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ABSTRACT

This article describes activity modeling as specified by the Systems Modeling Language (as
specified by the SysML Merge Team, http://doc.omg.org/ad/2006-02-01, February 2006) and
the finalization of the Unified Modeling Language version 2 (UML 2). It reviews and updates
an earlier proposed alignment between Enhanced Functional Flow Block Diagrams (EFFBD),
UML 2 Activities, and requirements developed by the International Council on Systems
Engineering and Object Management Group. It presents a spectrum of activity modeling
techniques, ranging from a widely used systems engineering diagram, the EFFBD, to continu-
ous flow modeling. The techniques include control capabilities, continuous system concepts,
and others related to functional decomposition and allocation. The article also describes
refinements of activity modeling concepts identified during SysML development. © 2006
Wiley Periodicals, Inc. Syst Eng 9:160—186, 2006
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1. INTRODUCTION

Recognizing the need for a standard systems engineer-
ing (SE) modeling language, the International Council

*This article is a US Government work and, as such, is in the public
domain in the United States of America. Commercial equipment and
materials might be identified to adequately specify certain proce-
dures. In no case does such identification imply recommendation or
endorsement by the U.S. National Institute of Standards and Technol-
ogy, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.
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on Systems Engineering (INCOSE) initiated an effort
with the Object Management Group (OMG) to extend
the Unified Modeling Language version 2 (UML 2) for
full-lifecycle systems engineering [Friedenthal and
Burkhart, 2003; SE-DSIG, 2002, 2005].! Requirements
were developed for a UML-based language suitable for
the analysis, specification, design, and verification of a
wide range of complex systems (UML SE RFP) and

!An earlier article reviewed the development of this initiative,
the applicability of UML to systems engineering, and related work
[Bock, 2003a].
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issued through the OMG [SE-DSIG, 2003]. They call
for a comprehensive, consistent, and standards-based
representation of systems across the development
lifecycle. A priority was set on aligning the underlying
meaning of the extended UML with traditional systems
engineering models, and with the International Organi-
zation for Standardization’s emerging Application Pro-
tocol 233 for Systems Engineering (AP-233), within
ISO 10303, informally known as the Standard for the
Exchange of Product model data (STEP). This will
ensure that tools implementing the UML extension can
reliably interchange system specification, analysis, and
design with other systems engineering tools.

Industry and government responded with the Sys-
tems Modeling Language (SysML) extension to UML
2 [SysML Merge Team, 2006; Bock, 2005a; Frieden-
thal and Kobryn, 2004], and with updates to UML 2
during its finalization [OMG, 2004, 2005]. As input to
this work, an earlier article [Bock, 2003a] gave a de-
tailed comparison of UML 2 Activities with the En-
hanced Functional Flow Block Diagram (EFFBD)
[Long, 2002; Long et al., 1975; Skipper, 2005;
Blanchard and Fabrycky, 1990; Grady, 1993; Kockler
et al., 1990; Oliver, Kelliher, and Keegan, 1997], and
with the INCOSE and OMG requirements for activity
modeling in the UML SE RFP. It described how UML
2 Activities supported or did not support EFFBD and
UML SE RFP requirements at the time, and suggested
solutions for consideration in aligning them. This arti-
cle assumes the reader is familiar with the earlier article,
since it explains the correspondence between UML 2
Activities, EFFBD, and UML SE RFP requirements,
most of which still holds. A brief review is given in
Section 4.1.

To facilitate the understanding and application of
SysML and UML 2 Activities, Section 2 organizes
activity modeling features along a spectrum of possible
usage patterns, ranging from activities that accept in-
puts and provide outputs only when they start and finish
(nonstreaming), to activities that accept inputs and pro-
vide outputs anytime during their operation (stream-
ing). To accurately describe the details of this spectrum,
Section 3 refines activity concepts, which are used in
the rest of the article. Section 4 addresses the non-
streaming end of the spectrum with an updated transla-
tion between EFFBD and UML 2 Activities. Section 5
addresses the streaming end with a description of
SysML and UML 2 features that support it. It also
refines continuous system concepts and covers SysML
and UML 2 support for them. Section 6 covers activity
decomposition and allocation in SysML and UML 2.
Section 7 identifies UML SE RFP requirements that
remain to be addressed. References to UML SE RFP

requirements are given by their section numbers in that
document [SE-DSIG, 2003], beginning with “6.5”.

The author is not aware of other work that compares
the results of the SysML and UML 2 finalization with
SE functional flow, or organizes the concepts into an
integrated framework. However, the spectrum pre-
sented here is influenced by the description of func-
tional interaction in Herzog and Torne [2000].

2. SPECTRUM OF ACTIVITY MODELING
APPLICATIONS

The activity models of SysML and UML 2 are flexible
enough for a wide range of applications. This has the
advantages of any well-stocked toolbox, but also the
difficulty of understanding and choosing among a vari-
ety of alternatives. To apply these features in an organ-
ized way, it is useful to arrange them on a spectrum,
with common application styles on each end, and hy-
brids in between.

The primary characteristic distinguishing one end of
the application spectrum from the other is whether
activities accept inputs and provide outputs while they
are executing, as illustrated in Figure 1. At one end of
the spectrum, activities accept inputs only when they
start, and provide outputs only after they finish. For
example, an addition function accepts two numbers,
adds them, and produces a result, with no inputs or
outputs while it is adding. This article refers to this end
of the spectrum as nonstreaming activities. Items do not
flow in and out of nonstreaming activities while they
are executing, except perhaps for consuming resources.
At the opposite end are applications in which activities
pass items between each other anytime while they are
executing. For example, subsystems often interact with
others during their operation, such as the engine in a car,
which delivers power to the clutch as it runs. The
dynamics of these are modeled with streaming activi-
ties. In UML, the ends of the spectrum are distinguished
by whether activities have streaming parameters, which
are parameters that accept input or provide output while
the activity is executing. Nonstreaming activities have
no streaming parameters. Streaming activities have at
least one streaming parameter.>

A secondary feature distinguishing the ends of the
spectrum is whether activities terminate themselves, or
are terminated by other activities. At the nonstreaming
end of the spectrum, activities terminate when their own
internal logic determines the task is done. They accept
inputs at the beginning of execution, operate on them,

2SysML defines nonnormative stereotypes «streaming» and
«nonStreaming» for activities that apply these constraints.
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Figure 1. Spectrum of activity modeling applications.

and provide outputs when the activity is complete. At
the streaming end of the spectrum, inputs can be ac-
cepted and outputs produced by an activity that is
already executing, so an activity can potentially operate
indefinitely. They often require specialized external
control activities to determine when they should termi-
nate. Streaming activities start with whatever inputs are
available, continue to accept inputs and provide outputs
for an indefinite period, until a control activity termi-
nates them.3

Choosing one end of the spectrum can simplify
modeling by reducing the choices available for other
capabilities in SysML and UML 2 Activities. In particu-
lar:

e Control values

In nonstreaming applications, where activities ter-
minate themselves, it is not necessary to stop them by
some external action. They just run until they produce
outputs. This is why EFFBD functions only enable
other functions to start, rather than disable them once
they are executing. There is one control value, for
enabling.

In streaming applications, where activities run until
disabled by other activities, control must be extended
to support turning them off; otherwise they might run
forever or at times they should not. There are at least
two control values in streaming activities, enabling and
disabling. Activities that produce control values are

3In the functional interaction form of behavior described in
Herzog and Torne [2000], the default function runs for the life of the
system, taking inputs and outputs at any time. This is specialized by
using one of two kinds of control port. The first kind can only enable
the function, which executes until it is finished, as in EFFBD. The
second kind of control port can enable or disable the function, a
capability placed at the streaming end of the spectrum in this paper.
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called control operators. See Section 5.1.1 for more
detail.

e Buffering

In nonstreaming applications, where activities do
not accept input while they are executing, it is useful to
queue inputs until the activity is ready to accept them,
as in EFFBD.

In nonstreaming streaming applications, where ac-
tivities accept input while they are executing, inputs can
flow into the activity at any time, and the activity can
maintain its own buffers if necessary. Buffering is only
needed when activities are not executing. See Section
5.1.2 for more detail.

e Required and optional inputs

In nonstreaming applications, where activities can
accept inputs only when they start, some activities
might need to proceed without all inputs available.
Inputs arriving late are accepted in later executions of the
activity. This is why EFFBD provides both nontriggering
and triggering inputs, which are equivalent to lower mul-
tiplicities on parameters in UML (see Section 4).

In streaming applications, where activities can ac-
cept inputs while they are executing, an optional input
means it may never arrive at all, which is not a useful
input. Normally, inputs to streaming activities are re-
quired. Since streaming inputs can arrive anytime while
the activity is executing, a required input only means it
must arrive at some point during each execution.*

4A more complete model would specify whether required and
optional inputs apply to starting the function or to completing it, and
support this independently of whether the function can take input
while it is executing. Currently UML and SysML support re-
quired/optional to start for non-streaming parameters, and re-
quired/optional to complete for streaming parameters.
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e Multi-exit/entry

In nonstreaming applications, where activities do
not provide output while they are executing, it is useful
to provide items along different output flows at each
execution of the activity. These are EFFBD multi-exit
functions, or parameter sets in UML (see Section 4).

In streaming applications, where activities provide
outputs while they are executing, and potentially exe-
cute for an indefinite period depending on control op-
erators, it is not commonly useful to have some outputs
be exclusive of other outputs for the entire duration of
the activity. Especially over a long period of time, an
activity may provide items at any or all of the outputs
at some point.

e Concurrent execution

In nonstreaming applications, where activities do
not provide output while they are executing, it is possi-
ble for inputs to arrive at a faster rate than the activity
can operate on them, causing backup in the flow. Ac-
tivities that support concurrent executions can operate
on inputs in parallel to clear backups (see Section 5.2.2).

