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ABSTRACT 
In this paper, we develop distributed design models and 
framework for collaborative embedded system design. Based on 
the component-based approach, a unified design-with-modules 
scheme is proposed to model the embedded system design 
process and a web-based distributed module modeling and 
evaluation (WebDMME) framework is developed as a 
collaborative cyber-infrastructure to support distributed 
network-centric embedded system design. The framework 
intends to link distributed, heterogeneous hardware/software 
(HW/SW) design models and tools and assist designers in 
evaluating design alternatives, visualizing trade-offs, finding 
optimal solutions, and making decisions on the web. It also 
enables designers to build integrated design models using both 
the local and distributed resources (e.g., local and distributed 
HW/SW modules) and to cooperate by exchanging services. 
The client (browser) / knowledge server architecture allows 
embedded system design models to be published and connected 
over the web to form an integrated intelligent models/modules 
network. Finally, as an illustration, a model for modular micro-
robotic systems design is developed. 
      Keywords: Embedded system, hardware/software 
modules, hardware/software co-design, component-based 
approach, distributed module modeling and evaluation 
(DMME), collaborative design, cyber-infrastructure 

1. INTRODUCTION 
 
As we progress closer to a knowledge economy, the need for an 
infrastructure based upon distributed computing, information 
and communication technology (i.e., a Cyber-Infrastructure), 
becomes increasingly paramount.  A recent report to NSF 
indicates that such a Cyber-Infrastructure (CI) will play a 

pivotal role in supporting and shaping future predictive product 
realization systems and processes (http://www.nsf.gov/).    
     Design process is a knowledge-intensive and collaborative 
task. The knowledge intensive design support in a cyber-
infrastructure becomes critical and is recognized as a key 
solution toward future competitive advantages in product 
development. Integrated design requires skills of many 
designers/ users and experts that each participant creates models 
and tools to provide information or simulation services to other 
participants given appropriate input information. It is the goal 
that the network of participants exchanging services in a cyber-
infrastructure forms a concurrent integrated model for design. 
       An embedded system is a hybrid of hardware and software, 
which combines software’s flexibility and hardware real-time 
performance. Many industries are witnessing a rapid evolution 
toward solutions that integrate hardware and software or 
incorporate complete systems on a single chip (SoC). Modern 
embedded and hybrid systems have characteristics (ever-
increasing complexity and diversity for more functionality, 
packed into smaller spaces consuming less power) that demand 
new approaches to their specification, design and 
implementation. Thus, embedded system design problems 
embody significant levels of complexity, which make it unlikely 
that a single designer can work alone on a complex design 
problem. Knowledge-intensive collaborative design has 
emerged as a promising discipline for dealing with the modeling 
and decision-making processes in distributed embedded system 
design. There exist many informal or semi-formal models and 
methodologies for separate hardware/software design. 
However, there is as yet no unified formal representation, 
simulation, and synthesis framework. At NIST, in the project of 
Representation for Embedded Systems (Zha and Sriram 2004), 
we are developing a standards-based framework for modeling 
information and knowledge in embedded systems design, 
including hardware/software co-design methodologies; an 
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integrated framework for design, modeling and testing; standard 
representations and protocols for exchanging and reusing 
system-level information and knowledge so as to enable 
semantic interoperability between design software systems in 
virtual, distributed and collaborative environments through the 
entire lifecycle.   
       This work aims to build up an information cyber- 
infrastructure to facilitate the rapid construction of integrated 
distributed design models for embedded systems. A unified 
design-with-object scheme is proposed for modeling and 
representing the distributed network-centric design process. A 
distributed framework is developed for collaborative design of 
embedded systems. A component-based topology and a feature-
based model structure are defined for integrated representation/ 
configuration of HW/SW components that constitute an 
embedded system. 
      The organization of this paper is as follows. Section 2 is the 
current research status review. Section 3 gives an overview of 
the proposed approach to collaborative embedded system 
design. Section 4 discusses distributed module modeling and 
evaluation for embedded systems design process. Section 5 
proposes an integrated knowledge representation scheme. 
Section 6 provides a description of the WebDMME framework. 
The knowledge server architecture for supporting different 
types of collaborative design activities in a distributed design 
environment is described. In Section 7, a model for modular 
micro-robotic systems design is built upon the WebDMME 
framework. Section 8 summarizes the paper. 

2.  CURRENT RESEARCH STATUS  

2.1. Collaborative Design Frameworks and Systems  
 
Computer Supported Cooperative Design (CSCD) is the use of 
computer technology assisting people working in the 
engineering design field. King (1989) considers that the 
fundamental issue of CSCD is focused on the computerization 
to establish a concept-sharing and seamless coordination among 
engineering design participants for concept formation. While 
many individuals and organizations may provide services so 
that an integrated product model can be constructed, it is not 
likely that each participant will disclose the full details or 
structure of their proprietary models and data. Providing a 
means for encapsulating expert knowledge or know-how is 
essential. An object-oriented approach provides a framework 
for such knowledge encapsulation. Furthermore, an object-
oriented architecture is also highly suited to a distributed 
computing environment (Toye et al 1993). Distributed object 
technology, such as CORBA (Common Request Broker 
Architecture) (Siege 1996) and DCOM / ActiveX (Chappel 
1996) can be used to address the issue of distributed computing 
environment. A computer platform and language-independent 
interface definition allows software applications to 

