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Abstract 

Engineering design is essentially a collaborative decision-making process that requires rigorous evaluation, 

comparison and selection of design alternatives and optimization from a global perspective. Increasing 

design knowledge and supporting designers to make intelligent and correct decisions can result in higher 

quality designs. In this paper we present a hybrid decision support model and framework, focused on 

facilitating the integration of objective and subjective aspects of design, which can be extensively applied 

for engineering systems. The proposed system will facilitate the seamless/smooth integration of the 

stakeholder involved in collaborative product development and improve the likelihood of optimal product 

performance. The work focuses on the provision of methodologies/algorithms and a framework for 

knowledge-based intelligent design decision-making for improved product development and realization of 

business strategies. The reported hybrid decision model, which integrates the compromise Decision Support 

Problem (cDSP) and the fuzzy synthetic model (FSD), can quantitatively incorporate qualitative design 

knowledge and preferences for multiple, conflicting attributes stored in a knowledge repository so that a 

better understanding of the consequences of design decisions can be achieved from an overall perspective. 

The developed model and framework are generic and flexible enough to be used in a variety of design 

decision problems. The framework is illustrated with an application in concept evaluation and selection in 

product family design for mass customization. 

 
     Keywords: design decision support, hybrid, decision model, collaborative decision-making mechanism, 

autonomous decision agent, and multi-agent framework 
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1. Introduction 

Engineering design is essentially a collaborative decision-making process that requires rigorous evaluation, 

comparison and selection of design alternatives as well as eventual optimization from a systems perspective. 

For example, a product development team is generally composed of representatives from marketing, 

business development, engineering, and production. Those team members utilize various decision-making 

techniques and design criteria to develop and evaluate various alternative designs. Increasing design 

knowledge and supporting designers to make correct, intelligent decisions can increase design efficiency. 

Thus, a design strategy must be devised to specifically address all aspects of design including process 

modeling, knowledge modeling, decision support, and the inherent complexity arising from representing 

physical design problems using idealized computer-based models. Such a strategy can, then, lead to the 

identification and development of knowledge decision support techniques that play a critical role in enabling 

designers to make intelligent decisions towards improving the overall quality of the products designed.  

 

       Contemporary design processes have become increasingly information-intensive and collaborative. 

Knowledge-based support is becoming more critical in the design process and has been recognized as a key 

solution for maintaining competitive advantages in future product development. A knowledge supported 

design system can help companies capture and archive their design knowledge and more effectively manage 

their design processes. It can also support communication and teamwork by sharing the most up-to-date 

design information. Designers, especially novices, can benefit from retrieval of knowledge about previous 

designs and applying it to new designs, or by gaining insight into the design of earlier, related products. By 

making use of design knowledge, companies are expected to improve the design process to facilitate the 

design of more innovative products and reduce product development cycle time. A design decision support 

system can aid design teams make better decisions and serve as a kernel of such a knowledge-supported 

design system. 

  

       In this paper we aim to develop a knowledge supported decision support methodology to serve as a basis 

for the smooth integration of stakeholders involved in collaborative product development and improving 

product performance. The goal is to develop a sound, practical trade-off based design decision model that 

can quantitatively incorporate qualitative knowledge and preferences for multiple, conflicting attributes 

stored in a knowledge repository. The research focus in this paper is to establish a hybrid decision model 

and framework which may integrate one or more techniques such as the cDSP, fuzzy systems, neural 

networks, intelligent agents, data mining and knowledge discovery (e.g. fuzzy clustering algorithm), etc. to 

solve both concurrent and sequential design decisions. 
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The work in this paper involves the development of a complex decision-making model and framework for a 

design process from the perspectives of knowledge management and decision support. Technologies, such as 

design process and knowledge modeling, decision theory, optimization, distributed agents and web-based 

collaboration support, are exploited to explore structured support for both single and distributed design 

teams. The hybrid decision model presented in this paper provides an effective interface for designers and a 

guideline for decision-making in knowledge intensive and distributed collaborative design processes. 

Specifically, several relevant technologies for the development of the decision support engine (as an 

autonomous agent) and integration with a web-based product design and realization system and framework 

will be addressed and developed: 

 

        The organization of this paper is as follows: Section 2 reviews the previous research related to design 

decision support and current status. Section 3 discusses the design decision support process and decision-

based design. Knowledge intensive decision support for design process is highlighted. Section 4 proposes a 

hybrid decision model. Section 5 proposes a multi-agent collaborative decision support framework. Section 

6 provides an application of the proposed hybrid decision model in the concept evaluation and selection 

stage. Section 7 provides two case studies. Section 8 summarizes the paper and points out opportunities for 

future work.   

2. Current Research Status  

Design Decision Support Problems necessitate a search for superior or satisficing (Simon 1996, Simon 

1976) design solutions, especially in the early stages of design, when all of the information needed to model 

a system comprehensively may not be available. Current research in design decision support (particularly 

pertaining to decision-based design) is focused on enabling technologies to assist product designers to make 

decisions in the design process (Rosen et al. 2000, Mistree et al. 1995, Fernández et al. 2002a,b), where 

primary emphasis is on support for information management related to decision-making. Generally, the 

literature on design evaluation and selection decision support can be classified into six categories (Jiao and 

Tseng 1998): 1) multi-criteria utility analysis (Seepersad et al. 2002, Fernández et al. 2001), 2) fuzzy set 

analysis, 3) probability analysis, 4) the hybrid approach, 5) design analytic methodology, and 6) the 

information content approach (Suh 1990, 1998). The following review will focus on the first five 

approaches, due mostly to their current popularity.  
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          Multi-criteria utility analysis, originally developed by von Neumann and Morgenstern (1947), is an 

analytical method for evaluating a set of alternatives, given a set of multiple criteria. It has been widely 

applied in the areas of engineering and business for decision-making (Hwang and Yoon, 1981). Thurston 

(1991) has applied this technique to the material selection problem, where alternatives are evaluated based 

on utility functions that reflect the designer’s preferences for multiple criteria. Similar work by Fernández 

and co-authors (2001) addressed the difficulties associated with resource selection for rapid prototyping by 

synthesizing the selection Decision Support Problem with utility theory.  Mistree et al. (1993, 1995) 

modeled design evaluation as a compromise Decision Support Problem (cDSP) and employed goal-

programming techniques to make superior compromise decisions. While mathematical programming and 

utility analysis enhance algorithm-rigorous optimization modeling, such methods require the expected 

performance with respect to each criterion to be represented in a quantitative form. They are not appropriate 

for use in the early design stages, where some qualitative design criteria, i.e., intangible criteria, are involved 

and difficult to quantify (Thurston and Carnahan, 1992, Fernández et al. 2001).  

 

            Fuzzy analysis, based on fuzzy set theory (Zadeh, 1965), is capable of dealing with qualitative or 

imprecise inputs from designers. It does so by describing the performance of each criterion with linguistic 

terms, such as “good,” “poor,” “medium,” etc. It has proven to be quite useful in decision-making problems 

with multiple goals or criteria (Zimmermann, 1987; 1996). Wood and Antonsson (1989) have demonstrated 

its viability in performing computations with imprecise design parameters in mechanical design. Wood et al. 

