
Towards Computer-Aided Conceptual Design of Mechatronic Devices with
Multiple Interaction-States

Changxin Xu, Satyandra K. Gupta1, Zhiyang Yao, Michael Gruninger

Mechanical Engineering Department and Institute for Systems Research
University of Maryland

College Park, MD

Ram Sriram

Manufacturing Systems Integration Division
National Institute of Standards and Technology

Gaithersburg, MD

ABSTRACT

In multiple interaction-state mechatronic devices the interactions between elements of use-
environment and elements of the device can have different qualitative structures depending upon
the modes of device operation and the states of the use-environment. This paper describes a
modeling framework to support conceptual design of such devices using state transition
diagrams. We define the primitives and operators needed in the modeling framework, and
illustrate the conceptual design process using these primitives and operators. We believe that the
framework described in this paper will provide the underlying foundations for constructing the
next generation software tools for the conceptual design of mechatronic devices.

1. Introduction

Increasing autonomy and intelligence in mechatronic devices requires them to be multiple
interaction-state devices. In multiple interaction-state devices the interactions between elements
of use-environment and elements of the device can have different qualitative structures (i.e.,
different interaction topologies) depending upon the modes of device operation and the states of
the use-environment. For example, consider a hybrid vehicle as shown in Figure 1. When the
vehicle is going down a hill, the engine is storing energy into the batteries. While when the
vehicle is going up a hill, both the batteries and the engine are providing power to the wheels.

Figure 2 shows an abstraction of the information flow in a typical product development process
[Pahl96]. This figure mainly illustrates the information flow and does not show the iterative
nature of the design process. The first step is need analysis, which determines the requirements.
This step establishes why a device should exist. The second step is to establish behavior
specifications, which creates the specifications of the desired observable behavior of the device
that satisfy the requirements. This step establishes what a device should do. After that, the
conceptual design step analyzes the desired behavior of the device and results in the
specifications of the internal structure of the device. Finally the detailed design step completes
the design by developing details of every component in the structure. The conceptual and the
detailed design establish how the device will provide the desired behavior.

1 Corresponding Author

 1

Today’s intensive competition in the market requires companies to deliver better quality products
in shorter lead-times with limited product development budget. Computer aided design (CAD)
tools are being used to satisfy such needs. However, most of the commercial CAD systems for
mechanical products are aiding designers only in the detailed design step. CAD tools for early
stage of mechanical design are either restricted to few specific products or only providing simple
sketching functions. CAD models currently only store geometric information and there is no
connectivity between the final product geometry and requirements.

For multiple-interaction state mechatronic devices, a satisfactory modeling framework does not
exist to support conceptual design. Besides, traditional functional modeling approaches that have
been developed for single interaction topology based devices cannot be conveniently applied to
multiple interaction-state devices. It is clear that if we were to achieve a high level of automation
in design of multiple interaction-state mechatronic devices we will need a new modeling
framework to support conceptual design.

State transition diagrams provide a way to represent changes in interactions over time and hence
provide a convenient way to model multiple working modes of a device. This paper describes a
modeling framework for conceptual design of such devices using state transition diagrams. We
define the primitives and operators needed in the modeling framework and give the rationale for
their need. We also illustrate the conceptual design process using these primitives and operators
on a simple design example. We believe that framework presented in this paper is a step towards
development of computer-aided tools for aiding conceptual design.

2. Related work

Pahl and Beitz’s widely accepted systematic approach to engineering design defines conceptual
design as the feasible combination of working principles for sub-functions. Pahl and Beitz
describe the function as the transformation from input to output in three flows: material, energy
and signal [Pahl96]. Working principles are sought for low level sub-functions and working
structures are formulated by combining working principles.

Grabowski et. al. divides the traditional function model into three layered function models with
different levels of abstraction. Logical model, borrowed from electronic domain, is used to
present high level topology and connectivity of sub-functions. Status model describes the
working state combinations of different components. Relation model defines the mathematical or
physical relations between physical variables [Grab99].

Shooter et. al. proposed a model for design information flow [Shoo00]. This model was further
refined and resulted in NIST Core Product Model (CPM) [Fenv01]. This model provides a base-
level product model that is open, non-proprietary, generic, extensible, independent of any
product development process and capable of capturing the full engineering context commonly
shared in product development. The CPM is intended to serve as a generic core representation
for design information through the whole product development process. Specialized
representations can be developed from it by deriving specialized classes from it.

Stone and Wood have developed a functional basis language that tries to subsume the previous
effort in functional modeling and provide a consistent classification scheme for functions. In this

 2

approach, functions are characterized using function-flow format and definitions of different
classes of functions and flows are provided [Ston00, Hirt01]. Bohm and Stone recently extended
this work by including supporting functions [Bohm04].