communicate with each other provided a neutral interface has 
been agreed upon. For example, the WWW has gained its 
popularity and momentum through a platform-independent 
protocol (i.e., HTTP) and a language-independent scheme (i.e, 
HTML) for presenting information. The software component 
technology is adopted to build a collaborative CAD system. 
Rosenman and his collaborators (1999) proposed an approach 
to collaborative design based on the software component 
mechanism. However, their work is only focused on the data, 
not knowledge. 
        Distributed design systems might have two distinct forms: 
distributed designers with access to centralized resources, or 
distributed designers with distributed resources (e.g., 
engineering models, databases, software applications, etc.) 
“Decentralized” means that the coordination between design 
participants and models is not centrally modeled or controlled 
(analogous to the WWW). This is important because centrally 
controlling the interactions of all distributed resources may 
restrict system growth and flexibility. If there was a centralized 
control over the WWW for linking the hyper documents, it 
could not evolve so rapidly. Pahng et al (1997, 1998a-b) 
developed a web-based framework for collaborative design 
modeling and decision support, based on the distributed object 
modeling and evaluation (DOME). In the DOME architecture, 
the resultant service-exchange network forms an integrated 
concurrent system model if module services are connected. 
There are other architectures or frameworks for network-centric 
collaborative design. These include the centralized multi-user 
system architecture, e.g., the blackboard-based DICE (Sriram 
and Logcher, 1993, Sriram 2002), DIS (Bliznakov et al 1995), 
data and model exchange system, e.g., SHARE (Toye et al, 
1993), EDN (Lewis and Singh 1995), MADEFast (1999), NIIIP 
(1999), RaDEO (1998), and multi-agent distributed system 
architectures (Sun et al. 2001). 
      There are many information and distributed computing 
systems that have been built to support the collaborative design 
modeling and decision-making process. According to their 
different purposes and/or focuses, these systems can be 
generally grouped into the following categories (Li et al. 2004):  
(1) Collaborative product data/information management 

systems for engineers to timely obtain the necessary 
product data and knowledge (Cheng and Liang 2000, 
Hardwick et al. 1996, Kim et al. 2001, Chao and Wang 
2001); 

(2) Network based collaborative design systems which can be 
further divided into web-independent (Pahng et al. 1998a-b, 
Shyamsundar and Gadh 2001, Tan et al. 1996, Sun et al. 
2001, Whitfield et al. 2002) and web-dependent systems 
(Kim et al. 2001); 

(3) Process-centered collaborative design and workflow 
management systems (Lu et al. 2001, Jin et al. 1999); 

(4) Conflict detection, management and resolution systems for 
collaborative design (Jin et al. 1999, Wong 1997, Klein 
1991); 
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(5) Flexibility and security focused collaborative design system 
(Camarinha et al. 2001); 

(6) Interoperability approaches in heterogeneous collaborative 
design systems (Abrahamson et al. 2000, Zhao et al. 2001, 
Han et al. 1999)  

Since most of them are developed for the needs of collaborative 
design, the current systems can assist designers one way or 
another in collaboration of embedded system design.   

2.2. Electronic and Embedded System CAD Frameworks 
 
Embedded and hybrid systems or integrated electronic systems 
are among the most complex artifacts. Decades ago, when the 
first integrated circuits were developed, small groups of 
engineers could handle the design without sophisticated 
computer aid. However, most of the current achievements rely 
on the work of many designers and design automation tools. 
From the need to support the numerous tools needed in a design 
cycle of an embedded and hybrid system (even an integrated 
circuit), the concept of electronic CAD frameworks/systems 
was crafted. This concept has evolved over the years, 
incorporating new engineering techniques to better serve its 
purpose of: 
(1) support tool developers by providing building blocks - to 

accelerate implementation - and interfaces - to grant 
interoperability with other tools and data repositories; 

(2) support tool administrators by providing a platform where 
tools and data repositories can be integrated and managed 
together; 

(3) support designers by providing an integrated environment 
for the complete design flow. 

(4) support designers by providing an integrated & distributed 
collaborative environment for the complete design flow. 

       It is clear that the next generation electronic CAD 
framework/systems are to support designers by providing an 
integrated & distributed collaborative design and development 
environment for the complete design flow. Currently, there exist 
some informal or semi-formal models and methodologies for 
separate hardware/software design and several frameworks have 
been proposed (Eggermont 2002). However, there is as yet no 
unified formal representation, simulation, and synthesis 
framework for supporting hardware and software co-design in a 
distributed collaborative environment despite the progress made 
in several research projects such as Ptolemy (Lee 2003) and 
Metropolis (Balarin et al. 2003). 
       From the literature review, we can summarize the current 
research status of collaborative design modeling and support for 
embedded systems design as follows. There are many research 
efforts working on enabling technologies or cyber-infrastructure 
to assist designers in the computer-aided network-centric design 
environment. Some of them intend to help designers to 
collaborate or coordinate by sharing product information and 
manufacturing services through formal or informal interactions. 
Others propose frameworks and develop systems that manage 

conflicts between design constraints and assist designers in 
making decisions. The overview of the current collaborative 
design frameworks and systems shows that they can assist 
designers in one way or another in collaboration and their 
functionality can eliminate a large amount of work during the 
design process such as data/information sharing and exchange. 
However, they do not provide a structured and formalized 
framework for modeling the characteristics of multidisciplinary 
and multi-objective design problems, in particularly hardware 
and software co-design in a complex embedded system. Thus, 
they are unable to effectively and efficiently support and 
coordinate highly distributed/decentralized collaborative design 
and modeling activities for embedded systems. As a result, an 
intelligent collaborative tool that can provide efficient 
coordination and intelligent decision-making mechanisms for 
designers is still needed. 