(1990) compared fuzzy sets with probability methods and concluded that the fuzzy analysis approach is most 

appropriate when imprecise design descriptions abound, while a probability analysis approach is most 

appropriate for dealing with stochastic uncertainty. Thurston and Carnahan (1992) revealed that the fuzzy 

analysis approach is useful and appropriate at very early stages of the preliminary design process. Knosala 

and Pedrycz (1992) utilized the Analytic Hierarchy Process (AHP) method (Saaty 1991) to construct 

membership functions for the performance and weight of each criterion, and then applied the fuzzy weighted 

mean of the overall evaluation to ranking alternatives. Carnahan et al. (1994) represented evaluation results 

and weights regarding each criterion with linguistic terms and ranked alternatives based on the fuzzy 

weighted mean of distance from a fuzzy goal. While the fuzzy analysis approach excels in capturing 

semantic uncertainty with linguistic terms, it requires discreet deliberation in dealing with crisp information. 

A domain-specific method is needed to “fuzzify” each tangible criterion whose evaluation is naturally 

estimated as an ordinary real variable (Carnahan et al., 1994). Another challenge is the incomparability 

between various criteria (Wang, 1997; Siskos et al., 1984), which necessitates mechanisms to be capable of 

converting various types of performance evaluation with respect to different criteria to a common metric so 

as to allow for the specification of suitable membership functions for these. 



5 

 

             Design evaluation usually involves both tangible and intangible criteria, along with quantitative and 

qualitative performance measures. This necessitates a hybrid approach for combining the quantitative, 

normative problem structuring capabilities of operations research techniques with the qualitative, descriptive 

problem-solving approaches used in artificial intelligence research. For example, Maimon and Fisher (1985) 

presented a robot selection model using integer programming and a rule-based expert system. Considerable 

research efforts have been devoted to fuzzy goal programming for modeling mathematically the imprecise 

relationships implicit in fuzzy goals and soft constraints. However, these efforts mostly model a particular 

aspect of uncertainties in design evaluation, such as inexact relationships, imprecise information, and 

uncertain information (Knosala and Pedrycz 1992). It is difficult for a fuzzy goal-programming model to 

consider all sources of uncertainty coherently at the preliminary stages of design (Carnahan, Thurston and 

Liu 1994). In addition, computational complexity is a key issue, especially if a large number of design 

alternatives and criteria are involved (Wang 1997; Boender et al 1989).   

 

           To reflect customer preferences in multi-criteria design evaluation, the relative importance or 

weighting for each criterion has been considered by numerous evaluation procedures (Jiao and Tseng 1998). 

Frazell (1985) assigned weights to criteria on a 0-100 scale. Sullivan (1986) presented a similar method 

called the linear additive model, in which ranking is included. Huang and Ghandforoush (1984) presented 

another procedure for quantifying subjective criteria. They computed intangible criteria measures as the 

multiplication of the intangible criterion weights by the subjective customer rating. Dixon et al. (1986) 

measured the performance by degree of satisfaction, ranging from excellent to unacceptable, and combined 

this measure with priority categories of high, moderate, or low to evaluate the design. Nielsen et al. (1986) 

used factor-criteria to establish the level of importance of attributes. A priority level (absolutely necessary, 

important, or desirable) is indicated for each factor-criterion and is used to guide decision-making. The main 

drawback of these evaluation methods is that they ignore inconsistency on the part of the decision maker. 

The Analytic Hierarchy Process (AHP) was developed to deal with the decision-maker’s inconsistency and 

to more accurately mimic the human decision-making process (Saaty, 1991). In AHP weights are determined 

by means of pair-wise comparisons between hierarchical decision levels. It has been proven to be a more 

rigorous procedure for determining customer preferences and has been approached from the fuzzy point of 

view by Boender et al. (1989). Carnahan et al. (1994) proposed to “fuzzify” the weights subsequent to their 

having been obtained via AHP. 

 

           There are also many other product feasibility and quality assessment tools that are useful for planning 

the design of products, such as quality function deployment (QFD) (Clausing 1994), concurrent function 
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deployment (Prasad 1996), the conceptual selection matrix (Pugh 1991), Taguchi’s robust design method 

(Taguchi 1986), etc. Quality function deployment (QFD) provides a set of matrix-based techniques to 

quantify the organizational characteristics and identify qualities that would meet customer expectations and 

needs. While QFD addresses only qualitative aspects, CFD deals with total life-cycle concerns from a 

concurrent engineering perspective. The concept selection matrix initially proposed by Pugh (1991) is 

another matrix-based approach employed to quantify and measure product quality. It is based on a list of 

product and customer requirements. The purpose of Taguchi’s robust design method is to reduce or control 

variations in a product or process (Taguchi, 1986). Depending upon the complexity and stage of a design, 

there could be a large number of iterations required. While these methodologies provide high-level 

guidelines for design evaluation, detailed supporting techniques are essential. Prasad (1996) also noted that 

4Ms (models, methods, metrics and measures) are the core in integrated product development.  

 

            With the emergence of collaborative design, researchers are addressing enabling technologies or 

infrastructure to assist product designers in the computer or network-centric design environment (Sriram 

2002, Rosen et al. 2000, Panchal et al. 2002, Xiao et al. 2001, Gerhard et al.2000). Some techniques are 

intended to help designers collaborate or coordinate by sharing product information and manufacturing 

services through formal as well as informal interactions, while others are geared towards conflict 

management. Most decision support programs can only calculate satisfaction levels. There is a need for 

adding unique analysis and reporting features, including: the probability that a particular alternative is the 

best choice; assessment of the level of consensus for each alternative; guidance on what should be done 

next; and documentation of the entire decision making process. In early stages design decisions are ill 

structured and often supported with scarce information. Multiple potential solutions and limited 

predictability all contribute to design complexity (Lambright and Ume, 1996). Moreover, significant 

functional and technical barriers often prevent the free flow of the necessary knowledge and information 

(Forgionne, 1994). Mathematical programming, utility analysis and algorithm-rigorous optimization 

modeling approaches (e.g., compromise Decision Support Problem (cDSP) & goal programming techniques) 

are data and information based, and thus cannot handle knowledge explicitly. They are more appropriate for 

quantitative (tangible) criteria but not for qualitative (intangible) criteria (difficult to quantify). A 

knowledge-based decision support model, however, as proposed here, overcomes many of the shortcomings 

discussed earlier.  
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3. Design Decision Support Process: Decision-based Design 

3.1 Decision Support Process 

Generally speaking, decision-making involves realizing a goal by analyzing subjective as well as objective 

conditions, generating alternatives, and choosing the most appropriate one among them. A generic decision 

support process can be described as having the following interactive aspects: intelligence, design, choice and 

implementation, as shown in Figure 1. It involves several stages ranging from problem identification and 

classification, simplification of assumptions, data collection, model formulation, solution alternative 

generation, evaluation, selection, model validation, verification, and testing of the proposed solution to final 

implementation of the plan devised. Current research is focused predominantly on how knowledge support 

can aid the decision-maker during the design process. Figure 2 illustrates a scenario of implementing 

knowledge-based decision support (DDS) from the perspective of decision knowledge management (DKM), 

in which knowledge management technologies include knowledge generation and acquisition, knowledge 

codification, and knowledge processing and utilization (reasoning), etc.   