In streaming applications, where activities accept
inputs while they are executing, and in the extreme case
of activities that operate for the life of the system,
concurrent execution is not necessary, because there is
only one execution of each activity that accepts all
inputs for that activity however quickly they arrive.
Activities keep their own internal buffers and manage
concurrency as necessary. They can also declare the
rates of flow they are able to handle (see bullet item
below and Section 5.2.2).

Some applications are in the middle of the spectrum,
using aspects of both nonstreaming and streaming ac-
tivities. These necessarily have more choices, and con-
sequently are more complicated to design. One
simplification is to specify each activity with one end

of the spectrum or the other, rather than mixing features
from each end within a single activity. For example,
define activities where the inputs and outputs are either
all streaming or all nonstreaming, rather than activities
where some inputs and outputs are streaming and others
are not. The two kinds of activity can be used together
in the same enclosing activity, even though the enclos-
ing activity is from one end of the spectrum or the other.
See the example in Figure 26 of Section 5.2.2. Some-
times it may be necessary to have some activities take
features from both ends of the spectrum, with both
streaming and nonstreaming parameters on the same
activity. For example, a manufacturing process may
assemble a set of parts into a product, but during assem-
bly interact with many other activities. This is the most
complicated kind of system to design, because it has
very few constraints on how to combine activity capa-
bilities. It will be addressed in future work.

Some capabilities of SysML and UML 2 Activities
are useful across the spectrum of Figure 1:

e Usage and definition

It is economical in many applications to define an
activity once and use it many times in defining other
activities. This has the advantage that any changes to
the reused activity are effective for all the other activi-
ties that use it. See Section 3.

e Rate of flow

It is useful to model the rate at which items and input
items arrive at an activity or the rate at which output
items leave it, especially for flows that might be subject
to backup and bottleneck. Even with streaming activi-
ties, there may be rates of input and output they are not
able to support. This can be declared on activities to
avoid application in situations they cannot support. See
Section 5.2.2.

Table I. Capability Choices along Activity Spectrum

.. Nonstreamin Hybrid Streamin
Activity Feature Activities | Activities Activities
Input and output during execution No Yes
Control values Enabling only | Can vary by Yes
Buffering Yes activity, or | When disabled only.
Required and optional inputs Yes Within'a_single Required only
Multi-entry/exit Multi-entry activity. No
Concurrent executions Yes No
Usage and definition
Rate of flow Yes
Variation in item value

Systems Engineering DOI 10.1002/sys
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e Variation in input or output item value

When input or output items are data values, such as
numbers, or are objects that have data value properties,
these values will vary over time as new input items
arrive at an activity or output items leave it. The vari-
ation might be described by a mathematical function,
which can produce values drawn from a finite or infinite
set. Value variation is applicable to activities that are
expected to have multiple values flow through at one
time, which applies across the spectrum. See Section
5.2.

Table I summarizes the above capabilities available
on the spectrum. The next section refines common
activity concepts before elaborating on the nonstream-
ing end of the spectrum in Section 4, and streaming
activities in Section 5.

3. ACTIVITY CONCEPT REFINEMENTS

To better understand the details of the spectrum given
in Section 2, the SysML development team found it
necessary to refine commonly used activity concepts.
These refinements are not immediately evident in
graphical diagrams, because diagrams compress multi-
ple concepts into a small number of graphical con-
structs.® This has the benefit of readability, but hampers
the understanding, implementing, and applying the lan-
guage. To address these problems without impairing
usability, the multiple underlying concepts and their
relations must be identified, and tied to the graphical
notation. Section 3.1 describes the most general con-
cepts, and Sections 3.2 and 3.3 refine them.

3.1. Item, Activity, and Control

The most basic activity concepts correspond to the
intuitive notions of “things that change,” “how they
change,” and “when they change”:

Item: the most general notion of an entity that may
flow through a system, whether physical or infor-
mational. It includes physical matter and objects,
energy, data, and software objects.

Activity: the transformation of items by taking items
as inputs and providing items as outputs.

Control: the determination of when activities per-
form their transformation. This includes starting
as well as stopping a transformation. Activities

St is said that a picture is worth a thousand words, but it is not
always clear which thousand. The distinction between language-as-
pictures/text and language-as-concepts is reflected in OMG’s Model-
driven Architecture as the difference between notation and
metamodel [Bock, 2003b; OMG, 2006].
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must obey control they receive, whereas they
have leeway in how to handle items, see Section
5.1.1.

SysML further identifies basic concepts for activities
and items as follows:

Definition: the description of an activity or item
independent of how it is used by other activities.

Usage: how an activity or item is used in the context
of activities.

Instance: the actual execution of an activity, or par-
ticular item as it flows during execution.

The next two sections apply the above refinements
to activities and items, and show how they are rendered
in compact graphical notations.

3.2. Activity Definition, Usage, and
Execution Instance

Activity diagrams compress multiple activity concepts
into a single kind of graphical shape, a round-cornered
rectangle in UML 2, or a rectangle in EFFBD. For
example, Figure 2 is a UML activity diagram showing
the same activity, HEAT LIQUID, used more than once
(item flow is omitted for brevity). It has a single defini-
tion, shown in Figure 3, but each usage in Figure 2 has
different control flow lines coming into and going out.
One has a flow coming from FILTER LIQUID and going
to WASH INSTRUMENTS, the other has a flow coming
from a join (concurrency in EFFBD) and going to
WASH HANDS. Activity usages (actions in UML) are
needed to specify which flow lines applies to which
usage of HEAT LIQUID. This way, the underlying model
for the diagram has a way of identifying each usage
separately from the single definition, even though they
are displayed with the same shape and usually have the
same label. For clarity, the label can include the usage
name in the SysML extension to UML notation (see
Section 6.1).

The activities in Figures 2 and 3 may be executed
many times during the life of the system, which means

act Prepare For Operation

N s I N

| = o ‘ - Wash
A Filter Liquid H Heat Liquid Instruments
‘ \{/ M N . R

\\(——————\‘ ‘/—‘—‘“‘\; o P
[Heat Liquid ~—>1 Wash Hands —
j . }

— - A

Figure 2. Multiple usages of the same activity.
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‘act Heat Liquid

Qe{ Fill Tank |— Apply Heat —@ ]
N J |
J

Figure 3. Activity definition.

each activity usage may represent many individual exe-
cutions of an activity. For example, Filter Liquid is only
used once, but if PREPARE FOR OPERATION is executed
many times, then FILTER LIQUID will be also. This is
important for accurately describing the execution traces
implied by the flow model, and in particular to specify
SysML and UML 2 control functionality (see Sections
4.3 and 5.1.2).

The example above illustrates the concepts underly-
ing the activity notation:

1. Activity Definition (Activity in UML)®: an activ-
ity defined independently of how it is used in any
diagram. For example, an activity for heating a
liquid only specifies that the temperature of the
output liquid will be higher than the input, but not
where the liquid comes from or where it goes to,
or exactly what kind of liquid is heated.

2. Activity Usage’ (Action in UML)®: how an activ-
ity is used in a definition of another enclosing
activity. For example, a usage of the activity for
heating liquids is needed to specify which other
activities provide the liquid to be heated and
which receive it after heating. Activities are used
in the definitions of other higher-level activities,
which are the context of the usage (see Section
6).

3. Activity Instance or Execution (same in UML):
an individual performance of an activity, with
particular start and stop times, and operating on
particular items. An activity may execute many
times over the life of a system, receiving items
from and providing items to other activity execu-
tions. Each time an activity is enabled, it is a new
activity execution, even if the usage is the same.

6Activities are one of three kinds of behavior model in UML,
the other two being interactions and state machines. Activities high-
light how outputs of one subfunction flow to the inputs of another,
while interactions focus on messages between objects, and state
machines emphasize object states and transitions between them based
on incoming signals. SysML models function as UML 2 activities
because they are the closest UML behavior to SE functional flow
diagrams.

"The functional interaction form of behavior described in Her-
zog and Torne [2000] uses the term “function instance” instead of
“function usage.”

8UML has many kinds of action. Function usages in the SE
sense correspond to CallBehaviorAction.

act Provide Water |

rd AY
| Heat |
1] -

7 Liquid > Water

i N
! ! ' Dispense | _
\ 7 Water / ~®
3 Supply > Water T
L Water

Figure 4. Multiple items of same kind input to an activity
usage.

For example, an execution of a heating activity
will occur between particular start and stop times,
operating on a particular inflow of liquid from
another executing activity, and providing an out-
flow of liquid to another executing activity. The
particular items operated on by an activity exe-
cution are item instances (see Section 3.3).

3.3. Item Definition, Item Usage, Item
Instance

Activity diagrams compress multiple item concepts
into a single kind of graphical shape, a rectangle in
UML 2, or a round-cornered rectangle in EFFBD. For
example, Figure 4 shows an activity with the same item
definition (classifier in UML?®), WATER, used as output
from different activities, HEAT LIQUID and SUPPLY
WATER, and input to the same activity, DISPENSE
WATER. The item definition, WATER, exists inde-
pendently of whether it is used in any particular activity,
and is defined on a separate kind of diagram (class
diagrams in UML, block definition diagrams in
SysML). It would continue to exist even if PROVIDE
WATER removed from the system specification.

To dispense water of the proper temperature, DIS-
PENSE WATER must be able to tell the inputs apart. This
requires item usages on the activity definition (parame-
ters in UML), as shown in Figure 5, omitting the inter-
nal flows for brevity. Parameters have a similar notation
to the items in Figure 4 because they both refer to items
flowing in and out of activities. Parameters are named
to distinguish each input, shown the left of the colon,
with item definition or type shown the right of the colon
(parameter type in UML).

