

TOWARDS SEMANTIC-BASED SUPPLY CHAIN
INTEGRATION
Subtitle

 Nenad Ivezic1, Nenad Anicic2, Albert Jones1, Zoran Marjanovic2

 1NIST, 100 Bureau Drive, Gaithersburg, MD, 20817, USA
Tel: +001 301 975-3536, Fax: + 001 301 975 4482,
Email: {nivezic|ajones@nist.gov}

2Faculty of Organizational Sciences, Jove Ilica 154, 11000 Belgrade, Serbia & Montenegro
Tel: +381 11 395-0800, Fax: +381 11 461-221,
Email: {anicic.nenad!marjanovic.zoran@fon.bg.ac.yu}
Abstract: We describe a novel Enterprise Application Integration (EAI) architecture

based on existing B2B standards. We show how such an EAI architecture can
use automated reasoning tools to provide application integration support and
validation capabilities. We give a description of a transformation approach to
help transition from the current XML-Schema syntax-based standards to the
new OWL-based semantic standards, which are meant to support supply chain
integration. Finally, we outline initial experimental results and point how one
existing industrial EAI standard, the OAGIS specification, may be transformed
into an OWL-based representation.

Key words: Automated reasoning, OWL, semantic integration, EXL schema

1. INTRODUCTION

Achieving interoperability among enterprise applications such as
Enterprise Resource Planning, Supply Chain Management, and Inventory
Visibility systems is a high priority for many manufacturing companies. On
one hand, industry-wide enterprise application interoperability efforts may
provide significant cost savings. For example, the Inventory Visibility and
Interoperability (IV&I) project shows a potential savings of more than
$250M in the U.S. automotive industry alone from making only the IV

mailto:{nivezic|ajones@nist.gov

2 Nenad IvezicP1P, Nenad AnicicP2P, Albert JonesP1P, Zoran
MarjanovicP2P

systems interoperable [1]. Other interoperability studies [2,3] from the
Capital Facilities Industry and Health Care industries point to the potential
for multi-billion dollar savings. On the other hand, achieving industry-wide
interoperability takes significant time and resources. In case of the IV&I
project, the process of developing specifications and testing implementations
has been a multi-year effort that involved tens of representatives from both
the automotive and software industries.
 There exists a major opportunity to move towards more capable and
less costly enterprise application interoperability efforts by enhancing
one of the fundamental building blocks on which these efforts rely -
Enterprise Application Integration (EAI) standards. Typically,
industry-specific consortia (e.g., OAG, RosettaNet) develop these
standards [4,5] that use XML specifications based on syntactic
formalisms. Our capabilities to accelerate, and test results of,
interoperability efforts based on these standards alone are severely
limited by these formalisms. In this paper, we describe a vision for
semantics-based standards called Semantic Enterprise Application
Integration (SEAI) standards. These new standards use formal
representations and allow automated reasoning mechanisms that will
provide a basis for less costly and more capable industry-wide
interoperability projects.
 The formal representation we will use is based on emerging
Semantic Web technologies. In this paper, we will assess the potential
for using these technologies to support ongoing, industrial,
interoperability efforts. We summarize our methodological approach
in the following way:

• Embed the new SEAI standards within a novel enterprise

application integration (EAI) architecture detailing innovative
integration and validation capabilities.

• Offer application integration support and validation capabilities by
providing shared ontology construction and specialization, and
automated reasoning capabilities.

• Assure realistic transitioning from the current EAI standards to the
new SEAI standards in industrial interoperability scenarios.

• Perform capability assessment using experimental data from
industrial interoperability projects.

Towards Semantic-Based Supply Chain INtegration 3

We begin by describing this novel EAI architecture and the steps we
use to implement that architecture.

2. OUR METHODOLOGY

First, we describe the essential steps involved in the novel enterprise
application integration architecture that uses the proposed SEAI
standard approach. Then, we provide an overview of a key enabler of
the SEAI standards – the Xsd2Owl transformer.

2.1 A Novel Enterprise Application Integration
Architecture: A Process View

In this section, we describe our new architecture, which we believe will
enable model-based specification of business data exchanges [6, 7]. This
architecture includes integration and validation steps performed both at
design time and run time of an integration process.

 We illustrate the architecture by considering an integration situation
where two industrial consortia, STAR and AIAG [8, 9], base their interface
models on the same ‘horizontal’ document standard – the OAGIS Business
Object Documents (BODs) [4]. BODs are specifications of general XML
Schema components and general aggregations from these components that
make up business document content models. Each consortium independently
uses the OAGIS BODs to customize their own document content models and
define usage rules for the components. The problem is to recognize the
differences in those customizations and build mapping between those
differences. The process we developed for doing this has both design-time
and run-time steps.