Intelligence
• Data collection
• Problem identification
• Problem classification

Design

• Formulate a model
• Develop alternatives
• Predict and measure  

outcomes

Choice

• Sensitivity analysis
• Selection of best/good 

alternatives
• Plan for implementation

Implementation

Reality
Problems

Simplification
Assumptions

Verification, testing of the proposed 
solutions

Validation of model

 

Figure 1: Decision support process (from Simon 1976) 
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Implementation Scenario

DDS Process DKM Technologies

Knowledge 
Generation

Knowledge 
Codification

Knowledge 
Processing

- Creation
- Synthesis
- Acquisition

- Mapping
- Catalog
- Organisation

- Filtering
- Mining
- Reasoning

Intelligence

Design

Selection

• Data collection
• Problem identification
• Problem classification

• Formulate a model
• Develop alternatives
• Predict and measure  

outcomes

• Sensitivity analysis
• Selection of best 

alternatives
• Plan for 

implementation

 

Figure 2: Decision support implementation scenario 

3.2 Decision-Based Design Process 

 

The main role of a designer is to apply scientific and engineering knowledge to find (generate, evaluate and 

select) the solutions to design problems, and then optimize those solutions within the framework composed 

of requirements and constraints set by physical, environmental and human-related considerations, as shown 

in Figure 3. We view design as the process of converting information that characterizes the needs and 

requirements for a product into knowledge about a product. Based on the principle of decision-based design, 

the design equation can be expressed as follows (Mistree 1995): 

{K} = T {I} 

where, K is a knowledge output, I is an information input, and T is a transformation relationship, 

respectively. Thus, knowledge-intensive support becomes more critical in the design process and has been 

recognized as a key enabling technology for retaining competitive advantages in product development.  

            In this paper, we present the development of a knowledge intensive design decision support scheme, 

as depicted in Figure 4, in which design decision support is exploited from the perspective of synthesis of 

design process modeling (DPM), knowledge management (KM), and decision support (DS). Game theory, 

utility theory, probability theory, fuzzy set theory and extension set theory, among others, play a key role for 

implementing our framework (see Hazelrigg 1996 and Fernández et al. 2002b for discussion of some of 

these techniques). 
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Detailed DesignProduct Planning Conceptual Design

� Function Decomposition
� Determine Functional Behaviors & 

Working Principles
� Develop Preliminary  Configurations 

& Layouts
� Consolidate Configurations
� Evaluate Design Alternatives
� Select Design Alternatives

� Design Components 
(geometry, features, 
tolerances,material, 
processes, etc.)

� Analyze Components
� Evaluate Designs
� Select & Optimize Designs
� Produce (assembly 

drawings)

� Capture Voice of 
Customers 

� Generate and Select 
Design Objectives

� Generate and Select 
Product Design 
Specifications

TI K

Information
Input

Transformation
Relationship

Knowledge
Output

Needs

Drawings

Data

Design Process

Manufacture

Regression Analysis

Specifications

Parts

Equation

 

Figure 3: Design process task and decision-based design 

Translating

Knowledge Base

Decision 
Support

KIDSS

Knowledge 
Management 

To exploit Design 
Decision Support 
from DKM and KS 

perspectives

Design 
Process 
Modeling

Database

 

Figure 4: Knowledge intensive design support system (KIDDS) 
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4. Hybrid Decision Model: Technical Description 

In this section, we present a hybrid decision model which may integrate one or more techniques such as the 

cDSP, fuzzy systems, neural networks, intelligent agents, data mining and knowledge discovery (e.g. fuzzy 

clustering algorithm), extension theory and genetic algorithms, etc., to solve both compatible and 

incompatible decision problems. Details of these techniques are provided below.  

 

 Given 
       An alternative to be improved, domain dependent assumptions 
          The system parameters: 
          n: number of system variables, 
          q: inequality constraints, 
          p + q: number of system constraints, 
          m: number of system goals, 
          gi(X): system constraint functions , 
          fk(di ): function of deviation variables to be minimized at priority level k for the preemptive case. 
 Find 
       System Design Variables, Xi, i = 1,…, n 
       Deviation Variables, di

-, di
+, i = 1,…, m 

 Satisfy 
       System constraints (linear, nonlinear) 
          gi(X) = 0 ; i = 1, .., p 
          gi(X) ≥ 0 ; i = p+1, .., p+q 
       System goals (linear, nonlinear) 

           Ai(X) + di
--di

+ = Gi ; i = 1, …, m 
      Bounds 
           Xi 

min ≤ Xi ≤ Xi 
max ; i = 1, …, n 

           di
-, di

+ ≥ 0, di
- . di

+ = 0 ; i = 1, …, m 
 Minimize: deviation function 
            f = [ f1( di

-, di
+ ), ..., fk(di

-, di
+ ) ] 

 

Figure 5: Mathematical form of a cDSP (Mistree et al. 1993) 

4.1 The compromise Decision Support Problem (cDSP) 

Decision Support Problems (DSPs) are generally formulated using a combination of analysis-based 

information and engineering judgment in the form of viewpoints, post solution sensitivity analysis, bounds, 

and context for decisions to be made (Mistree et al. 1993, 1995). Two primary types of decisions are 

supported within the DSP technique: selection and compromise.  Complex decisions are supported though 

their combination. The "selection" type decision actually includes evaluation and indication of preference 

based on multiple attributes for one among several feasible alternatives, while the "compromise" type 

decision involves the improvement of a given alternative through modification. Another aspect of the DSP 

technique that is particularly relevant to distributed collaborative design is the ability to express decisions 

that are linked together such as coupled and hierarchical decisions through combinations of selection and 
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compromise DSPs (i.e., selection-selection, compromise- compromise, and selection-compromise) (Xiao et 

al. 2002, Fernández et al. 2002b). These derived decision constructs are ideally suited for modeling 

networks of concurrent and sequential decisions that share information and knowledge. In the compromise 

Decision Support Problem (cDSP) model, a hybrid of goal programming and mathematical programming is 

used to determine the values of design variables that satisfy a set of constraints and achieve as closely as 

possible a set of conflicting goals (Figure 5).  

4.2 Fuzzy Synthetic Decision Model (FSD) 

The problem of design evaluation and selection can be defined as follows: given a set of design alternatives, 

evaluate and select a design alternative that can satisfy customer needs, meet design requirements and fit the 

technical capabilities of a company. To combine expert judgment and process-useful knowledge for 

decision-making, a fuzzy synthetic decision model is developed in this section, based on fuzzy AHP, ranking 

algorithms and inference mechanisms for engineering design evaluation and selection. 

