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Abstract: We describe a novel Enterprise Application Integration (EAI) architecture 

based on existing B2B standards.  We show how such an EAI architecture can 
use automated reasoning tools to provide application integration support and 
validation capabilities. We give a description of a transformation approach to 
help transition from the current XML-Schema syntax-based standards to the 
new OWL-based semantic standards, which are meant to support supply chain 
integration.  Finally, we outline initial experimental results and point how one 
existing industrial EAI standard, the OAGIS specification, may be transformed 
into an OWL-based representation. 
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1. INTRODUCTION 

Achieving interoperability among enterprise applications such as 
Enterprise Resource Planning, Supply Chain Management, and Inventory 
Visibility systems is a high priority for many manufacturing companies. On 
one hand, industry-wide enterprise application interoperability efforts may 
provide significant cost savings. For example, the Inventory Visibility and 
Interoperability (IV&I) project shows a potential savings of more than 
$250M in the U.S. automotive industry alone from making only the IV 
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systems interoperable [1]. Other interoperability studies [2,3] from the 
Capital Facilities Industry and Health Care industries point to the potential 
for multi-billion dollar savings.  On the other hand, achieving industry-wide 
interoperability takes significant time and resources.  In case of the IV&I 
project, the process of developing specifications and testing implementations 
has been a multi-year effort that involved tens of representatives from both 
the automotive and software industries. 
 There exists a major opportunity to move towards more capable and 
less costly enterprise application interoperability efforts by enhancing 
one of the fundamental building blocks on which these efforts rely - 
Enterprise Application Integration (EAI) standards. Typically, 
industry-specific consortia  (e.g., OAG, RosettaNet) develop these 
standards [4,5] that use XML specifications based on syntactic 
formalisms. Our capabilities to accelerate, and test results of, 
interoperability efforts based on these standards alone are severely 
limited by these formalisms. In this paper, we describe a vision for 
semantics-based standards called Semantic Enterprise Application 
Integration (SEAI) standards. These new standards use formal 
representations and allow automated reasoning mechanisms that will 
provide a basis for less costly and more capable industry-wide 
interoperability projects.   
 The formal representation we will use is based on emerging 
Semantic Web technologies. In this paper, we will assess the potential 
for using these technologies to support ongoing, industrial, 
interoperability efforts. We summarize our methodological approach 
in the following way: 
 
• Embed the new SEAI standards within a novel enterprise 

application integration (EAI) architecture detailing innovative 
integration and validation capabilities. 

• Offer application integration support and validation capabilities by 
providing shared ontology construction and specialization, and 
automated reasoning capabilities. 

• Assure realistic transitioning from the current EAI standards to the 
new SEAI standards in industrial interoperability scenarios. 

• Perform capability assessment using experimental data from 
industrial interoperability projects. 
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We begin by describing this novel EAI architecture and the steps we 
use to implement that architecture. 

2. OUR METHODOLOGY 

First, we describe the essential steps involved in the novel enterprise 
application integration architecture that uses the proposed SEAI 
standard approach.  Then, we provide an overview of a key enabler of 
the SEAI standards – the Xsd2Owl transformer. 

2.1 A Novel Enterprise Application Integration 
Architecture:  A Process View 

In this section, we describe our new architecture, which we believe will   
enable model-based specification of business data exchanges [6, 7]. This 
architecture includes integration and validation steps performed both at 
design time and run time of an integration process.   

 We illustrate the architecture by considering an integration situation 
where two industrial consortia, STAR and AIAG [8, 9], base their interface 
models on the same ‘horizontal’ document standard – the OAGIS Business 
Object Documents (BODs) [4].  BODs are specifications of general XML 
Schema components and general aggregations from these components that 
make up business document content models. Each consortium independently 
uses the OAGIS BODs to customize their own document content models and 
define usage rules for the components.  The problem is to recognize the 
differences in those customizations and build mapping between those 
differences.  The process we developed for doing this has both design-time 
and run-time steps. 

2.1.1 Design Time:  Ontology Creation Steps 

We accomplish three things at design time (see Figure 1). First, we 
develop a generalized ontology, which is a shared ontology.  Second, we 
develop normalized ontologies, which describe application interface models.  
Third, we perform a model-based compatibility (i.e., satisfiability) analysis 
of these ontological models.  Detailed steps are given below. 

 In Step 1, we apply an Xsd2Owl transformation to the OAG XML 
Schema representation to obtain an OAG OWL-based generalized ontology.  
This ontology contains concept descriptions only and no definitions.  
Concepts refer to expressions that define a class in the OWL-DL language, 
which also provides constructs for establishing relationships between 
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concepts. The meaning of the concepts is specified using logical semantics, 
which distinguishes between concept description and concept definition. 
Concept description refers to a class with necessary conditions only; concept 
definition refers to a class with both necessary and sufficient conditions. The 
automated transformation was possible because we took into account the 
decisions and the rationale that led to the OAG components and document 
design.  This transformation is explained in more detail in a later section. 