Once item usages (parameters) are specified on ac-
tivity definitions, the flows that go in and come out of
them in a particular activity usage must be determined.
For example, the hot water input to the usage of Dis-
PENSE WATER in Figure 4 comes from the usage of
HEAT LIQUID, and the cold water comes from the usage
of SUPPLY WATER. However, the notation of Figure 4

9See Footnote 12 for SysML terminology.

Systems Engineering DOI 10.1002/sys
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act Disbense Water

I
hot : Water
cold : Water

Figure 5. Multiple items of the same kind input to an activity
definition.

does not show this information. In addition, other us-
ages of DISPENSE WATER might accept inputs from
different activities entirely. To support this example, the
underlying model must separate the item usages for
each activity usage, to record which output parameter
flows to which input parameter in each usage of DIs-
PENSE WATER. This requires another layer of item us-
age, the item usages on activity usages.

Items usages on activity usages are pins in UML.
UML provides two notations for pins. Figure 4 is the
object node notation, which is the simplest, but is
limited to flows where the parameter type is the same
at both ends, and where it is unambiguous which flow
corresponds to which parameter, neither of which are
true in this example.'® Figure 6 is the most detailed
view, showing each pin individually. They are labeled
with the corresponding parameter name and type.

An activity may be executed many times over the life
of the system, operating on many actual items. For
example, DISPENSE WATER in Figure 4 may be executed
many times, dispensing many instances of WATER.
Identifying each item instance is important for accu-
rately describing the execution traces implied by the
flow model, and in particular to specify SysML flow
rates (see Section 5.2.2). For example, during execution
of the models in Figures 4 and 6, an item instance going
out of SUPPLY WATER will flow in only one direction,
even though there are two flow arrows going out of the
object node and pin.'!

The example above illustrates that the refinements
of definition, usage, and instance apply to items as well
as activities:

1. Item Definition or Item Type (Classifier in
UML)'%: a kind of item that may be input or

19The explicit pin notation is also required if one end of the flow
has no pin, as sometimes happens with control flow (see Fig. 14).

U'This execution trace is appropriate for physical systems.
Information systems would use a UML fork to send data along
multiple flow lines at once. See Footnote 1 to Table II.

2UML does not distinguish things that flow through a system
from things that do not. It defines the general category of Classifier
covering both, but divides this into classes, which have separately
identifiable instances (objects), and datatypes, which are not always
separately identifiable, such as two instances of the number 3. SysML
uses UML’s categorization, but uses the term “block” for class.

Systems Engineering DOI 10.1002/sys
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Figure 6. Item usages on activity usages (pins).

output from an activity, independent of whether
any activity actually accepts that kind of item as
input or provides it as output. For example, liq-
uids exist whether or not any activities accept
them as input or output.

2. Item Usage by Activity Definition (Parameter in
UML): the kind of item input or output to an
activity definition, independent of how the activ-
ity is used in any diagram. For example, a heating
activity might be defined to accept a liquid as
input and provide it as output, but not what kind
of liquid flows into a particular usage of the
activity. Parameters are named, and specify the
kind of items they input or output (parameter type
in UML).

3. Ttem Usage by Activity Usage (Pin in UML): the
connection point between a flow line and a pa-
rameter at a particular activity usage. For exam-
ple, an input pin to a heating activity will be the
target of an incoming flow line and correspond
to the liquid input parameter of the heating activ-
ity. The pin might also narrow the range of pos-
sible liquids that will be heated, for example,
specifically to water. However, the type of the pin
must be compatible with the type of parameter.

4. Ttem Instance (Instance in UML): This is an
individual item that is input or output from a
particular execution of an activity, for example,
particular quantities of liquid flowing into a heat-
ing activity operating at a certain time. In Figure
4, SUPPLY WATER has one output parameter that
split along two flows in this particular usage.
During execution, each item instance going out
of SUPPLY WATER will flow along only one of the
flow lines, to HEAT WATER or DISPENSE WATER,
but not both.!?

13SysML and UML 2 provide ways to constrain property values
of item instances by ranges, distributions, equations, and other means,
as well as a model of units and dimensions for these values [Bock,
2005a, SysML Merge Team, 2006].
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1 2 3
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External Input Decomposed External Output
In Next Figure

External
Input

Figure 7. Enhanced functional flow block diagram context for Figure 8.

More information on the underlying models of UML
activity diagrams is available in a separate series of
articles [Bock, 2003c, 2003d, 2003e, 2004a, 2004c].

4. NONSTREAMING ACTIVITIES (EFFBD)

A primary example of the nonstreaming end of the
spectrum in Section 2 is the Enhanced Functional Flow
Block Diagram (EFFBD). It has been applied for three
decades, and multiple tools have supported it over that
time. There is substantial design information in exist-
ence based on this form of behavior modeling. It is a
special usage of UML 2 Activities in which all activities
are nonstreaming, and other constraints and usage pat-
terns apply. To ensure accurate translation between
EFFBD and SysML/UML 2 Activities, this section
updates the mapping given in an earlier article [Bock,
2003a] to reflect SysML’s interpretation of EFFBD,
based on other standards and in consultation with
EFFBD users and tool vendors [Long, 2002; Long et
al., 1975; Skipper, 2005; Blanchard and Fabrycky,
1990; Grady, 1993; Kockler et al., 1990; Oliver, Kelli-
her, and Keegan, 1997]. Section 4.1 describes the trans-
lation between individual constructs of the languages,
using one-to-one mappings and constraints on UML 2
Activity usage. Section 4.2 gives mappings between
patterns of constructs in EFFBD and UML 2 and
SysML. Section 4.3 gives the rules for activity execu-
tion that are consistent with EFFBD and UML 2.

Two aspects of EFFBD are not covered in the trans-
lation: replication and resources. Replication provides
multiple executions of the same activity from the same
activity usage (see Section 7). Resources are required
to execute an activity, but are not shown as inputs. For
example, electrical or computational power might be
resources to a heating activity, but no flow lines are
shown for them when the heating activity is used in
other diagrams, even though heating will use electrical
and computational power.!# Replication and resources

14For more discussion of views on input and output, see Bock
[2004d].

affect EFFBD execution, and their translation to UML
2 Activities will be addressed in future articles.

4.1. EFFBD Direct Translations to SysML
and UML 2 Activities

Figures 7 and 8 show example EFFBDs illustrating the
translation to UML 2 Activities with one of the elements
in Figure 7 decomposed into the diagram in Figure 8
(see Section 6.1 for additional decomposition notation).
Figure 9 gives the corresponding UML 2 Activity Dia-
gram. Both EFFBD and UML activities give the se-
quence, inputs and outputs, and conditions for
execution of activities. For example, function 2.3 in
Figure 8 can only begin after function 2.1 has com-
pleted. Both types of diagram also show how the out-
puts of one function are passed to the inputs of others.
For example, in Figure 8, function 2.2 accepts input of
type ITEM 1 from the output of function 2.1. Function
2.2 cannot start until an instance of ITEM 1 arrives.

Table II shows the correspondence between con-
structs in the EFFBD, Activity Diagrams, and the UML
SE RFP requirements, updated from a previous article
[Bock, 2003a]. EFFBD is translated to activities follow-
ing this table, except for the pattern translations de-
scribed in Section 4.2. There are three kinds of
construct:

1. Functional: for defining activities used in flow
diagrams.

2. Item flow: for routing items between activities in
flow diagrams.

3. Control flow: an additional way that a flow dia-
gram determines when activities are enabled and
disabled.

SysML suggests constraints on UML 2 Activities
usage for its interpretation of EFFBD'>:

1. Activities do not have partitions (see Section 6.2).
2. All decisions, merges, joins, and forks in an ac-
tivity are well nested. In particular, each deci-

15SysML defines a nonnormative stereotype «effbd» for activi-
ties to apply these constraints.

Systems Engineering DOI 10.1002/sys
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act

PARAMETER
OBJECT NODE SET 2.4 Function in
PIN) Multi-exit
( & Construct
\ Y~ { condition  / «optional» MERGE —
2.2 Multti-exit = ool }
Function GUARD
OBJECT { condition
FLOW ~a = co#2 )

[ before third time |

2.1 Serial
Function

External
Input

«optional» [ after External

Output

«optional»

INVOCATION
ACTIVITY ACTION Function
PARAMETER
INITIAL Concurrency «optionah»
NODE CONTROL
FLOW
Figure 9. UML 2 Activity diagram corresponding to Figure 8.
sion and merge are matched one-to-one, as are 11. Parameters sets only apply to output parameters
forks and joins, accounting for the output pa- (multi-exit). Parameters are not shared across
rameter sets acting as decisions, and input pa- parameter sets. Parameter sets have exactly one
rameters and control acting as a join. parameter. If one parameter is in a parameter
3. All actions (activity usages) require exactly one set, then all the output parameters on the activ-
control edge coming into them, and exactly one ity are.
control edge going out, except for activities 12 Edges (flow lines) cannot have time constraints.
with parameter sets (multi-exit). 13. The following SysML stereotypes cannot be
4. All control is enabling (see control values in applied: «rate», «controlOperator», «noBuf-
Section 5.1.1). fer», «overwrite» (see Sections 5.1.2 and 5.2.2).

5. All control flows into an action support control
buffering (see control pins in Section 5.1.2).

6. Buffering of items and control is a queue (first-
in, first-out).

7. Object flow is never used for control (see con-
trol parameters in Section 5.1.1), except for pins
of parameters in parameter sets.

8. A maximum of one item instance is input or
output p °rp arameter per z}ctivity exe.cut.i(?n. In 4.2. EFFBD Pattern Translations to SysML
UML, this means the maximum multiplicity of and UML 2 Activities
parameters is 1.