 

4.2.1 Fuzzy Analytic Hierarchy Process  

 

The AHP mechanism proposed by Saaty (1991) is widely recognized as a useful tool to support multi-

attribute decision-making. Its versatility in dealing with qualitative factors, multiple objectives, and decision 

makers has resulted in an impressive array of applications such as energy planning, conflict resolution, 

finance and banking (Kim et al. 2003). It is a compositional approach where a multi-attribute problem is first 

structured into a hierarchy of interrelated elements and then a pairwise comparison of elements in terms of 

their dominance is elicited. The weights are given by the eigenvector associated with the highest eigenvalue 

of the reciprocal ration matrix of pairwise comparisons. Using AHP, a designer is capable of choosing 

weights by comparing the importance of two criteria subjectively. The pairwise comparison ratio which is 

comparison of the importance of criterion i and criterion j, that is wi and wj, is defined as:  

aij= wi /wj                                                                                     (1) 

Considering a pairwise comparison matrix A = [aij] and an importance index (weight) vector W = [wi], their 

relationship can be described according to:  

AW =nW                                                                                     (2) 

When A is given, W and n are calculated as an eigenvector and an eigenvalue of A, respectively. In this 

study, each agent has its own matrix A, and exchanges the matrix between agents to cooperatively adapt to 

changes in the design process. In AHP, the pairwise comparison matrix should be examined for reliability of 

consistency. The consistency index (CI) is calculated as:  
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   CI = 
1

max

−
−

n

nλ
                                                                              (3) 

where, maxλ is the maximum value of 0. If the value of CI is higher than 0.1, the matrix should be reset by 

comparing importance again.  Therefore, the focus should be on the comparison matrix A. Currently, most 

researchers compose AHP comparison matrix A according to user’s individual and flexible preferences. In a 

flexible negotiation environment, however, most agents may change their offers according to counter offers. 

Hence, there is a need to build the comparison matrix A dynamically. In this work, we combine fuzzy 

membership functions with the AHP to pursue the preference of agents dynamically, and as a result, we 

propose the fuzzy comparison matrix A. 

4.2.2 Fuzzy Ranking for Evaluation 

Using the design solution techniques at the conceptual design stage a reasonable number of possible design 

alternatives can be obtained (Pahl and Beitz 1996, Suh 1990). Once this is achieved, one needs to examine 

the design alternatives against marketing and econo-technical as well as ergonomic criteria and aesthetic 

criteria. This is actually a multi-criteria decision-making problem. One of the well-known methods for multi-

criteria decision-making is the traditional procedure for calculating a weighted average rating ir  by use of 

value or cost-benefit analysis (Pahl and Beitz 1996): 

ir = ∑∑
==

n

j
j

n

j
ijj wrw

11

/)(                                                               (4)            

where, i=1,2,…,m, j=1,2,3,…, n , rij denotes the merit of alternative ai according to the criterion Cj; wj 

denotes the importance of criterion Cj in the evaluation of alternatives. The higher ir  is, the better is its 

aggregated performance.   

 

            However, the above traditional procedure is not applicable for situations where uncertainty exists 

and the available information is incomplete. For example, the terms “very important,” “good,” or “not good” 

themselves constitute a fuzzy set. Here, we give an example of the problem of fuzzy ranking in terms of 

evaluating a set of alternatives against a set of criteria. Let a set of m alternatives A={a1, a2,...,am} be a fuzzy 

set on a set of n criteria C={C1,C2,...,Cn } to be evaluated. Suppose that the fuzzy rating ijr~  to certain Cj of 

alternative ai is characterized by a membership function )~(~ ijR
r

ij
µ , where, Rrij ∈~ , and a set of weights 

}~,...,~,~{
~

21 nwwwW = is fuzzy linguistic variables characterized by )~(~ jW
w

j
µ , +∈ Rw j

~ . Consider the 

mapping function RRzg n
ii →2:)~( defined by: 
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∑∑
==

=
n

j
j

n

j
ijjii wrwzg

11

~/)~~()~(                                                        (5) 

where, ).~...~~,...~~(~
2121 iniini rrrwwwz

t=  Define the membership function )~(~ iZ
z

i
µ  by  

)~()~()~( ~
o

,...,1
~

o

,...,1
~ ikRnkjWnjiZ

rwz
ikji

µµµ ∧∧ ===                                           (6) 

where, o∧ is the calculation operator of taking minimum. Thus, through the mapping RRzg n
ii →2:)( , the 

fuzzy set iZ
~

induces a fuzzy rating set iR
~

 with the membership function 

Rrzr iiZrzgZiR iiiii
∈= = ),~(sup)~( ~~)~(~ µµ                                                 (7) 

The final fuzzy rating of design alternative ai can be characterized by this membership function. But it does 

not mean the alternative with the maximal )~(~ iR
rµ is the best. The following procedure can be employed to 

further characterize the two fuzzy sets as (Gui 1993):  

(1) a conditional fuzzy set is defined with the membership function: 



 ∈∀>

=
otherwise0

)(1,2,...,~~if1
)~,...~|( 1/

mk,rr
rri ki

mRIµ                                             (8) 

(2) a fuzzy set is constructed with membership function: 

)~()~,...~( ~
o

,...,11 iRmimR rrr
i

µµ ∧ ==                                                                      (9)                  

A combination of these two fuzzy sets induces a fuzzy set in which one can determine a best design 

alternative with the highest final rating, i.e.,  

)~...~()~,...~|(sup)( ,1

o

1/~,...~
1 mRmRIrrI rrrrii

m
µµµ ∧=                                                     (10) 

Comparing with Eq.(4), the fuzzy ranking for design alternatives is more flexible and presents uncertainty 

better. Based on this method, a designer can now effectively and consistently incorporate linguistic rating 

and weights such as “good,” “fair,” “important,” “rather important,” etc., in design alternatives evaluation.  

