., Distribution modeling and
evaluation of product design problems, Computer-Aided Design,
30(6): pp.411-423, 1998a

Pahng, F., Bae, S.H., and Wallace, D.R., Web-based collaborative
design modeling and decision support, Proceedings of DETC'98,
Atlanta, Georgia, USA, 1998b

Petrie, C. Cutkosky, M. and Park, H., Design space navigation as a
collaborative aid, Proceedings of Third International Conference
on Artificial Intelligence in Design, Lausanne, Switzerland, 1994

Pena-Mora, F., Sriram, R. D. and Logcher, R., Conflict mitigation
system for collaborative engineering, AI EDAM -Special Issue of
Concurrent Engineering, 9(2): pp. 101-123, 1995

Pena-Mora, F. Sriram, R.D. and Logcher, R., SHARED DRIMS:
SHARED design recommendation and intent management system,
Enabling Technologies: Infrastructure for Collaborative
Enterprises, IEEE Press, pp. 213-221, 1993

RaDEO, 1998, http://elib.cme.nist.gov/radeo/

Rosenman, M. and Wang, F.J., CADOM: A component agent-based
design-oriented model for collaborative design, Research in
Engineering Design, 11: pp.193-205, 1999

Rushton, G. J., and Zakarian, A., Development of Modular Vehicle
Systems, Department of Industrial and Manufacturing Systems
Engineering, University of Michigan, Dearborn, 2000

Sriram, R. D. and Logcher, R., The MITDICE Project, IEEE
Computer, pp. 64-65, 1993

Sriram, R.D., Distributed and Integrated Collaborative Engineering
Design, Sarven Publishers, Glenwood, MD 21738, Dec. 2002

Shyamsundar, N., Gadh, R., Internet-based collaborative product
design with assembly features and virtual design spaces,
Computer-Aided Design 33 (9) (2001) 637–651.

Singh, A. K., CONSENS - An IT solution for concurrent engineering,
Proceedings of Concurrent Engineering: A Global Perspective,
McLean, VA, pp. 635-644,1995

Senin., N., Wallace, D. R., Borland, N., and Jakiela, M.J., A
framework for mixed parametric and catalog-based design problem
modeling and optimization, MIT CAD Lab - Technical Report:
97.02, 1997a

Siegel, J., CORBA: Fundamentals and Programming: OMG, 1996

Stokes, M., Managing Engineering Knowledge: MOKA Methodology
for Knowledge Based Engineering Applications, MOKA
Consortium, London

Sun, J., Zhang, Y.F., Nee, A.Y.C., A distributed multi-agent
environment for product design and manufacturing planning,
International Journal of Production Research, 39 (4) (2001) 625–
645

Sivaloganathan, S., Andrews, P.T.J., and Shahin, T.M.M., Design
function deployment: A tutorial introduction, Journal of
Engineering Design, vol.12, No.1, pp.59-74, 2001

Tan, G.W., Hayes, C.C., Shaw, M., An intelligent-agent framework for
concurrent product design and planning, IEEE Transactions on
Engineering Management, 43 (3) (1996) 297–306

Toye, G., Cutkosky, M. R., Tenenbaum, J. M. and Glicksman, J.,
SHARE: A methodology and environment for collaborative
product development, Proceedings of Second Workshop on
Enabling Technologies: Infrastructure for Collaborative
Enterprises, Morgantown, West Virginia, pp. 33-47, 1993

Wang, Kai-Lu and Jin, Yan, Managing dependencies for collaborative
design, Proceedings of 2000 ASME Design Engineering Technical
Conferences and Computers and Information in Engineering
Conference, Baltimore, MA, 10–13 September 2000 (CD).

Wood III, W.H. and Agogino, A.M., Case based conceptual design
information server for concurrent engineering, Computer-Aided
Design, 8(5): 361-369, 1996

Whitfield, R.I., Duffy, A.H.B., Coates, G., Hills, W., Distributed
design coordination, Research in Engineering Design 13 (2002)
243–252

Wong, S.T.C., Coping with conflict in cooperative knowledge based
systems, IEEE Transactions on Systems, Man and Cybernetics—
Part A, Systems and Humans, 27 (1) 57–72, 1997

Zha, X.F., and Sriram, R.D., 2004, Collaborative product development
and customization: a platform-based strategy and implementation,
Proceedings of ASME DETC 2004, Paper No.: DETC2004-57709

Zha, X. F. and Sriram, R.D., 2004 Feature-based component model for
design of embedded system, in Intelligent Systems in Design and
Manufacturing V, edited by B. Gopalakrishnan, Proceedings of
SPIE Vol.5605 (SPIE, Bellingham, WA, 2004), pp. 226-237

Zha, X.F., Fenves, S. and Sriram, R.D. (2005), A feature-based
approach to embedded system hardware/software co-design,
submitted to 2005 ASME DETC, 2005

Zha, X.F., Fenves, S. and Sriram, R.D. (2005), Object-oriented
representation for embedded systems using UML, Working Paper,
National Institute of Standards and Technology, 2005

Zhao, G., Deng, J., and Shen, W., CLOVER: an agent-based approach
to systems interoperability in cooperative design systems,
Computers in Industry, 45 (3) (2001) 261–276.