SysML also provides a «probability» stereotype that
can be applied to output parameter sets (multi-exit
functions in EFFBD) and to edges going out of decision
nodes or object (select nodes or item nodes in EFFBD).
The modeler can specify the probability of an output or
flow path being chosen during execution.

9. All outputs are required. In UML, this means The remainder of the translation between EFFBD and
output parameters have a minimum multiplicity SysML/UML 2 Activities requires multiple elements of
of 1. In SysML this means the «optional» UML 2, as summarized in Table III, and shown in the
stereotype cannot be applied to output parame- figures of this section.
ters. EFFBD uses a loop node to start and end a flow

10. Parameters cannot be streaming (see Section cycle, whereas UML uses a merge node to start a cycle
5.1.1).1 and a decision node to end it. Some implementations of

16UML also supports exception output parameters, which are EFFBD have a special node to exit a loop, which

not part of EFFBD. transfers control to the function after the closing loop

Systems Engineering DOI 10.1002/sys
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Table III. Translation of EFFBD and UML Activity

Patterns

BOCK

Table II. EFFBD, UML 2 Activity, and UML SE RFP Requirements

EFFBD UML 2 Activity UML S E RFP
Requirement
.. . Activation, 6.5.2.2,
Activity Execution 6.523.6.524.1
Function Activity 6.5.2.1.3 a-b,e,g-i.k
Function
Action (Activity Usage)
. . . ‘ Function Port: 6.5.2.1.1,
External Input/Output Activity Parameter Node 6.52.13 cd
Item Flow Object Flow 6.3.2.1.3 f,g,j
Ttem Node Pfln (Itc‘m Usage by Activity
Usage)
Item Special case of 6.5.2.2.2
Triggering ltem Input Required Parameter pecial case 01 6.5.2.2.%,
6.5.2.2.3
Non-triggering Item . 23 Special case 0f 6.5.2.2.2,
Fnput Optional Parameter” 65223
Control Flow Control Flow 6.52.2.1
Select Decision, Merge 6.5.222¢
I R
Branch Annotation Guard Sp_ecnal case 0f 6.5.2.2.2,
6.5.2.2.3
Control | Concurrency Fork, Join 6.5222¢
i 2270
Multi-exit Function ParameterSets® Special case 0f 6.5.2.2.2,
6.5.2.23
. C Postconditions on parameter | Special case 0f6.5.2.2.2,
Completion Criteria sets’ 65223
[teration, Loop Flow, Decision, Merge 6.5222¢

1An earlier article [Bock, 2003a] incorrectly translated an item node with multiple outgoing flows as a UML
object node followed by a UML fork. Multiple flows from an item node translate directly to multiple flows from
a UML object node, as shown in Figure 9 for ITEM 2. In EFFBD and UML this means the item flows to either
2.4 or 2.5, but not both. See discussion of item instance in Section 3.3.

2An earlier article [Bock, 2003a] incorrectly translated nontriggering inputs to UML streaming inputs. EFFBD
does not include streaming inputs. Nontriggering inputs are those that are not required to be present for the
function to be enabled.

3An optional parameter in UML has a lower multiplicity of 0. SysML provides a stereotype «optional» on
parameters to apply this constraint.

“4Before finalization, UML 2 only supported parameters sets for items, not control. With the finalized UML 2 and
SysML, parameters can carry control and, like all parameters, be grouped in parameter sets.

SBefore finalization, UML 2 only supported postconditions on parameters. The finalized UML 2 supports them
on parameter sets also.

EFFBD

Activity Diagram

Iteration, Loop

Pattern of Flow, Decision, Merge

Kill branch

Region, and Join Specification

Pattern of Fork, Join, Interruptible

Iteration/Loop Queuing

Pattern of Central Buffer Nodes
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node, whereas UML uses a decision node and outgoing
flow to do this. These EFFBD constructs are translated
to the pattern at the bottom of Figure 10. A decision can
exit the loop at any point, and there can be multiple exit
points. Loop nodes determine whether to exit the loop
at each cycle.

EFFBD iteration nodes calculate the number of
times to cycle only once, at the beginning of the first
iteration. This aspect of EFFBD semantics is translated
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Function 1

EFFBD

Function 2 Function 3 —=>

Function 1

UML 2
Activity

Function 2

[ finished
looping ]

Function 3

Figure 10. Loop.

to the pattern at the bottom of Figure 11, using an
additional activity and a combined decision/merge node
at the beginning. The activity determines how many
times to cycle once at the beginning, and the decision
node tests against this at each cycle.

EFFBD kill branches are flow lines going out of
start-concurrency nodes indicating that if the branch
reaches the corresponding end-concurrency node be-

fore the other branches from the same start-concur-
rency, then the others are terminated. This aspect of
EFFBD semantics is translated to the pattern shown at
the bottom of Figure 12. The dashed box indicates an
interruptible region, and the edge labeled A is the inter-
rupting edge. If edge A is traversed before FUNCTION 1
is complete, then FUNCTION 1 will be terminated. Oth-
erwise, both flows from the fork complete, and are

Function 1

EFFBD

Function 2 Function3 ——=>

Determine
Number of
Iterations

[else] .
Function 1

[ finished
iterating ]

UML 2
Activity

Function 2 Function 3

Figure 11. Iteration.
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Function 1
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- N4
Iy
Function 2
Kilt

{« nterruptibleRegion»

UML 2 ] -
Activity oot o
) —

P
Function 2 T’

{ioinSpec=A}

Figure 12. Kill branch.

synchronized at the join. The join specification requires
only that edge A be traversed, so will be satisfied
whether edge A terminates FUNCTION 1 or not.!”
EFFBD iteration and loop nodes support queuing,
whereas UML decision nodes do not. This aspect of
EFFBD semantics translates to a UML central buffer
node before the iteration or loop node, as shown in
Figure 13. A central buffer node is a buffer that is not
attached to an activity usage. It holds control and items
coming into it, until they can flow downstream.

4.3. Execution Semantics for EFFBD
Activity Execution in UML

EFFBD is executable and supports tools that produce
timing information. It is important that EFFBD and the
translations to UML 2 Activities in Sections 4.1 and 4.2
result in exactly the same execution traces. The points
below are the execution rules for UML 2 Activities that
apply to SysML’s interpretation of EFFBD (excluding
replication and resources, see introduction to Section
4)‘18

e Before activity execution: An activity usage
(UML action) waits for all required item inputs
(EFFBD triggering inputs), in whatever quantity
is required, and waits for all control inputs re-
quired, then begins. Optional inputs (EFFBD

71f there were a second kill branch, with an edge named B
leading to the join, then the join specification would be “A or B.”

EFFBD requires that resources are available for execution to
begin and the resources are returned upon completion of execution.

Systems Engineering DOI 10.1002/sys

EFFBD = ltemt
«centralBuffer»
UmML 2 —> ltem 1
Activity

Figure 13. Iteration/Loop queuing.

nontriggering inputs) are accepted if they arrive
before the activity starts.

e During activity execution: Items arriving at in-
puts while the action is executing are queued.
EFFBD does not include streaming, which means
no inputs are accepted by an activity usage if the
activity is already executing (see Section 5.1.1)."
Incoming enabling control is queued in a first-in,
first-out buffer. EFFBD does not include dis-
abling control, which would abort the execution
when it arrives (see Section 5.1.1).

e After activity execution: An activity usage pro-
vides all required item outputs, and all control
outputs for outgoing control flow lines. If output
parameters are grouped into parameter sets
(EFFBD multi-exit), this rule applies to exactly
one of the parameter sets, as determined by the
activity execution. No outputs are provided on
parameters in other parameter sets.

More information on UML 2 Activity execution
semantics is available in a separate series of articles
[Bock, 2003c, 2003d, 2003e, 2004a, 2004c].

5. STREAMING ACTIVITIES

Streaming activities are at the end of the spectrum in
Section 2 where activities accept input and provide
output while they are executing. This compares to non-
streaming activities of Section 4, which accept input
only when they start, and provide output only when they
complete, as in EFFBD. Since streaming activities can
potentially operate indefinitely, working on inputs they
receive over time, it is useful to have additional control
capabilities to determine when they should terminate.
This is described in Section 5.1. And since streaming
activities can accept item inputs while they execute, it
is not necessary to buffer inputs while waiting for the

1PUML supports concurrent execution of queued inputs (reen-
trancy), which is not included in EFFBD.
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activity to complete. This makes them particularly
suited to systems that have high or continuous rates of
flow, covered in Section 5.2.

5.1. Additional Control Capabilities

This section describes control capabilities needed for
activities to terminate other activities. These capabili-
ties are useful for disabling streaming activities that
would otherwise run indefinitely. For example, the en-
gine in a car operates until the driver turns it off. This
section also covers the related feature of control buffer-
ing, because it is easier to understand with the others.
In summary, the features are:

e Multiple control values (6.5.2.2.1 b—d): These
values flow along control flow lines in an activity
diagram. The values include disabling, to stop an
activity that is already executing, as well as the
enabling control value to start an activity. For
example, a disabling control value can be sent to
a heating activity when the temperature goes
above a certain threshold, to discontinue heating.
An enabling control can be sent when the tem-
perature goes below the threshold, to restart heat-
ing.

e Control operators (6.5.2.2.2): These are a kind of
activity that can accept control values as input or
provide control values as output, to enable or
disable other activities. For example, a control
operator may monitor temperature and output
enabling and disabling control for a heating ac-
tivity. Control operators are not enabled or dis-
abled by the control values on which they operate.
They can support complex logic for determining
when other activities start and stop.

e Buffering control (6.5.2.1.3 d): It is sometimes
useful to keep control values until an activity is
already enabled or disabled, for use when activity
is ready to accept them. For example, the com-
mands for taking radar readings may be queued
if some of the readings take longer than expected.