4.2.3 Evaluation Function and Index for Selection 

The design space for a complex system is very large. The designer is often required to consider not only 

product functionality, but also other criteria including compactness and other life-cycle issues, such as 

manufacturability, maintainability, reliability, and efficiency. Some of these criteria may contradict each 

other. Designers should analyze the trade-offs among various criteria and make the “best” selection from 

available alternatives. As such, it is important to have a powerful search strategy that will lead to a near 

optimum solution in a reasonable amount of time. The A* search algorithm constitutes such a method 

(Sriram 1997, Zhang et al. 2002).  
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In the proposed approach, the system first calculates the weighted performance rating aggregation of each 

retrieved alternative by analyzing the trade-off among various criteria. Then, it calculates the evaluation 

index of each design alternative by considering all the weighted performance ratings. After calculating the 

numerical weighted performance ratings of all design alternatives, the evaluation index is used as a heuristic 

evaluation function hf , by considering all the weighted performance ratings ir  (i=1,2, …, m)  of  its 

constituent members and the number k of its unsatisfied customer requirements, as follows: 

∑
=

+=
m

i
ih krf

1

)/1(                                                                     (8) 

where, ir ∈ [0,1] is the numerical weighted performance rating of the design alternative ai ; ),1(/1 +∞=ir is 

defined as the performance cost of design alternative ai. A higher-weighted performance rating of a design 

alternative corresponds to a lower performance cost. ∑
=

m

i
ir

1

)/1(  represents the accumulated performance cost 

of a design alternative along the search path thus far. k is a heuristic estimate of the minimal remaining 

performance cost of a design alternative along all the possible succeeding search paths. hf  is the estimate of 

the total performance costs of a design alternative. hf  is also called the evaluation index or the heuristic 

evaluation function. In Eq.(8), a higher ir , i.e., a better-aggregated performance of each retrieved design 

alternative ai, and a lower m or k, i.e., a higher compactness of a design alternative, will result in a lower 

evaluation index of a design alternative hf . Thus, at each step of the A* search process, the best design 

alternative, i.e., the one with the lowest value of the heuristic evaluation function is selected, by taking into 

account multiple factors, including design compactness and other life-cycle issues such as manufacturability, 

assemblability, maintainability, reliability, and efficiency. 

4.3 Integration and Cooperation of Decision Models  

All available algorithms for optimization and constraint satisfaction have weaknesses; more rigorous 

algorithms tend to be too slow, heuristics, too unreliable. Rather than attempting to design a new algorithm 

without weaknesses - a task that is difficult if not impossible - some researchers have been working on ways 

to organize algorithms so that they can suppress their respective weaknesses through cooperation, and 

together achieve what separately they might not (Talukdar et al. 1998, Zha 2003).  
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Figure 6: Hybrid decision support model 

 

           As stated above, the cDSP model is basically data and information centric and more appropriate for 

implementation in conjunction with tangible (quantitative) criteria rather than for intangible (qualitative) 

criteria. The FSD model is knowledge based and able to handle both intangible and tangible criteria (e.g., 

from fuzzy requirements to crisp design parameters). The synthesis of the cDSP and FSD models can 

generate a more powerful decision model. Figure 6 provides a schematic view of the hybrid decision model 

integrating the cDSP and FSD models. The scheme or mode of integration and coordination could be either 

“loose,” or “tight.” In the loose mode, two or more models are combined and they work together but 

complement each other. Depending on the nature of the decision problem, a rule-based adaptor (selector) is 

employed in the model. This adaptor serves as a regulatory switch to adapt the decision problems by shifting 

the paradigms from one decision method (e.g., cDSP) to another (e.g., FSD). In the tight mode, two or more 

models co-exist and are integrated into a single hybrid model, for example, fuzzy cDSP, fuzzy neural 

networks or the neuro-fuzzy system, etc. This kind of knowledge supported model can manage design 

decision knowledge and provide real-time or on-line support to designers in the decision-making process. 

Specifically, 1) the lack of a formal means of incorporating qualitative information in the cDSP is addressed; 

2) design solutions are suggested and explanations provided ; 3) use in the early design stages becomes 

feasible; and 4) designer are stimulated in generating new design ideas (with learning continuously taking 

place being captured).  
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Figure 7: Structure of the hybrid models 

           The decision of which models are to be used depends on many factors: degree of understanding of the 

design process, design process decomposition (stages), design complexity, quantitative (tangible) and 

qualitative (intangible) criteria, availability of expert knowledge about the design process under 

consideration, level of uncertainty, etc. Taking into account these factors, several structures of hybrid 

models are illustrated in Figure 7. Figure 7(a) is a gain scheduling like structure. The above fuzzy ranking 

algorithm for some design parameters or variables is adopted in this hybrid structure. Figure 7(b) is a 

parallel structure of the hybrid model. Figure 7(c) gives a serial modeling structure of the hybrid model. It is 

proposed that a set of separate models be used to formulate hybrid models and model process behavior at 

different design stages. Figure 7(d) shows a rule-based selector incorporated in the scheme, which switches 

on the most appropriate separate model for the current state of the process. Each of the separate models 

possesses its own input subspace and is tuned to be optimal for corresponding design specifications. To 

provide enough data for tuning multiple fuzzy models is a challenging problem when the quantity of special 

experiments must be restricted. A scenario of applications in conceptual design decision support will be 

provided in Section 6. A more detailed discussion regarding the integration and cooperation of decision 

models is required.  This discussion, however, is deferred to a separate paper. 

5. Multi-Agent Collaborative Design Decision Support Framework 

The overall knowledge-intensive multi-agent design decision support scheme, proposed, is shown in Figure 

8. This scheme consists of a design process modeling and management agent, a knowledge capture agent, a 
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knowledge repository, co-designers, a decision support agent, etc. The core of the scheme is the decision 

support agent and will be the focus of our discussion. The knowledge repository is used to store, share, and 

reuse the corporate design knowledge, as shown in Figure 9 (for discussion on the role of knowledge in next 

generation CAD systems, see Szykman 2001). The communication, negotiation and execution mechanisms 

between these agents can be modeled with contract nets. A prototype web-based design decision support 

system has been developed to verify the developed methodologies (algorithms) and framework.  

Knowledge 
Capture Agent

Knowledge Repository

Design Process 
Modeling and 

Management Agent

Designer

Decision Support 
Agent

Designer
Designer

Designer

Design Knowledge 
Management  Agent

 

Figure 8: The overall multi-agent knowledge intensive decision support framework 

 

           The decision support agent could be used as an autonomous agent to be finally integrated into a web-

based product design and realization framework to support collaborative decision-making in the product 

development process (design chain). The decision support agent should be able to make autonomous 

decisions concerning: 1) spawning an agent to search in a given direction, 2) killing an agent that is not very 

successful, 3) negotiation between agents (unless they need to consult the designer), 4) recognition of 

novelty of a solution (eventually consulting the knowledge repository or database of existing solutions) and 

turning designer’s attention towards it, 5) when to consult the designer, etc.  

 

             The comparative ranking of alternatives and decision-making discussed in Section 4.2 is a 

fundamental component of the design decision agent. As stated previously, several formal decision models 

exist (see Section 2). Utility theory (Keeney and Raiffa 1976) and AHP (Saaty 1991) are well known 

examples.  The decision support agent, illustrated in Figure 10, is a container specialized in providing 
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evaluation services. It contains criteria which pair design attributes (variable modules) with preference 

modules (a type of variable module used to define preference functions). 
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Figure 9: Knowledge repository for the design process 
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Figure 10: Decision support agent. 

 

           The decision agent provides an overall multiple attribute evaluation service while each criterion 

evaluates a single attribute. The relations of the criterion and decision agent are not user defined. The 
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criterion relations calculate the worth of the design attribute based upon the preference model, while 

decision agents automatically generate relations to aggregate single attribute evaluations for multiple 

attribute decision. Thus, there are different types of decision agents. In the prototype implementation the 

decision agent has been developed by integrating the cDSP technique with an expert/knowledge model into 

a hybrid decision support model for criterion/argument analysis and fusion. 