3. COLLABORATIVE EMBEDDED SYSTEM DESIGN: 
AN OVERVIEW OF THE PROPOSED APPROACH 
 
As reviewed above, distributed design systems might have two 
distinct forms: distributed designers with access to centralized 
resources, or distributed designers with distributed resources 
(e.g., engineering models, databases, software applications, 
etc.). This work focuses on the latter architecture. Thus, the 
coordination between design participants and models is not 
centrally modeled or controlled (analogous to the WWW).  The 
motivation and vision of this research share some similar 
themes with DOME (Pahng et al 1997, 1998) but emphasize 
knowledge-level or knowledge intensive design modeling, 
decision-making support, and search/optimization and 
navigation. Even more, the proposed approach decomposes 
design tasks into several HW/SW “design components” or 
modules that can be developed separately by collaborative 
developers. We investigate the application of the modular 
design and development approach both for HW and SW 
artifacts. The distributed module-based approach follows the 
component technology and distributed object technology, which 
is called distributed module modeling and evaluation (DMME) 
framework. In the component technology, a component is a 
reusable application whose data and methods is exposed and 
can be accessed and operated by other applications. Thus, the 
DMME framework asserts that multidisciplinary problems are 
decomposed into modular sub-problems. Modularity divides 
overall complexity and distributes knowledge and responsibility 
amongst designers. It also facilitates the reuse of modeling 
elements. Therefore, distributed modules allow designers to 
define mathematical models or HW/SW modules and integrate 
or interconnect them to form large system models. In DMME, a 
multiple attribute decision method is used to capture 
preferences and evaluate design alternatives from different 
viewpoints. The resultant service-exchange network forms an 
integrated concurrent system model if module services are 
connected. The comparisons between the DMME architecture 
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and other architectures or frameworks including DOME are 
described as follows: 
(1) DMME share some characteristics with DOME, but it 

differs from the DOME architecture (Fig.1b) in that it 
supports both hardware and software system modeling at 
feature and knowledge level.  

(2) For the DMME/DOME architecture, the distinct 
characteristic is that when module services are connected, 
the resultant service exchange network forms an integrated 
concurrent system model.  

(3) For the centralized multi-user system (Fig.1a), multiple 
users have access to the centralized main system, which 
stores and manages information such as product design 
models, design information and design history. Although 
powerful, a central system is less suited for loose and 
flexible collaborations as it is not an open environment and 
does not allow for true knowledge encapsulation. 
However, such architecture could be supported within a 
module of a larger DMME/DOME network.   

(4) The data and model exchange system architecture (Fig.1c) 
tends to provide an "over-the-wall" sequential interaction 
between designers and models. When a designer receives a 
model or data from another designer, he/she works on the 
design and sends the result of design modification to 
others. Therefore, this architecture is not intended to 
provide concurrent system modeling functionality.  

(5) Multi-agent based architectures are more appropriate for 
loosely coupled environments where mutual interactions 
between objects are not well defined. In the 
DMME/DOME architecture, the interactions between sub-
problems are explicitly defined through design negotiation 
so that a communicating object paradigm is appropriate. 
However, within the DMME/DOME, agents are useful 
when designers are not certain about what modules can 
provide the service they require. Agents could locate 
appropriate modules. 

More details about the proposed approach are discussed below. 

4. DISTRIBUTED MODULE MODELING AND 
EVALUATION FOR EMBEDDED SYSTEM DESIGN 
PROCESS  
 
In this section, based on the component-based approach, a 
design with modules scheme is proposed for embedded system 
design and a distributed module modeling and evaluation 
(DMME) framework is developed for modeling the network-
centric embedded system design process.  

4.1 Design with Modules Scheme for Embedded Systems 
 
Over half of industrial products have subsystems or modules or 
components as a part of their basic designs. The modularity 
design concept has been widely used in design for flexibility, 
rapid responsiveness, ease of maintenance, and rapid 

deployment. As a matter of fact, during the design process, 
information processing is inherently model-based because the 
design object is structural in type. Therefore, an object 
orientation scheme is employed so that both calculating and 
reasoning work in design can be carried out. The integrated 
design object model is, in fact, an attempt to set up a knowledge 
intensive framework in such a way that it becomes possible to 
process various types of knowledge in a top-down design 
process (Gero 1990). Object-oriented programming technique 
allows designers to look at a design problem as a collection of 
objects/components/modules or sub-problems linked together 
by rules. Thus it provides the designers with an expressive 
power to represent complex problems or information in an 
effective manner. If a designer can break a design problem in 
the form of well defined, clearly operable chunks with their own 
self-containing information which are interrelated through a 
series of rules and constraints, then these problems lead 
themselves well to object-oriented programming application 
and conveniently to be solved (Pahng et al 1998).  
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     The central embedded system design process inherent in the 
design-with-modules scheme proposed in this work could be 
represented as the architecture as shown in Fig.2 with six main 
types of objects involved, namely, design models (S), design 
objects (O), co-design algorithms (A), functions (requirements 
and constraints) (FRC), system partitioning (P) and the 
evaluation schema (E). Object operators can express the 
relationship between these objects: inheritance, import, and 
message passing. The architecture in Fig.2 shows how the 
particular instance of a design model, S1

k, is obtained from the 
HW/SW co-design algorithm, system partition, evaluation 
schema, requirements, constraints and the design model object. 
For the pure formulation design or creative design, a new 
design model object, S, is defined that describes the form of the 
model. A specific instance, S1

k, of this design model can then be 
created. For pure parametric design then the design model 
object S has already been defined and the design process 
therefore only involves the determination of a specific instance, 
S1

k, of the design model. Note that additional objects can be 
defined within the overall architecture.  