 

 

 

Figure 1. Ontology Creation: Design Time View of the Semantic Integration Method 
 
In Step 2, we calculate a concept subsumption and check satisfiability of 

the new OAG ontology.  Here, we utilize an automated reasoner to compute 
a new subsumption hierarchy for the OAG generalized ontology and 
determine whether the new ontology is satisfiable.  For example, the 
resulting ontology would be unsatisfiable if a mandatory element in a type 
declaration were declared optional within a sub-type declaration. 

In Step 3, the application integrators individually create regular 
ontologies based on the satisfiable generalized ontology created in Step 2.  
The integrators would use the generalized ontology and specify additional 
constraints or provide definitions for concepts in a particular integration 
context.  For example, the original STAR and AIAG Schemas include free-
text descriptions of the additional document constraints that need to be 
‘layered on top’ of the OAG generalized ontology.  For each such schema, 
these constraints are used to specify concept definitions based on the original 
concept descriptions.  This step produces regular (or normalized) STAR and 
AIAG ontologies. 

 In Step 4, we calculate new concept hierarchies and check satisfiability 
for the newly created regular ontologies from Step 3.  Similar to Step 2, we 
employ a reasoner to compute whether each individual ontology (i.e., regular 
terminology) is satisfiable.  All unsatisfiable conditions are resolved before 
proceeding.   
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 A DL reasoner can find a contradictory concept in the following way.  
For example, suppose we map the model group XML Schema concepts (e.g., 
choice, all, sequence) into OWL property hierarchies. Suppose further that a 
logical constraint is specified for a component A to state an ‘exclusive or’ 
option between two composite elements B and C. Assume that an integrator 
defines a new component concept A* that refines A by combining the two 
exclusive concepts B and C in a new element D which is now a mandatory 
component in A*.  The reasoner will find that the new concept A* is 
unsatisfiable because the components of the new concepts were originally 
stated to be exclusive.  That is, no individual of the specified new concept 
exists such that it satisfies all the necessary class conditions. 

2.1.2 Design Time:  Testing Integration Capabilities 

Once we determine satisfiability of two independently defined regular 
ontologies, we must determine whether the two interface models based on 
those ontologies can facilitate interoperable data exchange.   

 The first step is to create a merged ontology from the two regular ones. 
As both ontologies use the same generalized ontology, a new subsumption 
hierarchy will be calculated and new relationships may emerge among 
concepts. We can use a DL reasoner to check satisfiability of each concept in 
the merged ontology.  The reasoner can calculate relationships such as 
subClassOf or equivalent.  When  subClassOf or equivalent relationships do 
not hold for two concepts, an individual may still be classified to belong to 
either one or both of the concepts based on the particular individual 
assertion. 

 The result of this satisfiability checking can be that the interface 
models are compatible, incompatible, unidirectional, or unknown.  If 
compatible, then bidirectional interoperable data exchange can occur.  If 
unidirectional, then the exchange can only take in one direction. If the result 
is incompatible or unknown, a designer can provide new axioms such as 
conditional equivalence among concepts. New axioms might change 
subsumption hierarchy, produce new relationships, and may increase 
compatibility between two ontologies. 

2.1.3 Run Time:  Data Translation Steps 

Figure 2 shows that, during run time, the methodology enables semantic 
translation of instances of business documents (conforming to the developed 
ontologies) using the previously developed ontologies and automated 
reasoning tools.  Detailed steps are provided below.  
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 In Step 1, we apply the Xml2Owl transformation from source (STAR) 

XML data to OWL data.  We transform XML Schema instances into OWL-
DL individuals that conform to the OWL model-based assumptions used in 
ontological reasoning. The outcome is STAR OWL data that corresponds to 
the initial XML data and transformed with respect to STAR ontology. The 
transformation rules depend only on XML Schema to OWL mapping.  This 
means that the transformation includes annotation of XML data with 
corresponding ontology (e.g., STAR ontology)). 

In Step 2, we validate source data be performing consistency checking 
under both Open World Assumption (OWA) and Closed World Assumption 
(CWA).  The outcome of this step, if successful, is an indication from the 
reasoner that the STAR OWL data are consistent with respect to the STAR 
ontology. An individual is valid only if it is consistent (belongs to specific 
concept) under both OWA reasoning and CWA reasoning.  Validation is 
necessary to check the transformation and to check other semantic 
constraints.  Examples of such constraints include additional semantic 
business rules and free-text descriptions provided with a schema. Because a 
DL reasoner makes the open world assumption, if a mandatory property is 
not present, the reasoner cannot conclude that it is false (since it is wrong to 
assume it will never be present). Consequently, the reasoner can conclude 
only contradictory but not insufficient information. To assert that an instance 
has all mandatory properties, we must validate the instance with CWA. 