6. Application in Conceptual Platform-based Family Design Decision Support  

Mass customization has been identified as a competitive strategy by an increasing number of companies. 

Family-based product design has been recognized as an efficient and effective means to realize sufficient 

product variety to satisfy a range of customer demands in support for mass customization. Various 

approaches and strategies for designing families of products and mass customized goods are reported in the 

literature. A product platform concept exploration method (PPCEM) was proposed to design a family of 

products (Simpson et al. 1998, 2001). The five steps of PPCEM are: 1) create market segmentation grid; 2) 

classify factors and ranges; 3) build and validate metamodels; 4) aggregate product platform specifications; 

and 5) develop product platform and family, in which formulating and exercising appropriate compromise 

Decision Support Problem (cDSP) models are key procedures. This means that the cDSP models play a key 

role in the platform and family design process. Our goal in this research is to use the knowledge supported 

decision model (i.e., FSD model) for family design evaluation and selection. In general, we intend to 

demonstrate a typical application of the hybrid decision model for product platform and family design 

evaluation and selection. More specifically, the cDSP model is used to develop design alternatives or 

variants and determine similarity and commonality between modules and variants; while the FSD model is 

used to evaluate and select a design alternative that satisfies customer needs, meets design requirements and 

complies with the technical capabilities of the company (see Figure 7). In what follows, we provide more 

details on knowledge decision support for family design evaluation and selection. 

 

             To be in line with the general conceptual design stage (Figure 11), a family of product concepts 

(variants) can be explored and generated using the PPCEM and vary widely by the selection and assembly of 

modules or pre-defined building blocks at different levels of abstraction so as to satisfy diverse customer 

requirements. A wrong or even a poor selection of either a building block or module can rarely be 

compensated for at a later design stages and can result in costly redesign. Thus, concept evaluation and 

selection are crucial for product family design and mass customization. While a number of methods have 

been investigated (see Section 2), there is still much work to be done due to the difficulty inherent in the 

conceptual evaluation and selection process. In line with more traditional approaches (e.g., Pahl and Beitz 
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1996), we use a knowledge decision support approach for concept evaluation and selection, as shown in 

Figure 12.  
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Figure 11: Concept evaluation and selection in design 
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Figure 12: Knowledge decision support for concept evaluation and selection  

 

             Typically, the stage of family evaluation and selection characterizes a feasible set of product 

variants generated from a product platform as an input and the final customized product as an output, 

experiencing the elimination of unacceptable alternatives, the evaluation of candidates for customization, 

and the final decision under the various customers' requirements and design constraints. The designer is 

required to consider not only product functionality, but also some other criteria including compactness and 

life-cycle issues such as assemblability, manufacturability, maintainability, reliability, and efficiency. Of 
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course, some criteria may conflict with one another. Designers should analyze the inherent trade-offs among 

various criteria and make the “best” selection from among the design alternatives considered. Due to the 

fuzziness of voice of customers (VoCs) or customer requirements/preferences, it is even more difficult to 

model and assess the performance of a product platform/family and product variants when handling fuzzy 

knowledge. The kernel of the knowledge decision support scheme is the fuzzy ranking algorithm for design 

evaluation and selection discussed above. The knowledge resource utilized in the process includes extensive 

features, customers' requirements, desires, preferences and importance (weights), trade-offs (e.g., market vs 

investment), and utility functions, and heuristic knowledge, rules, etc.  

7. Case Studies  

To illustrate and validate the hybrid decision model, two examples are provided in this section: 1) a 

universal motor platform and family design selection, and 2) a power supply family design evaluation and 

selection.  

7.1 Universal Motor Platform and Product Family Design Decision 

Universal motors are the most common component in power tools. According to Myer and Lehnerd (1997), 

in the 1970s Black & Decker developed a family of universal motors for its power tools in response to a new 

safety regulation: double insulation. Prior to that, Black & Decker used different motors in each of their 122 

basic tools with hundreds of variations. The challenging issue was to redesign the universal motor to fit into 

each of these 122 basic tools with hundreds of variations. Through redesign and standardization of the 

product line, they were able to produce all of their power tools using a line of motors that varied only in the 

stack length and the amount of copper wrapped within each motor. As a result, all the motors could be 

produced on a single machine with stack lengths varying from 0.8in to 1.75in and power outputs ranging 

from 60 to 650W. Furthermore, new designs were developed using standardized components such as the 

redesigned motor, which allowed products to be introduced, exploited and retired with minimal expense 

related to product development. Figure 13 shows the universal motor platform and family design. Simpson et 

al. (2001) reported the use of the cDSP-based Product Platform Concept Exploration Method (PPCEM) to 

design a universal motor platform and a family of universal motors in a similar manner. The cDSP model 

used for this case is given in Appendix A. Figure 14 illustrates the cDSP model for the universal motor 

platform and shows the benchmark universal motor product family specifications and performance responses. 

For more details, please refer to Simpson et al. (2001). 
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Figure 13: Universal motor product platform and family design (Myer and Lehnerd 1997) 

L [cm] T [Nm] ���� µ M [kg]
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Figure 14:  Benchmark universal motor product family specifications and performance responses  

 

            As stated above, our goal in this case is to use the knowledge supported decision model (i.e., FSD 

model) to evaluate and select an appropriate motor family. Suppose that we need to select the best motor for 

a customer from 10 motor variants in the family obtained above. We first consider 12 performance features, 

i.e, Nc, Ns, Awf(mm2), Awa(mm2), I(Amp), r(cm), t(mm),  L(cm), T(Nm), P(W), η (%), and M(kg).  The 

final decision can be reached based on knowledge resources, including differentiating features and their 
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membership functions, fuzzy rules, fuzzy rankings, etc. The final design decision made by the decision 

support agent is Motor 10 in the family. Table 1 gives weights and partial performance ratings for each 

criterion (for No.1 motor) alongside evaluation results. Only the last 5 performance features (above) are 

considered as criteria for evaluation and selection (i.e., L(cm), T(Nm), P(W), η (%), and M(kg)). As such, 

the final design decision made by the decision support agent is Motor 8.  Table 2 shows weights and partial 

performance ratings for each criterion (for No.1 motor) and evaluation results. Figure 15 shows a 

comparison of the obtained results using the cDSP and FSD models. 
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(a) Comparison of the benchmark group and cDSP for mass-efficiency relations (based on Simpson et al. 2001) 
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(b) Evaluation with the FSD model for 5 and 12 criteria cases 

Figure 15: Comparison of the obtained motor family design results using the cDSP and FSD models  
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Table 1: Weights and partial performance ratings, evaluation results (12 criteria) 

Criterion 
No. 