4.2 Module-based Design and Modularization/ Partitioning 
Process  
 
A design model is created using object attribute variables and 
relations between them. Modules are variable containers. 
Variables can be grouped together into modules according to 
logical, functional or physical component-based decompositions 
(Senin et al. 1997a). This grouping process is normally a 
bottom up decomposition as elementary entities are aggregated 
to build more complex entities. A designer may also prefer to 
use a top-down approach by defining high-level modules first 
and then detailing the low-level variables and relations. Using 
the bottom-up and top-down techniques, integrated design 
models are built by interconnecting modules corresponding to 
different sub-problems. Modules interact by service calls. A 
module might request information from other modules to 
perform internal computations and then provide the results as 
services to other modules. In fact, a HW/SW module can be 
seen as a collection of HW/SW components that covers one or 
more sub-functions. For example, an electro-mechanical 
product (e.g. modular robot) module can be defined by a 
combination of bill-of-materials (BOM) and technical drawings. 
Thus, physically, a modular product system is a collection of 
interchangeable modules (e.g., link and joint modules in 
modular robots) that can be assembled into many different types 
and configurations of products. The modular design of products 
provides the ability to achieve product variety for customer 
requirements through the combination/configuration and 
standardization of modules.  
       A module is a building block capable of performing 
calculations and performing information through service calls 
invoked by its user. Defined as shown in Fig.3, a module 
represents knowledge related to different aspects of the design 
in the form of variables and relations. The variables contained 

in the module are represented as interconnected circles. The 
directed arcs imply dependency. The outputs and inputs to the 
module constitute the interface of the module. Modules can be 
interconnected through interfaces. The calculations internal to a 
module constitute its embedded model. Customer-created 
computer programs and third-party applications (software 
modules), such as domain specific analysis tools or CAD 
systems, can also be embedded into a module. Modules interact 
with each other by exchanging information and services, 
reacting to each other's changes for an integrated system model. 
Modules can distribute over the network and collectively form a 
distributed model for a collaborative, multidisciplinary and 
concurrent design evaluation.  

Input  1

Input  2

Input  n

Output  1

Output  2

Output m 

Embedded Model

Message

Message

Input Interface Output Interface

Internal Variables and Relations
(Input Port) (Output Port)

(Input Port)

(Output Port)  
Fig.3: Module definition and embedded model 

 
Decomposing the problem into modules and defining how 
modules are related to one another creates the model of a design 
problem. This is actually a modularization/partitioning process. 
The modularization/partitioning process is fulfilled through the 
following steps: 
(1) Functional specification analysis is carried out from the 

customer requirement viewpoint using design functions 
deployment technique and Hatley/Pirbhai technique 
(Sivaloganathan et al 2001; Rushton & Zakarian, 2000). A 
function-function interaction matrix is generated. 

(2) The combination of heuristic and quantitative clustering 
algorithms is used to modularize/partition the 
product/system architecture, and a modularity matrix is 
constructed. 

(3) All modules are identified through the modularity matrix, 
and the types of all these modules can be further identified 
according to the module classifications (HW/SW modules).  

(4) Functional modules are mapped to structural modules using 
the function-structure interaction matrix. Module attribute 
parameters or features can represent its structure (Zha and 
Sriram 2004).  

(5) Hierarchical building blocks (modules) are used to represent 
the product/system architecture from both the functional and 
the structural perspectives.  

(6) Optimization algorithms are used to optimize the 
product/system architecture to achieve one main objective. 
Other design objectives are transformed into constraints for 
modules and their attributes as well as their assemblies or 
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configurations. In addition, the cost or profit models can 
also be built as system constraints. 

4.3 Distributed Co-Design Modeling and Evaluation 
 
In a distributed design environment, each group of designers 
can define their own HW/SW modules, loading them into their 
local work area and eventually connecting them to the other 
parts of the design problem through appropriate networked 
interfaces. Fig.4a shows a distributed co-design model 
involving two designers and three modules. Designer 1 defines 
HW modules A and B while Designer 2 defines SW module C. 
Two domains communicate through an Internet connection. 
Once the whole problem is loaded and interconnected, each 
group of designers typically has write access to local parts of 
the model, i.e., they can exert decisions within their local range 
of influence, and read access to relevant aspects of remote parts 
of the model. This allows designers to see the remote effects of 
their local decisions. Fig.4b shows that both Designers 1 and 2 
might see the complete problem, but with different access 
privileges. Designer 1 can see modules A and B as local and 
module C as remote. Conversely, module C is local to Designer 
2. The remote part seen by Designer 2 could show modules A 
and B or just a single distributed object (AB) if Designer 1 
restricts their visibility/access. 
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A B C
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A B

C

Designer 2

 
Fig.4: Distributed modules 

 
        The modeling and implementation layers are illustrated in 
Fig.5. The user-visible layer or modeling layer is the designer's 
viewpoint. At this level the designer defines the problem in 
terms of modules and interactions among modules (Fig.5a). In 
this example, an implementation is provided only for the local 
HW modules A and B, while SW module C is remote. The 
designer provides location constraints for compatible modules 
that may be used as C. The unseen implementation layer 
(Fig.5b) is created to provide the functionalities described in the 
modeling layer. This layer locates remote modules. The remote 
modules must be distributed objects capable of communicating 
via a standard communication protocol. A distributed interface 

is wrapped around the group of standard modules (A and B) to 
allow the local and distributed modules to communicate with 
each other. This distributed module’s external interface offers 
service calls to and from the remote module. A design problem 
model sees the distributed module as a separate application that 
is capable of providing services upon request. Fig.6 shows an 
implementation for module network. 
       The interactions between distributed modules can be 
achieved by publishing and subscribing services. The term 
publish refers to making the services of one's local model 
visible together designers. The term subscribe refers to making 
use of published services. Such design problem models are 
mixed variables, where independent parameters within modules 
are set and catalog selections might be used to substitute entire 
modules. Design solutions can be assessed and compared with 
each other using the decision-making tool embedded in the 
framework. 
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y z
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C
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Remote module
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Fig.5: Module network modeling  