2.1.1 Design Time: Ontology Creation Steps

We accomplish three things at design time (see Figure 1). First, we
develop a generalized ontology, which is a shared ontology. Second, we
develop normalized ontologies, which describe application interface models.
Third, we perform a model-based compatibility (i.e., satisfiability) analysis
of these ontological models. Detailed steps are given below.

 In Step 1, we apply an Xsd2Owl transformation to the OAG XML
Schema representation to obtain an OAG OWL-based generalized ontology.
This ontology contains concept descriptions only and no definitions.
Concepts refer to expressions that define a class in the OWL-DL language,
which also provides constructs for establishing relationships between

4 Nenad IvezicP1P, Nenad AnicicP2P, Albert JonesP1P, Zoran
MarjanovicP2P

concepts. The meaning of the concepts is specified using logical semantics,
which distinguishes between concept description and concept definition.
Concept description refers to a class with necessary conditions only; concept
definition refers to a class with both necessary and sufficient conditions. The
automated transformation was possible because we took into account the
decisions and the rationale that led to the OAG components and document
design. This transformation is explained in more detail in a later section.

Figure 1. Ontology Creation: Design Time View of the Semantic Integration Method

In Step 2, we calculate a concept subsumption and check satisfiability of

the new OAG ontology. Here, we utilize an automated reasoner to compute
a new subsumption hierarchy for the OAG generalized ontology and
determine whether the new ontology is satisfiable. For example, the
resulting ontology would be unsatisfiable if a mandatory element in a type
declaration were declared optional within a sub-type declaration.

In Step 3, the application integrators individually create regular
ontologies based on the satisfiable generalized ontology created in Step 2.
The integrators would use the generalized ontology and specify additional
constraints or provide definitions for concepts in a particular integration
context. For example, the original STAR and AIAG Schemas include free-
text descriptions of the additional document constraints that need to be
‘layered on top’ of the OAG generalized ontology. For each such schema,
these constraints are used to specify concept definitions based on the original
concept descriptions. This step produces regular (or normalized) STAR and
AIAG ontologies.

 In Step 4, we calculate new concept hierarchies and check satisfiability
for the newly created regular ontologies from Step 3. Similar to Step 2, we
employ a reasoner to compute whether each individual ontology (i.e., regular
terminology) is satisfiable. All unsatisfiable conditions are resolved before
proceeding.

Towards Semantic-Based Supply Chain INtegration 5

 A DL reasoner can find a contradictory concept in the following way.
For example, suppose we map the model group XML Schema concepts (e.g.,
choice, all, sequence) into OWL property hierarchies. Suppose further that a
logical constraint is specified for a component A to state an ‘exclusive or’
option between two composite elements B and C. Assume that an integrator
defines a new component concept A* that refines A by combining the two
exclusive concepts B and C in a new element D which is now a mandatory
component in A*. The reasoner will find that the new concept A* is
unsatisfiable because the components of the new concepts were originally
stated to be exclusive. That is, no individual of the specified new concept
exists such that it satisfies all the necessary class conditions.

2.1.2 Design Time: Testing Integration Capabilities

Once we determine satisfiability of two independently defined regular
ontologies, we must determine whether the two interface models based on
those ontologies can facilitate interoperable data exchange.

 The first step is to create a merged ontology from the two regular ones.
As both ontologies use the same generalized ontology, a new subsumption
hierarchy will be calculated and new relationships may emerge among
concepts. We can use a DL reasoner to check satisfiability of each concept in
the merged ontology. The reasoner can calculate relationships such as
subClassOf or equivalent. When subClassOf or equivalent relationships do
not hold for two concepts, an individual may still be classified to belong to
either one or both of the concepts based on the particular individual
assertion.

 The result of this satisfiability checking can be that the interface
models are compatible, incompatible, unidirectional, or unknown. If
compatible, then bidirectional interoperable data exchange can occur. If
unidirectional, then the exchange can only take in one direction. If the result
is incompatible or unknown, a designer can provide new axioms such as
conditional equivalence among concepts. New axioms might change
subsumption hierarchy, produce new relationships, and may increase
compatibility between two ontologies.