Criterion 
Item 

Criterion Weight Partial Performance Rating  

 Linguistic 
Term 

Fuzzy Number Weight 
Value 

Linguistic 
Term 

Fuzzy Number Rating Crisp 
Value 

1 Nc High (0.7,0.8,0.8,0.9) W1=0.80 Very Low (0.0, 0.0,0.1,0.2) r11=0.500 
2 Ns High (0.7,0.8,0.8,0.9) W2=0.80 Very Low (0.0, 0.0,0.1,0.2) r12=0.800 
3 Awf(mm2) Fairly Low (0.2,0.3,0.4,0.5) W3=0.35 Very Low  (0.0, 0.0,0.1,0.2) r13=0.075 
4 Awa(mm2) Fairly Low (0.2,0.3,0.4,0.5) W4=0.35 Very Low (0.0, 0.0,0.1,0.2) r14=0.500 
5 I(Amp) Fairly Low (0.2,0.3,0.4,0.5) W5=0.35 Very Low (0.0, 0.0,0.1,0.2) r15=0.500 
6 r(cm) Medium (0.4,0.5,0.5,0.6) W6=0.50 Very High (0.8,0.9,1.0,1.0) r16=0.950 
7 t(mm) Fairly High (0.5,0.6,0.7,0.8) W7=0.65  High (0.7,0.8,0.8,0.9) r17=0.800 
8 T(Nm) High (0.7,0.8,0.8,0.9) W8=0.80 Very Low  (0.0, 0.0,0.1,0.2) r18=0.075 
9 P(W) High  (0.7,0.8,0.8,0.9) W9=0.00 Very Low (0.0, 0.0,0.1,0.2) r19=0.075 

10 M(kg) Very High  (0.8,0.9,1.0,1.0) W10=0.95 Very Low (0.0, 0.0,0.1,0.2) r110=0.075 
11 L(cm) High (0.7,0.8,0.8,0.9) W11=0.80 Very Low  (0.0, 0.0,0.1,0.2) r111=0.075 
12 η (%) Very High (0.8,0.9,1.0,1.0) W12=0.95 Very High  (0.8,0.9,1.0,1.0) r112=0.950 

Evaluation Results: 

No. Family (Variants) Evaluation Index  Rankings 
1 Motor 1 2.108 5 
2 Motor 2 2.920 10 
3 Motor 3 2.478 8 
4 Motor 4 2.594 9 
5 Motor 5 2.175 6 
6 Motor 6 2.319 7 
7 Motor 7 1.825 2 
8 Motor 8 1.928 3 
9 Motor 9 2.049 4 

10 Motor 10 1.655 1 
 

Table 2: Weights and partial performance ratings, evaluation results (5 criteria)  

Criterion 
No. 

Criterion 
Item 

Criterion Weight Partial Performance Rating  

 Linguistic 
Term 

Fuzzy Number Weight 
Value 

Linguistic 
Term 

Fuzzy Number Rating Crisp 
Value 

1 T(Nm) High (0.7,0.8,0.8,0.9) W1=0.80 Very Low  (0.0, 0.0,0.1,0.2) r11=0.075 
2 P(W) High  (0.7,0.8,0.8,0.9) W2=0.00 Very Low (0.0, 0.0,0.1,0.2) r12=0.075 
3 M(kg) Very High  (0.8,0.9,1.0,1.0) W3=0.95 Very Low (0.0, 0.0,0.1,0.2) r13=0.075 
4 L(cm) High (0.7,0.8,0.8,0.9) W4=0.80 Very Low  (0.0, 0.0,0.1,0.2) r14=0.075 
5 η (%) Very High (0.8,0.9,1.0,1.0) W5=0.95 Very High  (0.8,0.9,1.0,1.0) r15=0.950 

Evaluation Results: 

No. Family (Variants) Evaluation Index Rankings 
1 Motor 1 2.331 7 
2 Motor 2 2.932 9 
3 Motor 3 2.705 8 
4 Motor 4 2.933 10 
5 Motor 5 1.538 4 
6 Motor 6 1.849 6 
7 Motor 7 1.434 2 
8 Motor 8 1.367 1 
9 Motor 9 1.759 5 

10 Motor 10 1.403 3 
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7.2 Power Supply Family Design Selection 

Power supplies are necessary components of all electronic products. Because of diverse requirements, power 

supply products are often customized. The proposed hybrid decision model is used for decision making in 

power supply family design for mass customization. The cDSP model is used to generate power supply 

design alternatives or variants and determine similarity and commonality between modules and product 

variants, while the FSD model is used to evaluate and select a power supply design alternative. Using the 

cDSP model, three different clusters (families) are obtained. The modular design of power supply products 

is based on the work presented in (Tseng and Jiao 1998, Zha and Lu 2002, Zha et al. 2004).  Figure 16 

illustrates the process of clustering design variations and instances. 

FR

FRn

FR2

FR1

.

.

.

DP1 DPDP2 DPm...

(a) Ungrouped design Mapping

FR

GDP1 GDP2
GDPk

DP

(b) Family design mapping

GFRn

GFR2

GFR1
Design Clustering 

Product Line Structuring

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3 3.5 4

Cluster 1

Cluster 2
Cluster 3

Sample points

Cluster center

DPk1

DPk2

(c) Design instances clustering in the feature space

Fuzzy clustering
cDSP
… 

 

Figure 16: Clustering design variations and instances 

 

            From a customer’s point of view, a power supply product is defined based on the following required 

features (RFs): power, output voltage (OutV), output current (OutC), size, regulation, mean time between 

failure (MTBF), etc.  From an engineers' point of view, the power supply product is designed by determining 

these variables (parameters) (DPs): core of transformer (Core), coil of transformer (Coil), switch frequency 

(SwitchF), rectifier, heat sink type (TypeHS), heat sink size (SizeHS), control loop (Control), etc. Figure 17 

shows the relationships between RFs, DPs, configurations (hierarchy of building block) and clusters. Three 

product families I, II and III are generated based on three different clusters, which have 4, 5 and 3 base 

products (BPs) respectively. Each cluster has its own range/limitation with regard to particular product 
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features and/or design parameters. When the product is configured the design requirements and constraints 

are satisfied in terms of product functions or functional features. From an assembly or 

disassembly/maintenance point of view, it is advantageous for those parts with low exchange rates to be 

placed inside of the product.  The locations of some parts, however, are fixed in advance due to design 

constraints. 
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Figure 17: Configurations and clusters of power supply products 

 

             With respect to the knowledge decision support scheme for product evaluation (see Figure 12), a 

scenario of knowledge support for Family I selection is shown in Figure 18. The customers’ requirements for 

Family-I power supplies include AC/DC, 45W, 5V & ±15V, 150khrs, $20-50, with or without auto-start 

function, etc. The knowledge decision support system first eliminates unacceptable alternatives and 

determines four acceptable alternatives: NLP40-7610, NFS40-7610, NFS40-7910, and NFS 42-7610. The 

final design decision is reached based on the knowledge resources given in Figure 19, including 

differentiating features (MTBF, price, and special offer) and their utility/membership functions, fuzzy rules, 
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fuzzy rankings, etc. The final design decision made by the system is NFS42-7610 as it has maximum MTBF, 

medium price and special offer of auto-start function, and it is acceptable based on the rules.  Table 3 gives 

weights and partial performance ratings for each criterion (for NLP40-7610) and evaluation results. Figure 

20 gives a screen snapshot for power supply product evaluation and selection for customization.  
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Figure 18: Scenario of knowledge support for product evaluation and selection for customization 

 

Table 3: Weights and partial performance ratings  

Criterion 
No. 