 

 
Fig.6: Module network implementation 

5. INTEGRATED KNOWLEDGE REPRESENTATION 
SCHEME 
 
During the design process, both product and design process 
design knowledge representations are needed to be dealt with 
(Gorti et al 1998). Since the design knowledge is very 
extensive, we focus only on the product/system and some 
selected activities in the design process. A systematic 
methodology is developed for knowledge modeling and 
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management in the design process, as shown in Fig.6. In our 
previous work, we have developed an object-oriented model 
(OESM) for representing embedded systems (Zha and Sriram 
2004, Zha and Sriram 2005). OESM is extended from the NIST 
core product model (Fenves 2001). Specifically, a complete 
information model is defined, which consists of customer 
requirements, design specifications, HW/SW modules (artifacts, 
functions-behaviors, geometry and material for HW form, 
architecture and code for SW form), module interfaces, etc., as 
follows: 
Embedded System Model { 
        Requirements;  
        Specifications; 
        HW/SW Artifacts; 
        HW/SW Features; 
        HW/SW Functions-behaviors-forms; 
        HW/SW Performance objectives and constraints; 
        Relationships; 
        Design rationale; 
} 
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Fig.7: Product, design process, and knowledge 

 
      Based on the OESM, an integrated knowledge 
representation approach is proposed for embedded system 
design in this work. In what follows, we concentrate on 
introducing the integrated knowledge representational scheme 
related to the design process. It deals mainly with declarative 
representation, production rules and object-oriented concepts. 
Procedural representation using conventional languages such as 
C was not emphasized. Integrating knowledge in its multiple 
forms, multiple levels and multiple functions can fulfill design 
processes and activities, especially the more complex type. The 
integration is very challenging, as the overall effect may be 
greater than the sum of its parts. The integrated knowledge can 
solve problems, which cannot be attained by the individual 
knowledge alone. Based on a combination of elements of 
semantic relationships with the object-oriented data model, a 
multi-level hierarchical representation schema (enterprise-level, 
system level, component-level, feature level) is adopted to 

represent the embedded system design process knowledge. To 
effectively manage and utilize the design process knowledge, a 
generalized design knowledge matrix is proposed for organizing 
design knowledge. All tasks in the design process are listed in 
column while all information and design knowledge are 
categorized in rows. The contents of design knowledge for each 
task are recorded in the corresponding cells of the design 
knowledge matrix with appropriate representations.  
        More specifically, the object-oriented knowledge 
representation is based on a mixed representation method and 
object-oriented programming (OOP) techniques (Sriram 2002), 
and allows designers to look at the design problem as a 
collection of objects or sub-problems linked together by rules. 
Thus it provides the designers with an expressive power to 
represent complex problems or information in an effective 
manner. If a designer can break the design problem into the 
form of well-defined, clearly manipulative chunks with their 
own self-containing information, which is interrelated through a 
series of rules and constraints, then the problem can be easily 
solved. The basic structure of this representation is described as 
a module. The class of an object and its instances are described 
by the module structure. An object-oriented module is 
composed of four types of slots, which are the attribute slot, 
relation slot, method slot and rule slot as follows (Sriram 2002): 
1) The attribute slots are used for describing the static attributes 
(variables) of design object. 2) The relation slot is used for 
describing the static relations among objects. With the help of 
the relation slot and according to the relation of classification, 
the design object can be described as a hierarchical structure. Its 
classes and subclasses can share the knowledge in super class. 
The messages that control the design process can be sent among 
all instances of objects. In addition, if needed, other kind of 
relation slots can be defined, such as the resolution, position 
and assembly, etc. These slots create the foundation for 
describing a graph in design. The hierarchical structure of 
object oriented knowledge representation is formed. 3) The 
method slot is used for storing the methods of design, sending 
messages and performing procedural control and numerical 
calculation. 4) The rule slot is used for storing sets of 
production rules. The production rules can be classified 
according to the differences among objects being treated and 
stored respectively in rule slots in the form of slot value. Thus, 
the integrated knowledge representation scheme realizes the 
advantages of both object-oriented representation and rule-
based representation. 

6. KNOWLEDGE INTENSIVE FRAMEWORK FOR 
COLLABORATIVE EMBEDDED SYSTEM DESIGN  
 
In this section, a web knowledge server based distributed 
module modeling and evaluation (WebDMME) framework is 
proposed for collaborative embedded system design. 