Support for these features in EFFBD, UML 2, and
SysML is shown in Table I1V.?0 The first two are dis-
cussed in Section 5.1.1, and the third in Section 5.1.2.

203ysML and UML SE RFP requirements continue a long-term
trend of unifying item flow and control flow. Modern flow models
give item flow the power of control, by enabling activities when items
become available (items are “pushed” to the activities from earlier
function activations), as compared to traditional data store approaches
that passively provide items on request from already enabled activi-
ties (items are “pulled” from the activities from passive data sources)
[Bock, 2004a]. UML SE RFP requirements extend this by giving
control the capabilities of item flow: multiple values, operating on
values, and buffering values.

Table IV. Support for Additional Control Capabilities

EFFBD UML 2 Activity SysML
Multiple Control Values No No Yes
Control Operators No Partial Yes
Control Buffers Yes Yes Yes

5.1.1. Control Values, Control Parameters, and
Control Operators

SysML provides for control values that enable or dis-
able activities, and control operators that accept and
emit these values based on potentially complex internal
logic. Control operators can treat control as if it were
an item, accepted it as input, or provided it as output
through parameters, rather than being enabled or dis-
abled it. Control values and operators are not included
in EFFBD. UML 2 only supports one control value, for
enabling an activity, but the finalized version allows
extensions to other kinds of control.?!

SysML supports control values and operators with a
model library containing a classifier called CON-
TROLVALUE. The classifier has instances ENABLE and
DISABLE, which are the individual control values. This
classifier can be the type for parameters (item usages
by activity definitions, see Section 3.3), making them
control parameters. The values ENABLE and DISABLE
can flow through an activity execution like any other
item in the system. For example, Figure 14 shows
control flowing from a temperature monitoring activity
to a heating activity. The temperature monitoring activ-
ity emits a value of type CONTROLVALUE that controls
the enabling and disabling of an activity for heating air.
This makes it a control operator, which is highlighted
by the stereotype.

The definition of the control operator MONITOR
TEMPERATURE is an activity, as shown in Figure 15. It
has an output parameter of type CONTROLVALUE,
which is what makes the activity a control operator. The
parameter is streaming, to provide outputs while the
activity is executing, rather than just when the activity
is done. The definition has a loop that measures the

«controlOperator»
Monitor

Temperature ‘
r

Heat

ControlValue
{ stream }

Figure 14. Control value flow.

2IUML 2 object nodes, including pins, can indicate that their
type is to be interpreted as control, with the ISCONTROLTYPE metaat-
tribute, so pins can carry instances of user-defined control types.
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«controlOperator»
act Monitor Temperature

[ below
threshold ]

Measure
. 5< Temperature 1

Temperature
[else]

I «ValueSpecificationAction»
enable
-
ControlValue
«ValueSpe.ciﬁcationAction»\ { stream }
disable

Figure 15. Definition of a control operator.

temperature, then outputs an ENABLE or DISABLE con-
trol value, depending on whether the temperature is
below a threshold or not. The usage of MONITOR TEM-
PERATURE in Figure 14 has a pin (item usage on activity
usage) corresponding to the output parameter. The pin
is annotated with characteristics of the parameter, for
readability. When a control value leaves the pin, it flows
to the heating activity. A control value of ENABLE starts
the heating activity if it is not already executing. If it is
already executing, the enabling control value is ignored
and discarded (see Section 5.1.2 for control buffering).
A DISABLE control value disables the heating activity if
itis executing at the time. If it is not executing, disabling
control is ignored and discarded (see Section 5.1.2 for
control buffering).2? Future extensions could provide
other control values, such as for suspension and re-
sumption.

Control value parameters allow control operators to
combine and manipulate control values without being
enabled or disabled themselves. For example, in Fig-
ures 14 and 15 the control values enable and disable
heating, not temperature monitoring, even though they
come from temperature monitoring. This is because
control values move through MONITOR TEMPERATURE
via parameters and item flow, so are treated like any
other item, whereas HEAT AIR has no parameter for
control. Control values arriving at HEAT AIR have a
direct effect on its execution, rather than simply moving
through it as input and output.?* An activity with a control
value parameter could use the value to disable itself, but

2’Temperature monitoring activities would usually emit EN-
ABLE and DISABLE values alternately, so the discard cases above would
not occur. However, it is not possible to determine that the discard
functionality is unnecessary from the above model. This would need
to be declared by a process constraint on the function, or derived from
more detailed modeling of MEASURE TEMPERATURE.

23Same for control values arriving at control pins (see Section
5.1.2).

Systems Engineering DOI 10.1002/sys

this is not required. Omitting the parameter guarantees
the control value will start and stop the activity it arrives
at.

A number of UML SE RFP requirements call for
control operators of various kinds, as described below.
SysML refined these requirements and satisfied them
without using control operators.

e EFFBD selection and concurrency are supported
by dedicated UML modeling elements for those
purposes: decision and merge for selection, fork
and join for concurrency, as shown in the Figure
9, rather than as usage patterns of control opera-
tors (requirement 6.5.2.2.2 c). Loops are sup-
ported in UML as patterns of decision and
merges, also shown in Section 4.2. Users can
define control operators for these, if desired, but
the resulting model is more compact using dedi-
cated elements, so no predefined control opera-
tors are provided in SysML.

e Multiple incoming control flows to an activity
usage can be combined (6.5.2.2.1 a) using the
UML join element with join specification (see
example in Fig. 12), or can be preceded by a
separate control operator that performs the com-
bination. The control operator can also be embed-
ded in the activity, but then it is hidden from
diagrams that use the activity.

e Disabling an activity by timeout (6.5.2.2.1 e) is
supported by a usage pattern of UML interrupt-
ible regions, accept event actions, and joins. An
example of interruption by signal receipt is
shown in Figure 33. Time event receipt is similar,
but uses an hourglass notation.

5.1.2. Control Buffering

Control buffering is applicable across the spectrum of
Section 2 when activities are disabled waiting on other
inputs. Control arriving at an activity that is already
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(«comro;Operator;\?
Cyclic =

| : Read
l Executive iControIValue ControlValue Radar

Scheduling )1 stream} {control }

Figure 16. Control pin.

executing can be kept in a buffer until it restarts the
activity. This is useful in situations where a task is
started periodically (cyclic executive scheduling), but
in some cases may take longer than the period to com-
plete. Control buffering ensures that the activity is
restarted when it is finished and catches up with the
required period. For example, a radar device may re-
ceive control at regular intervals to take a reading, but
some readings may take longer than normal. Control is
queued by the device to catch up as much as possible
with the desired timing. SysML supports control buft-
ering, as does EFFBD and the finalized UML 2.

Buffering in UML 2 and SysML is specified at pins
(item usages by activity usages, see Section 3.3), rather
than parameters. The pin specifies whether and how
control and items are buffered, rather than the parameter
or activity. This gives flexibility in applying activities.
Some usages can buffer and others not, while activities
can be defined purely as transformations, without the
burden of buffering issues. An activity can have its own
internal buffers, but these are not visible from other
activities that use it.>* This is a refinement of UML SE
RFP requirements (6.5.2.1.3 d).

Unlike regular pins, however, UML control pins do
not pass their values into the activity; they only deter-
mine when the activity is enabled and disabled. Other-
wise, the control value would be like any other item
flowing through the activity via parameters, as in con-
trol operators. This means the activity definition has no
parameter corresponding to the control pin. The exam-
ple in Figure 16 shows a cyclic radar executive sending
control to an activity through a control pin. If the
reading activity is not finished when the executive sends
another enabling control value, the value is buffered at
the control pin until reading is finished, then starts the
activity again.?> 20 Compare this to Figure 14, which
also has a control operator and a controlled activity, but
would ignore and discard a redundant control value

24 Activity definitions have parameter nodes, one for each pa-
rameter, that provide internal buffering [Bock, 2004a].

25In EFFBD, buffering is a queue (first-in, first-out), and UML
2 defaults to the same.

264 disabling value sent to a control pin might prevent the target
function from ever starting again, because the usage needs to receive
an enabling control on all incoming flow lines to start. The only way
an enabling control can get past the disabling one in the buffer is if
there is a sorting function on the buffer that chooses the later enabling
control value over the earlier disabling control value.

- ~
( «controlOperatory - e N
Cyclic Control | Read |
Executive  |{stream} Value {control}} Radar |

|

1

| .
\_Scheduling

Figure 17. Control pin, alternative notation for Figure 16.

arriving at the controlled activity. Figure 17 shows an
alternative notation that means the same thing as Figure
16.

Control pins and control parameters, described in
Section 5.1.1, differ in that control pins accept control
values that enable or disable their activity, and do not
have a corresponding parameter, while control parame-
ters have a corresponding pin at each activity usage, and
support control values flowing into and out of an activ-
ity without necessarily enabling or disabling it. An
activity may use a disabling control value parameter to
disable itself, or it might not, but control values arriving
at a control pin will always affect activity execution.?’
Control value parameters also do not specify buffering,
whereas control pins do. Table V summarizes these
characteristics.