Criterion 
Item 

Criterion Weight Partial Performance Rating  

 Linguistic 
Term 

Fuzzy Number Weight 
Value 

Linguistic 
Term 

Fuzzy Number Rating Crisp 
Value 

1 MTBF High (0.7,0.8,0.8,0.9) w1=0.80 Medium (0.4,0.5,0.5,0.6) r11=0.500 
2 Price Fairly High (0.5,0.6,0.7,0.8) w2=0.65 High  (0.7,0.8,0.8,0.9) r12=0.800 
3 Special Offer Medium (0.4,0.5,0.5,0.6) w3=0.50 Very Low  (0.0, 0.0,0.1,0.2) r13=0.075 

Evaluation Results: 
No. Family I Evaluation Index (h) Rankings 
1 NLP40-7610 2.128 3 
2 NFS40-7610 2.041 2 
3 NFS40-7910 2.222 4 
4 NFS42-7610 1.449 1 
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Fuzzy Rules: 

IF   MTBF is small and 
Price is high and  
without Special Offer

THEN  Non-rational (not acceptable)

…...

IF   MTBF is high and 
Price is medium and  
with Special Offer 

THEN  Rational (acceptable) 

MTBF Price Specials

NLP40-7610 150 36

NSF40-7610 170 32

NSF40-7910 170 40

NSF42-7610 230 20 Auto-Restart

Knowledge Source 1

Knowledge Source 3

Knowledge Source 2

Knowledge Source 4

MTBF

Utility

Price

Utility

Special

Utility

Knowledge Repository

0.0
0.2

0.4

0.6

0.8

1.0

150 200

MTBF

Small Medium Large

0.0 100 300

0.0
0.2

0.4

0.6

0.8

1.0

30 35

Price

Small Medium Large

0.0 25 50

No

No

No

 

Figure 19: Knowledge used in power supply product evaluation and selection for customization   

 

 

Figure 20: Screen snapshot for power supply product evaluation and selection for customization  
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8. Conclusions and Future Work 

In this paper we presented a hybrid decision model and a multi-agent framework for collaborative decision 

support in the design process. The hybrid decision model presents an effective means of integrating both 

subjective and objective elements of design, making it particularly suitable for supporting design decisions 

in knowledge intensive and distributed collaborative environments. The knowledge-based decision support 

model can manage design decision knowledge and provide real-time or on-line knowledge support to 

designers in the decision-making process. It can compensate for typical barriers to the decision-making 

process, including incomplete and evolving information, uncertain evaluations, inconsistency of team 

members’ inputs, etc. The decision assessment process can be used and refined for the product development 

process mapping, assessment /optimization constraint and gap identification, tracking the information 

development and flow, and measuring the effectiveness of current processes. Designers, especially novices, 

can benefit from retrieval of knowledge about previous design decisions by abstracting information and 

applying it to a new design or by gaining insight into how an earlier decision was made. By making use of 

the design knowledge, companies are expected to improve the design process for more innovative products 

and reducing product development cycle time. As a kernel of the knowledge supported design system, the 

design decision support system (agent) can help design teams make better decisions. The developed 

methodology is flexible enough to be used in a variety of decision problems. The applications in concept 

evaluation and selection in design for mass customization illustrate and validate the feasibility and potential 

of the developed decision support methodology and framework. Future work is desired to develop 

collaborative decision-making mechanisms based on the hybrid decision model, and to incorporate the 

decision agent into the web-based product design and realization framework.  

Disclaimer 

Commercial equipment and software, many of which are either registered or trademarked, are identified in 

order to adequately specify certain procedures. In no case does such identification imply recommendation or 

endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or 

equipment identified are necessarily the best available for the purpose. 

Nomenclature 

DDS: Design decision support 

QFD: Quality function deployment  

CFD: Concurrent function deployment 

DKM: Decision knowledge management 
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DPM: Design process modeling 

KM: Knowledge management (KM) 

DS: Decision support  

4Ms: Models, methods, metrics and measures 

K: Knowledge output 

I: Information input 

T: Transformation relationship 

FSD:  fuzzy synthetic model 

cDSP: Compromise Decision Support Problem 

AHP: Analytic Hierarchy Process  

FMCDM: fuzzy multi-criteria decision-making 

ai: Design alternative (DA)  

rij: The merit of alternative ai according to the criterion Cj 

)~(~ ijR
r

ij
µ : Membership function of rij 

ir  : Weighted average rating 

)~(~ iR
rµ : Fuzzy rating membership function 

hf : Heuristic evaluation function 

FR: Functional requirement  

GFR: General functional requirement 

DP: Design parameter 

GDP: General design parameter 

DC: Design constraints 

DS: Design solutions 

MTBF: Mean time between failure  

Appendix A: cDSP for designing a group of individual universal motors  

Given 
        Universal motor equations (Simpson et al. 2001) 
Find 
       The system variables: 

      Nc,j: Number of wire turns on the armature;                         rj: Radius of the motor 
             Ns,j: Number of wire turns on each pole on the field            tj:  Thickness of the stator  
             Awa,j: Cross-sectional area of the wire on the armature        Ij: Current drawn by the motor 
             Awf,j: Cross-sectional area of the wire on the field               Li,j: Stack length 
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Satisfy 
      The system constraints (linear, nonlinear) 
              Magnetizing intensity:    Hj ≤5000 Amp.turns/m 
              Feasible geometry:          tj < rj 

              Torque:                           Tj={0.05, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5} Nm 
              Power:                             Pj =300 Watts 
              Efficiency:                      jη ≥ 0.15 

              Mass:                              Mj ≤ 2.0 kg                  
       The system goals (linear, nonlinear): 

               Efficiency:                     jη /0.70 + d1,j
—d1,j

+ =1.0 

               Mass:                             Mj/0.50+ d2,j
—d2,j

+ =1.0 
       The bounds on the system variables: 
               100≤ Nc,j≤1500 turns,  0.5≤ tj≤10.0 mm 
               1≤ Ns,j≤500 turns, 0.1≤ Ij≤6.0 Amp 
               0.01≤ Awa,j≤1.0 mm2, 1.0≤ rj≤10.0 cm 
               0.01≤ Awf,j≤1.0 mm2, 0.0566≤ Lj≤5.18 cm 
 
        The bounds on the derivation variables:            
               di,j

-, di,j
+ ≥ 0, di,j

- . di,j
+ = 0  i = 1,2 

  
Minimize: deviation function 
               Zi = [0.5(d1,j

-)+0.5(d2,j
+ )]                          All, j=1,..., 10 
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