 In Step 3, we create a satisfiable merged ontology.  To translate from 
STAR to AIAG OWL data, we must create a merged ontology from the two 
individuals and calculate a new, concept-subsumption hierarchy. Because 
new independently defined ontologies are based on the same generalized 
OAG terminology, a reasoner may combine axioms when calculating a new 
hierarchy. In the merged ontology, one concept might be dependent on 
concepts in the other ontology namespace. The merged semantics can lead to  
inferences over the source data that may yield unexpected results.  Also, it is 
possible that the merged ontology is created at design time. In that case, the 
merged ontology will be referenced and can be reduced to only the set of 
concepts that is needed during the data transformation step. This step also 
includes satisfiability checking of merged concepts from both the source and 
the target ontology. The tool has to check satisfiability for every concept of 
the merged ontology. 

 In Step 4, we check (STAR) data consistency with the new merged 
ontology.  The successful outcome of this step is an indication from the 
reasoner that all STAR OWL source data are consistent with respect to the 
merged ontology. 
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 In Step 5, we compute target data. This is a classification of the source 
OWL data, which is in the STAR ontology,  in the target ontology, which  is 
AIAG. The result is an assignment of the STAR OWL data to the specific 
AIAG class(es). At this point, specific STAR XML data may be successfully 
translated into target AIAG XML data.  This, however, doesn’t mean that all 
STAR data may be successfully translated to AIAG. 

 In Step 6, we validate target (AIAG OWL) data. The outcome of this 
step, if successful, is an indication from the reasoner that the AIAG OWL 
data are consistent with respect to the AIAG ontology.  As discussed above, 
this requires OWA consistency and validation that the same individual is a 
valid instance of the target concept in the CWA reasoning.  The individual 
consistency checking in OWA is already done with respect to the merged 
ontology. The OWL individuals classified to the AIAG concept hierarchy 
have to be checked for sufficiency with respect to the target (AIAG) 
concepts. If an individual is inconsistent in CWA, then translation is not 
possible.  If successful, however, we can be sure that specific XML source 
data can be translated and that the integration will succeed. 

 In Step 7, we apply Owl2Xml serialization of AIAG OWL data into 
AIAG XML data.  The outcome of this step is an AIAG XML instance that 
preserves semantics defined in the original STAR OWL data.  For 
serialization into XML format we use concept and property hierarchy. If we 
use default XSD serialization from our OWL ontology, then the serialization 
is also provided. If we have a customized mapping to specific XMLSchema 
syntax (e.g., a sequence of elements defined in separate file), then that 
serialization is dependent on the mapping rules. The algorithm for 
serialization takes into account information about the source XML Schema. 

 

 

 

 
 
 

 
Figure 2. Data Translation: Run Time View of the Semantic Integration Method 
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2.2 XML Schema Transformation to OWL 

The SEAIS layer uses the OWL language and is architected “on top of” 
the current EAI standards layer, which is based on XML Schema 
representation formalism.  By virtue of our automated translation tools, we 
can take an existing XML Schema-based business document specification, 
transform it into an OWL-based document, and apply Semantic Web 
facilities and reasoning tools.  Our goal is to enable industrial transitions 
from the current syntax-based integration world into a model-based, 
Semantic Web-based integration world. 

 To map from XML Schema to OWL, we must know the architecture of 
the EAI standard.  OAG defines three logical levels. The first level defines 
core component types defined as extensions of predefined simple types. The 
second level introduces compound components represented as elements and 
attributes that can be thought of as one atomic concept. The top level 
contains business object documents (BODs), which define different 
document types. 

 In constructing the mapping, we must to take into account the OAG 
design rules for standard representation of component semantics. For 
example, every an OAG component is represented using a type definition. 
The following transformation rules have been defined on the basis of OAG 
design rules: 

 
1. Each XML Schema namespace is mapped to a namespace, which is 

composed of schema namespace and a # sign, and included in an 
opening rdf:RDF tag. 

2. Each XML Schema definition is mapped to owl:Ontology definition. 
3. Each included namespace is defined as owl:imports, which provides 

an include-style mechanism for importing an entire set of assertions 
provided by that ontology into the current ontology. 

4. The XML Schema type definitions (either simple or complex) are 
mapped to OWL classes. Each XML Schema component name is used 
as the corresponding class name. The OWL class that represents a 
simpleType has a functional datatype property that represents the 
value. 