Control flows without control pins have a limited
buffering functionality in UML 2, because enabling
control arriving at a disabled activity is held until the
rest of the required inputs are available. However, if
multiple enabling controls arrive at a disabled activity
along the same control flow line, only the first one is
kept. Control pins can be used to turn off even this
limited buffering, by applying the SysML «noBuffer»
stereotype to control pins (see Section 5.2.2). For ex-
ample, Figure 18 shows an example of a sheet metal
stamping activity. Enabling the activity requires control
to arrive, which might be allocated to a button pressed
by an operator. It also requires a piece of sheet metal on
which to operate. However, if the sheet metal has not
arrived, the control value should not be buffered, be-
cause stamping will start when the sheet metal arrives,
and conditions may have changed in a dangerous way
since control was provided. For example, the operator
may have moved their hands from the button to clean
the die. To prevent buffering, the «<noBuffer» stereotype
is applied to the control pin. Then control values are
discarded if they arrive before the sheet metal does. A

Table V. Comparison of Control Pins and Control
Parameters

Control Pins Control Parameters

Enable and disable activities Yes Depends on activity definition

Specify control buffering Yes No

27 Assuming they are not discarded (see Section 5.2.2).
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Figure 18. Control pin with «noBuffer».

control value arriving after the sheet metal immediately
enables the stamping activity.28

5.2. Continuous Systems

This section describes concepts and capabilities that are
useful across the spectrum of Section 2, but especially
for streaming activities and what might be loosely
called “continuous” systems. For example, specifying
the allowable rate of flow for a liquid from a pumping
activity is important in properly applying that activity.
One might call this a continuous system, but does
“continuous” mean the pumping activity is always en-
abled, or the flow rate varies continuously over time, or
both, or something else? Section 5.2.1 identifies the
various kinds of continuity, and Section 5.2.2 describes
how SysML and UML 2 support them.

5.2.1. Defining Continuity

The term continuous is used in a variety of ways, each
of which must be defined separately to determine how
it should be applied. Five meanings were identified
during the refinement of UML SE RFP requirements on
continuity (6.5.2.1.3 j), as illustrated in Figure 19, and
described below.

1. Mathematical properties:

a. Continuous type: a characteristic of ordered
sets that every two elements have at least one
other element between them, as illustrated in
Figure 20. For example, the real numbers are
a continuous type, because any two real num-
bers have another real number between
them.”

28This might be specified with a state machine where some
states ignore the start button, but this does not scale well to multiple
inputs. The more inputs, the more states are required for the combi-
nations of arrived inputs, and transitions on each state for each input.

2The mathematical term is dense. Continuous and dense are
actually distinct mathematically. For example, the rational numbers
are dense, because every two rational number has another one be-
tween them, but they are not continuous, because there are nonra-
tional numbers between any two rational ones (irrational numbers).
This article takes density as the criteria for continuity 1a, because it
is enough to support system specification to as fine a granularity as
necessary.
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Continuous Continuous Continuous
function (1b) type of item flow (2), no time
e.g., addition. (1a), e.g., real. between items.

\ /
Activity 1 Item [——| Activity 2
/)

Continuous Continuous item Continuous
variation over (5), infinitely execution (4)
time (3), e.g., divisable, e.g., e.g., engine.
sine wave. water.

Figure 19. Kinds of continuity.

b. Continuous function: a characteristic of activi-
ties with numeric inputs and outputs in which
smaller changes in the inputs correspond to
smaller changes in outputs, as illustrated in
Figure 21. For example, the equation y = 2x
gives y as a continuous function of x, because
the smaller the changes are in x , the smaller
the changes are in y. Continuous functions
necessarily require values of continuous types
as input and output, because the changes in
input can be arbitrarily small.

2. Continuous flow of items or control: a charac-
teristic of items or control that pass along a flow
line with no discernable time between them, as
illustrated in Figure 22. For example, oil flowing
to a pump is a continuous flow, because the time
between the fluid elements is indiscernibly small.

3. Continuously varying inputs or outputs: a char-
acteristic of inputs or outputs of values that vary
as mathematically continuous functions (1b) of
time, as illustrated in Figure 23. The smaller the
change in time, the smaller the change in value.
For example, a voltage at an input may vary as
the sine of time.

4. Continuous execution: a characteristic of activi-
ties that run as long as their system or subsystem
is running. For example, an engine in a car, as
illustrated in Figure 24.

5. Continuous item: a characteristic of an item that
it can be divided as much as needed by the
application and result in a continuous item of the

e o RIS B U D B RN [ T

Figure 20. Continuous type.
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same kind, and where the identity of its constitu-
ents is not important for the application: for ex-
ample, a tank of water or bucket of ball
bearings.*°

The kinds of continuity identified above are mostly
independent of each other, as shown by the blank cells
in Table V1. For example:

Values of a continuous type (1a) may flow non-
continuously (2). For example, an activity may
output a temperature measurement as a real num-
ber, but is only do so every 10 minutes.

A flow may be continuous (2) for values of non-
continuous types (1a). For example, values flow-
ing between one activity and another may be only
be true or false, and still flow with no discernable
time between them.

An activity may be a continuous function (1b) but
receive or produce noncontinuous flows (2). For
example, an activity may produce the sine of its
input, but the input flow might arrive only every
ten seconds.

An activity may be a continuous function (1b) but
receive or produce noncontinuously varying val-
ues (3). For example, an activity may produce the
sine of its input, but if the input values are inte-
gers, the output will be the sine of integers, which
will not vary continuously.

Input or output values may vary continuously
with time (3) for activities that are not continuous
functions (1b). For example, the input to an ac-
tivity may be a sine wave voltage, but it may
output a voltage of positive or negative five, de-
pending on whether the input is above or below
a certain threshold value. A small change in input
can cause a large change in output.

Inputs and outputs can be of continuous types
(1a) for activities that do not execute continu-
ously (2). For example, an activity that multiplies
areal number by two might be executed only once
during the life of a running system.

An activity may have continuous input and output
flows (2) and not be executing continuously (4).
For example, an activity that multiplies a real
number by two may be invoked repeatedly during
the system lifetime on inputs arriving continu-
ously from another source. The flows in and out
will be continuous, causing concurrent execu-
tions of the activity, but the activity will be start-

3Continuous items do not assume an ordering among individ-
ual elements, as continuous types do.
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Table VI. Dependencies between Kinds of Continuity

Type | Function | Flow | Variation | Execution | Item
(1a) (1b) @ (&) @ )
Type (1a) <« <« <«
Function (1b) <~
Flow (2) “«
Variation (3) <«
Execution (4)
Item (5)

ing and stopping repeatedly, rather than always
executing.

e An activity may execute continuously (4) and
have noncontinuous inputs and output flows (2).
For example, the temperature monitoring activity
in Figure 15 of Section 5.1.1 might operate all the
time, but only outputs control values to the heat-
ing activity at anoncontinuous rate, depending on
how fast the temperature is measured and com-
pared to a threshold.

e An activity may operate on continuous items (5)
and have noncontinuous input and output flows
(2). For example, a water heater might take buck-
ets of water as input, rather than having it piped
in continuously. Continuous items can be pack-
aged in separately identifiable batches.

The arrows in Table VI identify how the kinds of
continuity depend on each other, with the arrow point-
ing from dependent kinds to others they require. Only
six of the thirty combinations are dependent, almost all
of which involve continuously varying inputs and out-
puts (3) or continuous items (5). The six constraints are:

e A continuous function (1b) requires continuous
types (1a) for input and output, since the changes
in the inputs and outputs can be arbitrarily small.

¢ Continuously varying inputs and outputs (3) re-
quire continuous types (la) to describe values
changing continuously with time.

e Continuously varying inputs and outputs (3) re-
quire continuously flowing values (2) to describe
values changing continuously with time.

e Continuous items (5) require continuous types
(1a) to describe amounts of material.
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e Continuous items (5) usually require continuous
activities (1b), since arbitrarily small changes in
input will usually cause arbitrarily small changes
in output.

e Continuous items (5) usually require continu-
ously varying inputs and outputs, (3) since the
items are described with amounts of material, and
this varies continuously with time.

The kinds of continuity described above are also
independent of UML’s streaming parameters, as in Fig-
ure 14, despite the name. Streaming parameters declare
that an activity might provide outputs or accept inputs
while it is executing, rather than just at the start and
finish of execution. Streaming parameters do not re-
quire that an activity accept continuous flows as input
or provide continuous flows as output during execution.
For example, the temperature monitoring activity in
Figure 15 has a streaming output, but outputs control
values at a rate that depends on how long it takes to
measure the temperature. Streaming parameters also do
not require any particular execution of the activity to
actually accept input or produce output while executing
at all. For example, a temperature monitoring activity
might be defined to only output a control value when
the temperature crosses the threshold, which never hap-
pens if the threshold is low and the activity is operating
in a warm climate.

5.2.2. SysML and UML 2 Support for Continuous
Systems

SysML and finalized UML 2 models support most of
the meanings of continuity in the last section. The first
mathematical property in the previous section (la) is
partially supported in SysML with a primitive datatype
for real numbers. The second (1b) is covered by func-
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Figure 26. Activity for numerical solution of Eq. (1).

tion behaviors in the finalized UML 2, which are be-
haviors that operate only on data types, where the output
values depend only on the input values, and have no
other effect than to compute output values. Function
behaviors can be specialized if it is required to classify
some of them as mathematically continuous.

UML 2 and SysML support continuous flows (2),
continuously varying inputs and outputs (3), and con-
tinuous execution (4). There is no limit on how close
together in time items may move through an activity,
how different one input or output value is from the next
one in time, or how long activities can execute.’!
SysML treats continuous flow (2) as a flow where the
time between individual items or control values is ef-
fectively zero as far as the application is concerned.
Continuously varying outputs (4) are specified with
activities that continuously generate values according
to mathematically continuous functions. UML 2 and
SysML also do not completely prescribe the timing of
flow through an activity. In particular, flows on separate
lines may be coordinated to occur so that each subac-
tivity is executed once in a cycle, if that is required by
the application.

Figure 26 illustrates the flexibility above, and gives
an example of an application from the middle of the
spectrum in Section 2. It shows an activity diagram of
the ordinary differential equation in Eq. (1), adapted
from [MathWorks, 2004], omitting the item types on
flows for brevity.