2.1.3 Run Time: Data Translation Steps

Figure 2 shows that, during run time, the methodology enables semantic
translation of instances of business documents (conforming to the developed
ontologies) using the previously developed ontologies and automated
reasoning tools. Detailed steps are provided below.

6 Nenad IvezicP1P, Nenad AnicicP2P, Albert JonesP1P, Zoran
MarjanovicP2P

 In Step 1, we apply the Xml2Owl transformation from source (STAR)

XML data to OWL data. We transform XML Schema instances into OWL-
DL individuals that conform to the OWL model-based assumptions used in
ontological reasoning. The outcome is STAR OWL data that corresponds to
the initial XML data and transformed with respect to STAR ontology. The
transformation rules depend only on XML Schema to OWL mapping. This
means that the transformation includes annotation of XML data with
corresponding ontology (e.g., STAR ontology)).

In Step 2, we validate source data be performing consistency checking
under both Open World Assumption (OWA) and Closed World Assumption
(CWA). The outcome of this step, if successful, is an indication from the
reasoner that the STAR OWL data are consistent with respect to the STAR
ontology. An individual is valid only if it is consistent (belongs to specific
concept) under both OWA reasoning and CWA reasoning. Validation is
necessary to check the transformation and to check other semantic
constraints. Examples of such constraints include additional semantic
business rules and free-text descriptions provided with a schema. Because a
DL reasoner makes the open world assumption, if a mandatory property is
not present, the reasoner cannot conclude that it is false (since it is wrong to
assume it will never be present). Consequently, the reasoner can conclude
only contradictory but not insufficient information. To assert that an instance
has all mandatory properties, we must validate the instance with CWA.

 In Step 3, we create a satisfiable merged ontology. To translate from
STAR to AIAG OWL data, we must create a merged ontology from the two
individuals and calculate a new, concept-subsumption hierarchy. Because
new independently defined ontologies are based on the same generalized
OAG terminology, a reasoner may combine axioms when calculating a new
hierarchy. In the merged ontology, one concept might be dependent on
concepts in the other ontology namespace. The merged semantics can lead to
inferences over the source data that may yield unexpected results. Also, it is
possible that the merged ontology is created at design time. In that case, the
merged ontology will be referenced and can be reduced to only the set of
concepts that is needed during the data transformation step. This step also
includes satisfiability checking of merged concepts from both the source and
the target ontology. The tool has to check satisfiability for every concept of
the merged ontology.

 In Step 4, we check (STAR) data consistency with the new merged
ontology. The successful outcome of this step is an indication from the
reasoner that all STAR OWL source data are consistent with respect to the
merged ontology.

Towards Semantic-Based Supply Chain INtegration 7

 In Step 5, we compute target data. This is a classification of the source
OWL data, which is in the STAR ontology, in the target ontology, which is
AIAG. The result is an assignment of the STAR OWL data to the specific
AIAG class(es). At this point, specific STAR XML data may be successfully
translated into target AIAG XML data. This, however, doesn’t mean that all
STAR data may be successfully translated to AIAG.

 In Step 6, we validate target (AIAG OWL) data. The outcome of this
step, if successful, is an indication from the reasoner that the AIAG OWL
data are consistent with respect to the AIAG ontology. As discussed above,
this requires OWA consistency and validation that the same individual is a
valid instance of the target concept in the CWA reasoning. The individual
consistency checking in OWA is already done with respect to the merged
ontology. The OWL individuals classified to the AIAG concept hierarchy
have to be checked for sufficiency with respect to the target (AIAG)
concepts. If an individual is inconsistent in CWA, then translation is not
possible. If successful, however, we can be sure that specific XML source
data can be translated and that the integration will succeed.

 In Step 7, we apply Owl2Xml serialization of AIAG OWL data into
AIAG XML data. The outcome of this step is an AIAG XML instance that
preserves semantics defined in the original STAR OWL data. For
serialization into XML format we use concept and property hierarchy. If we
use default XSD serialization from our OWL ontology, then the serialization
is also provided. If we have a customized mapping to specific XMLSchema
syntax (e.g., a sequence of elements defined in separate file), then that
serialization is dependent on the mapping rules. The algorithm for
serialization takes into account information about the source XML Schema.

Figure 2. Data Translation: Run Time View of the Semantic Integration Method

8 Nenad IvezicP1P, Nenad AnicicP2P, Albert JonesP1P, Zoran
MarjanovicP2P

2.2 XML Schema Transformation to OWL

The SEAIS layer uses the OWL language and is architected “on top of”
the current EAI standards layer, which is based on XML Schema
representation formalism. By virtue of our automated translation tools, we
can take an existing XML Schema-based business document specification,
transform it into an OWL-based document, and apply Semantic Web
facilities and reasoning tools. Our goal is to enable industrial transitions
from the current syntax-based integration world into a model-based,
Semantic Web-based integration world.