5. The extension and restriction definitions are mapped to OWL 
subClassOf relationships. 

6. Global element declarations are mapped to OWL classes. (A global 
name element that has a corresponding type with the same name is 
skipped.) 

7. Local element declarations are mapped into object properties. 
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8. The XML Schema attributes are mapped to OWL functional 
properties. The type of property depends on the definition of an 
attribute (e.g., user-defined or predefined). 

9. XML Schema model groups: all, choice, and sequence are mapped to 
hierarchies of properties. Some of constraints are mapped to class 
description constraints. 

10. All other information about elements (e.g, annotation, document) are 
mapped to annotation properties. 

  
Details of the transformation rules will be described in a future 

publication.  It is important, however, to note that this transformation 
provides a basis for introducing additional application domain semantics.   

3. RESULTS 

To date, we have investigated issues in determining individual and 
concept equivalences [6].  To determine if two business documents are 
semantically equal, we have developed a testing tool that creates a temporary 
concept definition for every individual. That definition contains the values 
constrained to the values specified in the individual properties.  In addition, 
cardinality constraints on the properties of the temporary concept definition 
are based on the property occurrence in the particular individual. All the 
temporary concepts are considered by the reasoner to determine equivalence 
among the corresponding individuals.  Then, for every pair of equivalent 
concepts, the tool asserts a sameAs mapping between the two individuals. 
This means that the tool creates an assertion that explicitly defines equality 
between the two individuals. That new assertion helps the reasoner to 
calculate any new equivalence. The process is iterative and ends when no 
new concept equivalence is identified. 

 Also, we investigated whether two ontologies can facilitate 
interoperable data exchange and we used reasoner capabilities to perform 
satisfiability check between them.  We determined that a necessary condition 
for interoperable data exchange is that there are no contradictory concepts in 
the merged ontology.  It is, unfortunately, not a sufficient condition because 
some individuals may violate constraints defined for a particular concept.  
This problem deals with establishing whether an axiom is a part of concept 
definition, which includes necessary and sufficient conditions or only a part 
of concept description, which includes necessary conditions only. This 
distinction is critical because a concept definition is the mechanism used to 
classify concepts.  Based on this result, we plan to investigate ontology 
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design patterns, which may avoid the “concept equivalence-individual 
inconsistency” type of translation problem.  

 We successfully transformed a version of OAG components from the 
OAG XML Schema standard representation into an OWL representation.  
Figure 3 shows a graphical rendering of a part of the transformed OAG 
hierarchy using Protégé OWLViz plug-in. 

 

Figure 3: A Graphical Rendering of an OWL Representation of OAG Components 

4. RELATED WORK 

A previous effort investigated use of Semantic Web technologies (e.g., 
DAML+OIL) in support of semantic constraint definitions and management 
for RosettaNet [10].  That effort suggested an approach for mapping from 
XML Schema to DAML+OIL. It used RosettaNet XML Schema design 
decisions, which are different from OAG and, consequently, the mapping 
rules are slightly different.  That approach is similar to ours, but our focus is 
on evaluation and validation of integration results in EAI standards domain 
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 The on-going work on semantic annotation presents an important, 
complementary effort to ours [11].  This work attempts to expose the actual 
semantics of applications by making them explicit in the application 
interface. This work relies on the notion of a reference ontology, which, in 
our work, is provided by the common generalized ontology.  In Step 3 of the 
Ontology Creation, the application integrators, which creates regular 
ontologies based on the satisfiable generalized one, would use semantic 
annotation tools to create effective normalized and/or regular ontologies. 

5. CONCLUSIONS 

We described a novel Enterprise Application Integration (EAI) 
architecture based on Semantic Enterprise Application Integration (SEAI) 
standards.  We showed how such an architecture can be supported by 
automated reasoning tools and a transformation approach from the current 
XML Schema-based EAI standards to the new OWL-based SEAI standards.  
Based on  our initial experimental assessment and showed how an existing 
industrial EAI standard, the OAGIS specification, may be transformed into 
an OWL-based representation. Our future work will focus on experimental 
assessment of the SEAI standards approach in collaboration with industrial 
consortia and standards organizations Our long-term vision is a reusable, 
coherent, and model-driven EAI architecture enabled by a collection of 
fundamental enablers: SEAI standards, automated validation approaches, 
application interface model definition and testing tools, and interoperability 
mediators. 

6. DISCLAIMER 

Certain commercial software products are identified in this paper. These 
products were used only for demonstration purposes. This use does not 
imply approval or endorsement by NIST, nor does it imply these products 
are necessarily the best available for the purpose. 
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