X(0) = =2x(t) + u(®) (1)

The activity on the left generates values for the
mathematical function u. This is a streaming activity, as
indicated by the streaming output of values produced
while it is executing. It is started once and feeds values
to the addition function. The addition activity is non-
streaming, since it is enabled only when it receives a

31 An earlier article [Bock, 2003a] raised an issue with coordi-
nating continuously flowing inputs at an activity usage. This is not a
problem when continuous flow is treated as a limiting case of discrete
flow.

value on each input, and does not accept any more input
until it is finished and provides an output (EFFBD
functions also require control, see Section 4.1, which is
omitted here for brevity). The first execution of ADD
will require a value on the input from MULTIPLY, even
though that has not executed yet. This is provided by a
default value of zero for the input specified in ADD.
Then the sum is passed to an integrator, which is a
streaming activity.32 It needs to execute for as long as it
accepts inputs, because it retains the inputs and outputs
of the previous cycle to calculate the result for the
current one. The integrated value is passed to a display
activity, also streaming, because it maintains a graph of
the result over time. The value is also passed to a
multiplication function. Like addition, this is a non-
streaming function.

Figure 26 could execute each activity onceinacycle,
as in some implementations of time march algorithms,
such as Runge-Kutta [Lambert, 1991]. Each clock cycle
represents the increment of time chosen for the solver.
This has the advantage of preventing backup of values
at the slower activities; for example, integration may be
slower than multiplication. If some activities produce a
value earlier than others in any particular clock cycle,
their output does not flow to the next until the slowest
activity is done. This technique also allows the stream-
ing activities to access a global value for time that will
be synchronized with whatever values are given as
input.

The example above illustrates that backup is a gen-
eral issue for applications that use nonstreaming activi-
ties, or streaming activities that are not always
executing. Continuous systems are especially prone to
backup because there is no limit on how fast inputs
arrive at an activity usage. A nonstreaming activity may
still be operating on a previous input, or a streaming
activity may be disabled. This will cause the inputs to
be buffered, and if the rate of arrival stays high, will

32The current time and the time increment could also be given
as input to the streaming activities when they start. This would make
them hybrid EFFBD/interaction activities, because some parameters
would be streaming and others would not.
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cause a backup that cannot be cleared until values stop
arriving.

SysML and UML 2 provide a number of features to
address backup, summarized in these bullets and de-
scribed below:

e SysML provides for specifying rates at which
items and control arrive and leave activities, in-
cluding continuous rates («rate» stereotype). This
helps determine where a model might have bot-
tlenecks,

e Values can be discarded («noBuffer» and «over-
Write» stereotypes), to reduce buffer size.

e A usage of an activity can have multiple execu-
tions of that activity (reentrant activities), to clear
backups.

The «rate» stereotype specifies the rate at which
items or control move through an activity. It may be
applied to:

e Streaming parameters to specify the possible rate
of flow of items or control in or out of streaming
activities, independently of how the activity is
used.

e Flow lines in an activity to specify the possible
rate of flow of items or control between activity
usages in a diagram.

The «rate» stereotype has a RATE property that can
specify a particular flow rate, or a range or other con-
straint on acceptable flow rates.? The rate stereotype is
specialized to a «continuous» stereotype for continuous
flows and «discrete» for noncontinuous flows. For ex-
ample, Figure 27 shows a version of Figure 4 where the
«continuous» stereotype appears on an object node.
Object nodes represent the types of items flowing
through parameters (see Fig. 5), so the stereotype ap-
plies to the parameters of HEAT LIQUID and DISPENSE
WATER. All the «rate» stereotypes, including «continu-
ous», only apply to parameters if the parameter is
streaming. The notation in Figure 27 is a way to show
this detailed model in a more concise way than with
annotated pins, as in Figure 28.

Figure 28 is a version of Figure 14 where «rate» is
applied to the streaming output parameter of MONITOR
TEMPERATURE, restricting the outflow rate to below one
control value every 5 minutes (UML supports showing
the properties of parameters on the corresponding pins,
as well as displaying the stereotype property without
the showing stereotype, when it is unambiguous). This
parameter rate constrains flow for all activities that use

3SysML and UML 2 provide ways to express values for flow
rates, such as 4 liters per minute, and constraints on flow rates (see
Footnote 13).

Systems Engineering DOI 10.1002/sys

;c{ Eroyide Watgr/]

Heat i «continuous»
A Liaui —3  Water
7 Liquid
yan . V

N Dispense | @

1 Water -

«continuous»

Water

N Supply
Water /

N

Figure 27. Continuous rate appearing on object node.

MONITOR TEMPERATURE. In its particular usage in Fig-
ure 28, the modeler happens to know the environment
temperature is stable enough that the actual outflow will
be less than one every 10 minutes. This only applies to
this particular usage of MONITOR TEMPERATURE, not in
general. The flow rate may be different in other activi-
ties that use MONITOR TEMPERATURE. The global rates
on parameters of MONITOR TEMPERATURE must be
compatible with the local rates on flows of its usages,
which they are in this example.

Consistency rules apply to rates specified in an ac-
tivity. For example, rates on control flow going out of
an activity usage must be the same or less than the
lowest of the rates on control flow lines coming into the
usage. The same applies to rates on item flow going out
of nonstreaming, required output parameters on an ac-
tivity usage, which must be the same or less than the
lowest of the rates on incoming flow lines for non-
streaming, required input parameters. They can be less
only if the activity can be disabled, or if input items can
be discarded by limitations on buffering. Two other
rules can be derived from this:

e An activity usage with only continuous flows into
nonstreaming input parameters can only have
continuous flows out of its nonstreaming output
parameters.

e An activity usage with noncontinuous and con-
tinuous flows into nonstreaming, required input
parameters can only have noncontinuous flows
out of its nonstreaming, required output parame-
ters.

Another way to address backup problems with
SysML is to reduce buffering by discarding items (see
Section 5.1.2 for the basics of buffering). This is natu-

/

[ «COnlt\;I(;[)gﬁZr:m”’ {rate < 1 per 10 minutes }

: Heat Air |
| Temperature th]ControIValue L_,.__

o ™ { stream }

{ rate < 1 per 5 minutes }

Figure 28. Flow rate on streaming parameters and flow lines.
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Figure 29. Using «noBuffer» with continuous and discrete flows.

rally restricted to applications where items can be de-
stroyed, such as information or ephemeral physical
characteristics such as voltage levels. SysML has two
stereotypes for discarding items from buffers:

e «noBuffer»: discards values arriving at an input
pin if the activity usage cannot accept them im-
mediately.

e «overWrite»: discard values in a full buffer to
hold newly arriving values. The buffer can be any
pin or central buffer.

Figure 29 shows an application of «noBuffer» to
prevent backup of a continuous flow. It is an “open
loop” version of the example in Figure 15 of Section
5.1.1. The DETERMINE TEMPERATURE activity gener-
ates a stream of effective temperatures based on the
actual temperature and humidity arriving from external

sources, indicated by the receive actions (flag shapes)
at the lower left. Humidity information arrives at a
noncontinuous rate, while temperature arrives at a con-
tinuous rate. To prevent temperature values from back-
ing up at the input pin to CALCULATE EFFECTIVE
TEMPERATURE, the «noBuffer» stereotype is applied.
This pattern can also model electrical and other tran-
sient signals that are not buffered at the receiver, as well
as ensure control values have an effect at exactly the
time they arrive, rather than later, as in Figure 18 of
Section 5.1.2.

Figure 30 shows an application of «overwrite» to
ensure the latest arriving values are buffered in applica-
tions where data can go “stale.” It is a variation of
DETERMINE TEMPERATURE from Figure 29 with dis-
crete flows of different rates into the effective tempera-
ture calculation. The input buffer for temperature is set

act Determine Temperature )

{rate =

Receive 10 per second }

Temperature

Temperature

{rate =

1 per second }

Humidity

Receive
Humidity

«overwrite»
{ upperBound =1}

Calculate Temperature

Effective Temperature

{ stream }

Figure 30. Using «overwrite» with mismatched discrete flows.
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to hold a maximum of one value, with the UPPERBOUND
property. If the buffer already has a value when a new
one arrives, the «overwrite» stereotype indicates that
the old value should be discarded to make room for the
new one. When a humidity value arrives, it will be
paired with the most recent temperature as input. The
stereotypes «overwrite» and «noBuffer» have the same
effect when applied to continuous flows, because a
continuous flow will always provide the latest value
regardless of which stereotype is applied. However, if
the flow is sometimes continuous and sometimes dis-
crete or not flowing at all, «overwrite» will keep the last
value, while «noBuffer» will not.

Another technique for preventing backup is to use a
feature of UML 2 that provides for concurrent execu-
tions of the same activity at the same usage (also see
EFFBD replication, see Section 7). If an activity is
reentrant, each complete set of inputs arriving at ausage
will create a new concurrent execution of the activity.
It is assumed these activities can be executed concur-
rently without any conflict between the multiple execu-
tions. For example, in Figure 26, addition and
multiplication are reentrant, so a new concurrent exe-
cution will be started for newly arriving inputs, even if
the operation on previous inputs is not completed yet.
Outputs will be produced as fast as the inputs arrive,
with only a single operation delay between the accep-
tance of an input and production of the corresponding
output. The only limit is in how many concurrent exe-
cutions the underlying execution engine can support.

Continuous items (5), the last meaning for continu-
ous in Section 5.2.1, are partially supported in SysML
and UML 2. They are modeled as classes (blocks in
SysML), like any kind of item. For example, a class
WATER can represent the general characteristics of
water. It is expected that instances of these classes will
be identifiable quantities of water, for example, the
water in a particular tank, bottle, or even individual
molecules. UML also does not restrict how small an
item may be, for example, to model continuous material
or energy flow. However, a collection of water mole-
cules has different characteristics from individual ones,
such as boiling point of the collection, and molecular
weight of the individual molecule. And the water in a
tank can be divided and still be water, whereas an
individual molecule cannot. These can be distinguished
by the units of measurement.