 To map from XML Schema to OWL, we must know the architecture of
the EAI standard. OAG defines three logical levels. The first level defines
core component types defined as extensions of predefined simple types. The
second level introduces compound components represented as elements and
attributes that can be thought of as one atomic concept. The top level
contains business object documents (BODs), which define different
document types.

 In constructing the mapping, we must to take into account the OAG
design rules for standard representation of component semantics. For
example, every an OAG component is represented using a type definition.
The following transformation rules have been defined on the basis of OAG
design rules:

1. Each XML Schema namespace is mapped to a namespace, which is

composed of schema namespace and a # sign, and included in an
opening rdf:RDF tag.

2. Each XML Schema definition is mapped to owl:Ontology definition.
3. Each included namespace is defined as owl:imports, which provides

an include-style mechanism for importing an entire set of assertions
provided by that ontology into the current ontology.

4. The XML Schema type definitions (either simple or complex) are
mapped to OWL classes. Each XML Schema component name is used
as the corresponding class name. The OWL class that represents a
simpleType has a functional datatype property that represents the
value.

5. The extension and restriction definitions are mapped to OWL
subClassOf relationships.

6. Global element declarations are mapped to OWL classes. (A global
name element that has a corresponding type with the same name is
skipped.)

7. Local element declarations are mapped into object properties.

Towards Semantic-Based Supply Chain INtegration 9

8. The XML Schema attributes are mapped to OWL functional
properties. The type of property depends on the definition of an
attribute (e.g., user-defined or predefined).

9. XML Schema model groups: all, choice, and sequence are mapped to
hierarchies of properties. Some of constraints are mapped to class
description constraints.

10. All other information about elements (e.g, annotation, document) are
mapped to annotation properties.

Details of the transformation rules will be described in a future

publication. It is important, however, to note that this transformation
provides a basis for introducing additional application domain semantics.

3. RESULTS

To date, we have investigated issues in determining individual and
concept equivalences [6]. To determine if two business documents are
semantically equal, we have developed a testing tool that creates a temporary
concept definition for every individual. That definition contains the values
constrained to the values specified in the individual properties. In addition,
cardinality constraints on the properties of the temporary concept definition
are based on the property occurrence in the particular individual. All the
temporary concepts are considered by the reasoner to determine equivalence
among the corresponding individuals. Then, for every pair of equivalent
concepts, the tool asserts a sameAs mapping between the two individuals.
This means that the tool creates an assertion that explicitly defines equality
between the two individuals. That new assertion helps the reasoner to
calculate any new equivalence. The process is iterative and ends when no
new concept equivalence is identified.

 Also, we investigated whether two ontologies can facilitate
interoperable data exchange and we used reasoner capabilities to perform
satisfiability check between them. We determined that a necessary condition
for interoperable data exchange is that there are no contradictory concepts in
the merged ontology. It is, unfortunately, not a sufficient condition because
some individuals may violate constraints defined for a particular concept.
This problem deals with establishing whether an axiom is a part of concept
definition, which includes necessary and sufficient conditions or only a part
of concept description, which includes necessary conditions only. This
distinction is critical because a concept definition is the mechanism used to
classify concepts. Based on this result, we plan to investigate ontology

10 Nenad IvezicP1P, Nenad AnicicP2P, Albert JonesP1P, Zoran
MarjanovicP2P

design patterns, which may avoid the “concept equivalence-individual
inconsistency” type of translation problem.

 We successfully transformed a version of OAG components from the
OAG XML Schema standard representation into an OWL representation.
Figure 3 shows a graphical rendering of a part of the transformed OAG
hierarchy using Protégé OWLViz plug-in.

Figure 3: A Graphical Rendering of an OWL Representation of OAG Components

4. RELATED WORK

A previous effort investigated use of Semantic Web technologies (e.g.,
DAML+OIL) in support of semantic constraint definitions and management
for RosettaNet [10]. That effort suggested an approach for mapping from
XML Schema to DAML+OIL. It used RosettaNet XML Schema design
decisions, which are different from OAG and, consequently, the mapping
rules are slightly different. That approach is similar to ours, but our focus is
on evaluation and validation of integration results in EAI standards domain

Towards Semantic-Based Supply Chain INtegration 11

 The on-going work on semantic annotation presents an important,
complementary effort to ours [11]. This work attempts to expose the actual
semantics of applications by making them explicit in the application
interface. This work relies on the notion of a reference ontology, which, in
our work, is provided by the common generalized ontology. In Step 3 of the
Ontology Creation, the application integrators, which creates regular
ontologies based on the satisfiable generalized one, would use semantic
annotation tools to create effective normalized and/or regular ontologies.