6.1 WebDMME Framework Architecture  
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The widespread use of the Internet and WWW provides an 
opportunity for making expert systems widely available. By 
implementing knowledge-based expert systems as knowledge 
servers that perform their tasks remotely, developers can 
publish expertise on the web. Technologies and cyber-
infrastructures that make this approach feasible are emerging. 
Simultaneously, the interest in AI support for network 
navigation services is growing. The internet and WWW now 
allow developers to provide intelligent knowledge servers 
(Eriksson 1996). Knowledge-based expert systems running on 
servers can support a large-scale group of users who 
communicate with the system over the network. In this 
approach, user interfaces based on web protocols provide 
access to the knowledge servers, and users do not need special 
hardware or software to consult these services with appropriate 
web browsers. To make knowledge servers available, 
developers must distribute the software front ends that allow 
users to communicate with the servers. The remaining parts are 
concerning how expert systems technology can be used to assist 
designer in navigating design knowledge present on the WWW, 
drawing on an alternative view of KBS, and making decisions 
in the design process.  
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Database

User-Interface
Front End

Knowledge
Server

Client

Network Connection

End User
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Internet
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Workspace
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DMME
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Interface

Knowledge Server

GUI
Model Base

Interface

Users/Designers

(b)

(a)

 
Fig.8: (a) Client-knowledge server architecture (b) and 

main components for WebDMME 
 

        The proposed web based design framework (WebDMME) 
adopts the design with modules, modules network, and 
knowledge server paradigms in which the knowledge server 
utilizes the connectivity provided by the internet to increase the 
size of the user base whilst minimizing distribution and 
maintenance overheads. Therefore, HW/SW modules under 
WebDMME framework are connected together so that they can 
exchange services to form a larger integrated model. The 
module structure of WebDMME leads itself to a client 
(browser) / knowledge server oriented architecture using the 
distributed object technology. Fig.8 shows the main system 
components of the proposed client (browser) and knowledge 

server architecture. Each of these components interacts with one 
another using a communication protocol (e.g. CORBA) so that 
it is not required to maintain the elements on a single machine. 
As a gateway to provide services, the interface of a system 
component invokes the necessary actions to provide requested 
services. To request a service, a system component must have 
an interface pointer to the desired interface (Pahng et al 
1998a,b). In the WebDMME architecture, the resultant service-
exchange network forms an integrated distributed concurrent 
system model for embedded systems when module services are 
connected over the web. The distinct characteristics of the 
WebDMME architecture are described as follows: 
(1) It is well suited for loose and flexible collaborations as it is 

an open environment and allows for true knowledge 
encapsulation. The centralized multi-user system 
architecture could be supported within a module in a larger 
WebDMME network so that multiple users have the ability 
to access to the centralized module.   

(2) WebDMME architecture is intended to provide concurrent 
system modeling functionality, i.e., concurrent interactions 
between designers and models. When a designer receives a 
model or data from another designer, he/she works on the 
design and sends the result of design modification to others.  

(3) In the WebDMME architecture, the interactions between 
sub-problems are explicitly defined through design 
negotiation so that a communicating object paradigm is 
appropriate. Within the WebDMME, agents are useful when 
designers are not certain about what modules can provide 
the service they require. Agents could locate appropriate 
modules (Li et al. 2004). 

6.2 Module Interactions for Exchanging Services 
 
The WebDMME architecture is designed to allow designers or 
experts to publish and subscribe to design modeling and 
decision support services on the web. These services operate 
when information is received from other clients or knowledge 
servers. When module services are connected, the resultant 
service exchange network forms a concurrent integrated system 
model. Any service request in the module network can invoke a 
chain of service requests if needed to provide correct 
information. When a design alternative is evaluated, the local 
model asks for the services of subscribed models. If the 
subscribed models themselves need services from other models 
in order to provide the request services, they again request those 
services from their own network to remote models. Thus, the 
service requests are propagated through the connected modules. 
However, the complete system may not be visible to any given 
model. Since modules can only interact through services, it is 
possible for a module or local model to encapsulate its internal 
modules and hide intellectual property (IP) if desired. Before a 
designer publishes his/her model(s), they can assign access 
privileges for their services. Three levels of models access are 
required: owner, builder, and user. The owner is the original 
creator of the model and has access to all the services defined in 
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the model and control over their publication. The builder can 
see the internal details of a model the owner chooses to make 
public and can add new modules. However, they cannot destroy 
modules created by the owner or other builders. The users can 
subscribe only to the published services.  

Designer A Designer B

Workspace 
in DMME Servers

CORBA Communication 
Layer (Internet, WWW)

Modeling Layer GUI

Service request
Change

RequestedService provision

 
Fig.9: Service exchanges between distributed 

modules. 

A1

A2

Module A B1

B2

Module B A2

B1

Module AB

Module relationship & 
configuration governing 
equations:

B2=f2(b1)                      (1)

A2=f1(a1,b2)            (2)

B1

A2

Remote 
Module AB

C2

C1 Module C

Module relationship & 
configuration governing 
equations:

C2=f3(a2,c1)              (3)
A1

A2

Module A B1

B2

Module B

C2

C1 Module C

(a)

(b) (c)

Module AB

IF (…)                            
THEN (…)

IF (…)                            
THEN (…)

IF (…)                            
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Fig.10: Simple distributed design model with two 

modules and a remote module: (a) Modules A and B, 
(b)-(c) remote module AB 

         
     The WebDMME framework provides methods and 
interfaces needed for the interaction with other modules in the 
networked environment. These interactions are graphically 
depicted in Fig.9. When Designer B makes a change, the 
service corresponding to the request from Designer A will 
reflect this change. The enumerated request shows the sequence 
for obtaining the service needed by Designer A. The light gray 
module seen by Designer A is a remote module published by 
Designer B. 