6. ACTIVITY DECOMPOSITION AND
ALLOCATION

This section covers two common aspects for presenting
activities: activity decomposition and allocation by par-
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tition. Activity decomposition corresponds to what is
typically called functional decomposition, described in
Section 6.1. UML partitions provide for dividing up the
subactivities of an activity for various purposes, one of
which is to allocate subactivities in the partition to
structural elements, as described in Section 6.2.

6.1. Activity Decomposition

A commonly used SE diagram shows how activities
decompose into others, omitting flows between subac-
tivities. For example, the activity decomposition for
Figures 14 and 15 in Section 5.1.1 would show the
activity in the first diagram breaking down into MONI-
TORING TEMPERATURE and HEAT AIR, and MONITOR-
ING TEMPERATURE breaking down into MEASURE
TEMPERATURE. These diagrams show only decomposi-
tion, without other information normally shown on
activity diagrams, such as flow lines between usages,
and coordinating nodes such as decision branches.
Activity decomposition can be modeled with class
diagrams (block definition diagrams in SysML), using
UML 2’s application of class and instance concepts
(item definition and item instance) to activity and exe-
cution (activity definition and execution instance):

e In UML and all class-based languages, instances
must conform to their class. For example, the
individual water heater with serial number
234523 must conform to the class WATER
HEATER, by having values for the attributes speci-
fied by the class, such as CAPACITY, that are
within the ranges defined by the class, for exam-
ple, a positive integer. An individual water heater
with a negative value for capacity would not
conform to its class.

e UML 2 recognizes the same idea applies to ac-
tivities, in particular, activity executions must
conform to their activity definition. For example,
every execution of MONITOR TEMPERATURE in
Figure 15 must conform to the control and data
flow shown in that diagram. An execution that did
not measure temperature and test it against a
threshold would not conform to MONITOR TEM-
PERATURE. This means activities can be treated as
classes, with their executions as instances.

e (Classes can have associations between each
other. Associations specify the allowable links
that can exist between instances of the associated
classes. For example, the class WATER HEATER
might be associated with a class POWER SOURCE,
which means individual water heaters will be
linked to individual water heaters.

e UML provides for strong composition associa-
tions, which means destroying an instance at the
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Figure 31. Activity decomposition.

whole end destroys instances at the part end
[Bock, 2004b]. For example, a strong composi-
tion association between WATER HEATER and
WATER TANK classes, with the heater on the
whole end, means destroying an individual water
heater causes the destruction of its water tank.

Applying strong composition associations to activ-
ity classes, the termination of execution of an activity
on the whole end of a link will terminate executions of
activities on the part end of the link.3* For example,
Figure 31 shows the activity decomposition for Figures
14 and 15. using a SysML block definition diagram
(class diagram in UML). The «activity» keyword is
applied to the classes to show when they represent
activities. Executions of MAINTAIN TEMPERATURE will
start executions of MONITOR TEMPERATURE and HEAT
AIR. These subexecutions are linked to their parent by
instances of composite associations, notated with black
diamonds at the whole end of the composition. In
functional terms, this means disabling an execution of
an activity will disable executions of its subactivities.
For example, disabling an execution of MAINTAIN TEM-
PERATURE will disable executions of MONITOR TEM-
PERATURE and HEAT AIR that happen to be executing
under it at the time.

The numbers on each association specify how many
of the instances of the class on the numbered end can
link to one instance of the other end. For example, an
execution of MAINTAIN TEMPERATURE can relate to no
more than one instance of MONITOR TEMPERATURE.
This constrains the number of concurrent synchronous

34Composition does not specify the order in which executions
on the part end will be terminated.

bdd
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temperature humidity
0.4 0.4

Temperature Humidity

Figure 32. Items on a class diagram (block diagram in
SysML).

executions of the activity that can be invoked by the
containing activity (partially addressing replication, see
Section 7).

SysML also extends activity notation to support
activity usage names. These have the form “usage name
: activity name.” The usage name can be used on the
ends of the associations in class diagrams to show
which usage each subactivity corresponds to. One dif-
ference between classical functional decomposition
and activity decomposition in class diagrams is that the
same subactivity can appear more than once if it is used
more than once in the containing activity.

Activities on class diagrams can also be used to show
which kinds of items flow through them. For example,
Figure 32 shows the kinds of items (classes) that flow
through the open loop version of MONITOR TEMPERA-
TURE in Figure 29. The associations are not composite,
because disabling an execution of an activity does not
necessarily destroy the items moving through it. For
example, disabling a manufacturing process for cars
does not necessarily destroy the parts moving through
1t.

6.2. Allocation with Partitions

Systems engineering addresses the relation of behavior
to structure as part of an area of concern called alloca-
tion. SE requires flexible connection between behavior
and structure because many alternative structures can
support a required behavior or activity. This contrasts
with common object-oriented software practice, in
which a behavior is associated with a single class early
in the development cycle [Bock, 2005a].

UML 2 provides a notation for showing structure on
activities that is generalized in SysML for SE alloca-
tion. This is no longer a pure activity diagram, because
it relates activity to structure, and is sometimes called a
“swim lane” diagram. Figure 33 shows an example
from the SysML specification with UML 2 partitions

Systems Engineering DOI 10.1002/sys
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Figure 33. Activity with partitions.

added to indicate which aspect of the design structure
is responsible for which activities. UML 2 requires that
the activities in each partition are the responsibility only
of the class represented by the partition. SysML pro-
vides the «allocate» stereotype, which loosens this re-
striction so that the activities in each partition are
allocated to the partition class, but can also be allocated
to other classes. UML 2 also supports multiple sets of
partitions on a single diagram [Bock, 2004c], to show
multiple allocations. SysML provides much more sup-
port for relating behavior and structure, for example, to
allocate item flows in activities to assembly connectors.
This is described in the SysML specification and will
be covered in future articles.

7. REMAINING UML SE RFP
REQUIREMENTS

The following UML SE RFP activity requirements
remain to be filled by SysML and UML 2, due to lack
of time to refine the requirements:

e Stores: The UML SE RFP calls for a model for
storage of items as they move through an activity,
where the store is persistent, and either depletable
or nondepletable (6.5.2.1.2). The corresponding
construct in UML 2, central buffer nodes [Bock
2004a], only hold objects while their containing
activities are executing, not persistently across
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activity executions as in UML SE RFP stores or
traditional data stores. When the activity is dis-
abled, central buffer nodes no longer store any
items, even though these items are not destroyed.
Also, items flow out of UML 2 central buffer
nodes as they become available, rather than as
they are needed. UML 2 uses a form of item flow
that treats items like a control value rather than
storage. UML provides a limited form of non-de-
pleting store that copies data as it leaves the store.

Persistent storage can be achieved with the prede-
fined UML 2 actions for modifying persistent objects.
Specifically, an item flow coming into a UML-SE store
or traditional data store is equivalent to assigning that
item or data to a particular place in storage. For exam-
ple, the average pressure on a wing surface might be
stored as the value of a particular attribute in an object
that records information about the wing. Or water flow-
ing into a physical system might be stored in a tank,
which can be modeled as a dynamically changing char-
acteristic of the tank. This is equivalent to a UML 2
action for writing attribute values. Conversely, an item
flow going out from a UML-SE or traditional data store
is equivalent to retrieving that item from a particular
place in storage. In the previous example, the average
pressure on the wing is read from an attribute of the
wing object. Or water flowing out of a physical system
might be taken out of a tank. This is equivalent to a
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UML 2 action for reading and modifying attribute
values. In this way a UML-SE store or traditional data
store can be defined as an aggregate of primitive actions
on persistent storage. There is currently no concise,
standard graphical notation for this way of modeling
stores.

e Replication: The UML SE RFP calls for support
for activities that have multiple concurrent exe-
cutions for a single usage, possibly determined
by a control operator, with specification of the
number of concurrent executions allowed
(6.5.2.1.3k, 6.5.2.2.2 ¢). The requirement has not
been refined enough to determine how UML can
support it. The UML constructs currently being
considered are reentrant activities (Section 5.2.2),
multiplicity constraints on activity decomposi-
tion (Section 6.1), and expansion regions [Bock
2005b].

e Resources: The UML SE RFP calls for specifica-
tion of resources, which are generated, con-
sumed, produced, and released when an activity
executes (6.5.2.1.3). Resources do not appear on
EFFBD or activity diagrams as inputs or outputs,
even though they participate in the execution of
functions and activities. UML supports precondi-
tions and postconditions on activities and activity
usages, but the effect on execution is not speci-
fied. Activities can be defined to proceed only
when they have enough resources, but this re-
quires modifications to the activity at each point
in the flow, since resources may be exhausted at
any time. An activity should support specification
of various constraints on resources, such as those
required to start, continue, and stop execution, as
well as actions for claiming and releasing re-
sources.

These requirements will be addressed in future ver-
sions of SysML or UML.

8. CONCLUSION

This article describes how SysML and the finalized
UML 2 respond to the requirements of INCOSE and
OMG for a systems modeling language based on UML.
It organizes SysML and UML capabilities on a spec-
trum ranging from streaming to nonstreaming activi-
ties. It updates the mapping between EFFBD and UML
2 Activities given in an earlier article [Bock, 2003a],
including one-to-one mappings as well as patterns and
execution semantics for activities. It covers the addi-
tional capabilities of SysML and UML 2 that support
streaming activities, which enhance control flow with

some aspects of item flow, and provide for flow rate
specifications, including continuous flow. It also de-
scribes decomposition and allocation of activities.
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