5. CONCLUSIONS

We described a novel Enterprise Application Integration (EAI)
architecture based on Semantic Enterprise Application Integration (SEAI)
standards. We showed how such an architecture can be supported by
automated reasoning tools and a transformation approach from the current
XML Schema-based EAI standards to the new OWL-based SEAI standards.
Based on our initial experimental assessment and showed how an existing
industrial EAI standard, the OAGIS specification, may be transformed into
an OWL-based representation. Our future work will focus on experimental
assessment of the SEAI standards approach in collaboration with industrial
consortia and standards organizations Our long-term vision is a reusable,
coherent, and model-driven EAI architecture enabled by a collection of
fundamental enablers: SEAI standards, automated validation approaches,
application interface model definition and testing tools, and interoperability
mediators.

6. DISCLAIMER

Certain commercial software products are identified in this paper. These
products were used only for demonstration purposes. This use does not
imply approval or endorsement by NIST, nor does it imply these products
are necessarily the best available for the purpose.

7. REFERENCES

[1] Moad J., “Going Once, Going Twice,” http://www.managingautomation.com/
maonline/magazine/read.jspx?id=3276814, April, 2005

[2] Gallaher M., et al., “Cost Analysis of Inadequate Interoperability in the U.S. Capital
Facilities Industry,” http://www.bfrl.nist.gov/oae/publications/gcrs/04867.pdf, April,
2005.

http://www.managingautomation.com/ maonline/
http://www.managingautomation.com/ maonline/
http://www.bfrl.nist.gov/oae/publications/gcrs/04867.pdf

12 Nenad IvezicP1P, Nenad AnicicP2P, Albert JonesP1P, Zoran
MarjanovicP2P

[3] David Brailer, “Interoperability: The Key To The Future Health Care Systems,”

http://content.healthaffairs.org/cgi/content/full/hlthaff.w5.19/DC1, April, 2005.
[4] Open Application Groups, , http://www.openapplications.org April, 2005.
[5] RosettaNet, http://www.rosettanet.org, April, 2005.
[6] Anicic N., Ivezic N., and Jones A., “An Architecture for Semantic Enterprise

Application Integration Standards,”Pre-proceedings of INTEROP-ESA’05, Available
at http://interop-sa05.unige.ch/INTEROP/Proceedings/InteropESAScientific/OneFile/
InteropESAproceedings.pdf.

[7] Anicic N., Marjanovic Z., Ivezic N., Jones A., “Semantic Enterprise Application
Integration Standards,” Submitted to the International Journal of Manufacturing
Technology and Management.

[8] Standards for Technology in Automotive Retail (STAR),
http://www.starstandard.org, April 2005.

[9] Automotive Industry Action Group (AIAG), http://www.aiag.org., April 2005.
[10] Trastour, D., Preist, C., Coleman, D., “Using Semantic Web Technology to Enhance

Current Business-to-Business Integration Approaches,” 7th IEEE International
Enterprise Distributed Object Computing Conference, EDOC 2003, Brisbane,
Australia, (2003).

[11] Missikoff M., Schiappelli F., and Taglino F., “A Controlled Language for Semantic
Annotation and Interoperability in e-Business Applications,” Proceedings of the 2nd
International Semantic Web Conference, 2005, Available at
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-82/
SI_paper_13.pdf.

http://content.healthaffairs.org/cgi/content/full/hlthaff.w5.19/DC1
http://www.openapplications.org/
http://www.rosettanet.org/
http://interop-sa05.unige.ch/INTEROP/Proceedings/InteropESAScientific/OneFile/
http://www.starstandard.org/
http://www.aiag.org/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol

	INTRODUCTION
	OUR METHODOLOGY
	A Novel Enterprise Application Integration Architecture: A
	Design Time: Ontology Creation Steps
	Design Time: Testing Integration Capabilities
	Run Time: Data Translation Steps

	XML Schema Transformation to OWL

	RESULTS
	RELATED WORK
	CONCLUSIONS
	DISCLAIMER
	REFERENCES