6.3 Modules Network Formulation  
 
As discussed above, the modularization/partitioning process 
decomposes a design problem into HW/SW modules and 

defines how HW/SW modules are related to one another. The 
relationships amongst modules specify how outputs of a module 
are connected to the inputs of other modules. The embedded 
model of a module produces outputs using its internal design 
resources as well as inputs from other modules. Fig.10 
illustrates a simple distributed module network model used for a 
design process. The variables of the model are governed by a 
set of equations and/or rules. The interface connections between 
variables in different modules (e.g. modules A, B) can be 
established interactively or defined explicitly using the Model 
Definition Language (MDL) (Siegel 1996, Phang et al. 1998). 
The embedded models defined with the variable declaration can 
also be created separately and linked to the model definition 
using keywords. Modules A and B are local to the problem. 
Using the remote module AB, a new design model (ABC) can 
be created. As such, the problem model is made available for 
use as a distributed module with the outward appearance in 
Fig.10a. These distributed modules allow users to utilize 
variables and their dependencies such as Module A (A1, A2, 
�a1, �a2), Module B (B1, B2, �b1, �b2), Module C (C1, C2, 
�c1, �c2), and Module AB (A1, A2, B1, B2, �a1, �a2, �b1, 
�b2). Fig.10b illustrates the model from the viewpoint of the 
ABC designer. Module C is local to the designer. Fig.10c 
illustrates the true integrated model created when the remote 
module AB and the local module C are connected. The problem 
model ABC is thus created, which requires additional 
information such as the distributed module’s name and IP 
address. The description of the distributed model can be 
illustrated in Table 1. 
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Fig.11: Module network configuration under the 

WebDMME framework 
 

It is shown that the relations between modules do not need to be 
changed even if the embedded mathematical model of a remote 
module (i.e., module AB) is changed. This flexibility enables a 
designer to define a model independently from the actual 
location (i.e., local or remote) of embedded models. When the 
designer utilizes the remote module AB in conjunction with the 
local module C, the resulting integrated model forms a 
distributed computing system comprised of two autonomous 
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computing elements. Fig.11 illustrates the configuration process 
for distributed modules using the system components/modules, 
including the internet and web resources. The embedded model 
of the module AB in design problem model ABC contains an 
object connector that manages the design information exchange 
with the distributed design object AB.  

Table 1: The description of the distributed model 
Local Module Integration Remote Module 

Integration 
module: “A” ( 
   Variable "A1"() 
   Variable "A2"() 
         Dependency "a1" 
         Dependency "b2" 
         EmbeddedModel 
"calculateA2"(A2=f1(a1,b2))  
   RuleSet “A” (Rule A1:   
                              IF (a1=)  
                             THEN (…) 
                           ) 
) 
module: “B” ( 
    Variable "B1"() 
    Variable "B2"() 
          Dependency "b1" 
          EmbeddedModel "calculateB2" 
(B2=f2(b1)) 
    RuleSet "B" (Rule B1: 
                                  IF (…) 
                                 THEN (…) 
                          ) 
) 
Design: Two-module design ( 
       Module: A 
       Module: B 
} 

module: “Remote_AB” ( 
     URL: 159.69.1.19 // IP address 
     Receive "a2" 
     RuleSet “AB” (Rule AB1: 
                    IF (…)  
                                            
THEN (…) 
                              ) 
) 
module: “C” ( 
      Variable "C1"() 
      Variable "C2"() 
             Dependency "c1" 
             Dependency "a2" 
             EmbeddedModel 
"calculateC2" (C2=f3(a2,c1)) 
       RuleSet"C" (Rule C1: 
                                     IF (…)  
                                     THEN 
(…) 
                           ) 
 ) 
Design: Design with a remote 
module ( 
          Module "AB"() 
          Module " C"() 
   } 

7. CASE STUDY 
 
To verify and validate the proposed modeling approach and 
framework, we carried out a few case studies, including the 
hydraulic measurement and control system for car ABS 
(Antilock Brake System), intelligent e-maintenance and service 
system, robotic system (controller), micro/medical device, etc. 
In this section, the design of micro robotic system is used as an 
example to illustrate the distributed modeling for embedded 
system design. The case is chosen because of its embedded but 
relatively simple nature. The research results from this particular 
case can be generalized to cover other designs that require 
collaboration and integration of multiple domains. The focus of the 
illustration is on how designers from different teams may 
participate to create an integrated design model: modules, modules 
network and HW/SW module configurations. 
     The design session creates modules in the design workspace. 
Designers can use any commercial web browser to access and 
work on these modules. As the robot system design and 
operation are tightly coupled, it would make sense for designers 
in these groups to share a common model. Thus, while 
designers from different groups are in remote locations, they 

can access into the same workspace, which is referred as a 
shared workspace. Fig.12 shows the design workspace as 
viewed by the designers from the robot system design team and 
the robot operation team. The robot system design team is 
connected to the robot and gripper manufacturing teams so that 
their robot system design integrated with the gripper and robot 
models can be tested. In this implementation and demonstration, 
the robotic system is assembled through the use of predefined 
fixed types of HW modules (joint and link modules) and SW 
modules (control system) in distributed HW/SW module 
inventories (repositories). These modules are published and can 
be accessed. 

DMME Server
Model Repository

Robot
Workspace

Model Base

Microrobot  Manufacturer Host

DMME Server
Model Repository

Gripper
Workspace

Model Base

Microgripper  Manufacturer Host

DMME Server
Model Repository

Robot System
Workspace

Robot
system

Robot

Gripper Model Base

Microrobot System Host

Microrobot System Design Team Host

Microrobot System Designer

Micro-

gripper

Micro-
robot

Microrobot System Operation Team Host

Microrobot System Operator

Micro-
gripper

Micro-
robot

DMME Server Model Repository

Robot System
Workspace

Robot
system Model Base

Microrobot System Manager Host

Microrobot System Manager

Micro-
robot

system

Fig.12: Shared design workspace 
 

Module Inventory

rθ mθ

mω

dh
dofn

From 
sensor

to 
actuator

Robot

Reconfigurable 
Modular Robot

mθ
mX

dh

dofn

Forward 
Kinematics

mθ

rX

dh

dofn

Inverse 
Kinematics

rθ mθ

mω

dh
dofn

Simulated 
response

Data to 
actuator

Robot
rX

dX rV

mX

Cartesian 
Trajectory 

Interpolator

Internet, WWW

Workstation 
Simulator

Generic Components 
(Modules)

mθ
mX

dh

dofn

Forward 
Kinematics

mθ

rX

dh

dofn

Inverse 
Kinematics

rX

dX rV

mX

Cartesian 
Trajectory 
Interpolat

or

 
Note:  dofn - the number of degree-of-freedom; dh-D-H parameters; mX -the 

measured configuration; rX -the real configuration; dX -the dynamic 

configuration; mθ -the measured joint variable (vector); rθ -the real joint 

variable; mω -the measured joint velocity; rω -the real joint velocity; rV -

the real linear velocity 

Fig.13: Robot design analysis modules and modules 
network 



 11 Copyright © XXXX 

The users or operation team can share their workspaces with 
the design team. The design team creates modules while the 
robot system operation team makes the rest design. In this case 
the design team owns the session and the operation team have 
joined as a builder. Although builders cannot modify the 
modules created by other builders or owners, they can add new 
modules and utilize all services. For example, the operation 
team can use a service from a design module to obtain the robot 
accuracy and the open distance of the gripper and can build new 
modules in the workspace that utilize this information. 
Similarly, the design team can also use services from the models 
published by the robot and gripper manufacturing team. 
Utilizing models provided by other designers is referred as 
subscribing to a model. It is the responsibility of the design 
team to provide these data or to locate other models that can 
provide these data as services. The robot system managers want 
to evaluate the design from in term of costs and they may link 
their models to the design module to obtain the information 
services needed by their models. The design team has only 
published cost related aspects of their models. This means that 
the robot system managers can only observe elements of the 
design models that were published, as the designers wanted to 
protect their proprietary models. 

 

 

 
Fig.14: HW/SW modules configurations in robotic 

system design 
 
The problem of robotic system simulation and design are also 

tightly coupled so that the design and simulation teams should 
share a common model and access into the same workspace, 
although these teams may be in remote locations. The robot 
system can be operated by means of a virtual robot 
manipulation system constructed in the web scheme, in which 

3D models of the components are manipulated virtually in a 
computer graphics. The robotic system simulator developed by 
the simulation team provides a new design tool for designers in 
the design team to carry out the flexible assembly and the 
intuitive operations and simulations. This can help the designers 
to verify the design. When a simulation sequence is running, 
users or designers can control positions and orientations of the 
robot and the components, and open-close states of the gripper 
by clicking on them. The user interface graphically displays 
robot configurations, gripper states, and the component states. 
The simulation results can also help the designers in the design 
team to modify and redesign the design if necessary. Fig.13 
shows the robotic system design and analysis modules and 
modules network. Fig.14 gives HW/SW module configurations 
in the robotic system design. 

8. SUMMARY AND CONCLUSIONS 
 
In this paper, we presented a design with modules scheme and a 
knowledge intensive cyber-infrastructure framework 
(WebDMME) for collaborative embedded system design 
modeling and support. Because of the heterogeneous structure, 
the design and simulation processes require different grades of 
abstraction and need the cooperation and collaboration of 
different disciplines and resources. The developed framework 
can provide distributed designers with a tool for collaboratively 
building integrated models. The advantage of the demonstrated 
modular concept consists in the flexibility of the program 
structure and the reduction of costly software support by 
integrating design tools and simulators. Large problems are 
decomposed into sub-problems with modules. Models or other 
software applications are encapsulated in modules. A module 
can provide information services through its interface, and the 
network of modules exchanging services form a concurrent 
design model. Therefore, the behavior of complex systems and 
the interactions of components can be analyzed and optimized 
during the design process, resulting in shorter manufacturing 
cycles.  
        As the knowledge-server based framework was built to 
provide the module network architecture for integrating 
modeling services available on the network, it can 
accommodate top-down and bottom-up approaches in the 
context of both the traditional HW/SW separate design process 
and the HW/SW co-design process. In the module network, 
design resources, models, data, and activities are not centralized 
nor concentrated in one location. They are distributed among 
many companies, designers, or design participants working 
together over the Internet/Intranet. Thus, the module network 
architecture is extended to a computer network environment, 
focusing on the web-based knowledge intensive and 
collaborative design modeling and support. Fully implementing 
the locally- defined modules and subscribing to the services of 
the remote modules create design modules and modules 
network. In the module network architecture, when modules 
services are connected, the resultant service exchange network 
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creates an integrated concurrent system model or module 
network that invoke a chain of service requests if needed to 
provide correct information.  
      Compared to existing research efforts, the framework 
presented in this paper differs in its focus to create an intelligent 
design modeling scheme that handles the different variable 
types and knowledge needed in embedded system design, 
integrate multiple objective evaluation and optimization with 
design models, and provide an object oriented design 
methodology to facilitate the intelligent integration of design 
models and their utilization in an open and distributed 
intelligent design environment.   
 
Disclaimer 
No approval or endorsement of any commercial product, 
service or company by the National Institute of Standards and 
Technology is intended or implied. 
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