Zeiny developed a dynamic object-oriented model that stores form, function, behavior,
taxonomy, composition and relationships [Zein04].

Chandrasekaran proposed a language called function representation for describing the function
of a device, its structure and the causal processes in the device that culminate in the achievement
of the function [Chan94]. The causal process is described using simple state transitions.

Iwasaki et al. proposed the Causal Functional Representation Language (CFRL) [Iwas95]. They
argued that this framework allows them to capture the knowledge of how the device is intended
to work to achieve its function.

Sasajima et al. proposed Representation Language for Behavior and Function (FBRL) for
representing function and behavior with predefined task and domain independent primitives
[Sasa96]. Umeda et al. proposed Function-Behavior-State (FBS) modeling and a conceptual
design support tool called FBS modeler [Umed96]. In FBS, a state is described by a set of
entities and attributes and relationships between them. Behavior is described by a sequence of
one or more changes of states. Deng et al. proposed a representation model for desired product in
terms of its function, behavior, structure and working environment [Deng99].

Vargas-Hernandez and Shah presents an information model called 2nd-CAD that aims at
providing user with catalogs of elements to create interconnected multi layered structures of
functions, behaviors, and components. Function, behavior and component are represented in
function entity-relationship model, behavior entity-relationship model and component entity-
relationship model respectively [Varg04].

Chen and Jayaram extended flow diagram based functional representation schemes into
mechatronic system representation by introducing two additional flows (information flow and
control flow) and new relationships between functions and flows [Chen02, Jaya03].

Gausemeier et. al. proposed a semi-formal specification language for modeling functions in
conceptual design of mechatronic systems. Functions are viewed as transformations of discrete
system states described by parameters [Gaus01].

Williams describes design as a process of building a network of qualitative interactions between
primitive components. Interactions are described by equations among variables of components
[Will92].

Aiming at constructing the logical relationships between sub-functions at the first level of
functional decomposition through information flows, Erden et. al. combine Petri nets with hybrid
automata to model the logical behavior of mechatronic systems. Hybrid automata are used to
model both discrete and continuous state changes and evolution [Erde03].

State transition diagrams (STD), also known as state machines, are a way of describing the time-
dependent behavior of a system. STDs are useful for modeling complex system behavior such as

 3

multiple entries and exits subject to different conditions. STDs have been formalized in Unified
Modeling Language (UML) [Booc98].

Previous research in conceptual design modeling area is mainly focused on single interaction-
state systems, where the relationship between different components of system is fixed during
operation of the product. Representing multi-state mechatronic systems not only requires
representing the components of the system, but also new features such as changing interaction
topologies between system components. Besides, mechatronic product design requires us to
consider complex interactions between system elements. In order to describe complex behaviors,
we will also need to explicitly model the use-environments. In order to support simulation during
the conceptual design, we will also need to formally define the events that trigger different
interactions. This requires us to develop a new representation based on the combinations of
existing representations to capture the behavior exhibited by multiple interaction-state devices.

3. Overview of Conceptual Design of Multiple Interaction State Systems

While it is well understood what is an outcome of the detailed design, it is not always clear what
is the outcome of the conceptual design step. In this paper, we assume the conceptual design step
will define the following three main items. First, it will identify the various major components
that will be needed to meet the requirements and their roles in meeting the requirements. Second,
it will specify basic working principles behind every main component to ensure that the
component is realizable. Third, it will specify how various components will interact with each
other to achieve the requirements.

In our framework, the conceptual design is carried out using the following two main steps:

Step 1: Define Behavioral Specifications. This step begins by defining the device’s main
working modes, various events that can happen in the use environment (for example, user
pushing the emergency stop), and conditions that lead to unsafe operation conditions. We use
state-transition diagrams to show the main working modes of the device and how the working
modes change due to events in the use-environment. The modeling primitive event space is used
to define all possible events. The modeling primitive unsafe parameter value set is used to define
unsafe operation conditions. Figure 3 shows top-level primitives needed to define behavior
specifications.

We use interaction-states to capture main working modes of the device. Each interaction-state in
the behavior specification shows how the device interacts with the use-environment. Use-
environment will be defined using a set of components, which are defined by a set of parameters
and interactions among them. Figure 4 graphically shows the main primitives needed to define
an interaction-state in a transition diagram. Figure 5 shows all the parameters needed in our
modeling framework and relationship among them. This figure also provides subsections that
give class definitions for these primitives.

Step 2: Elaborate Transition Diagrams: After the initial transition diagram is constructed, the
device component may need to be further decomposed such that it can be realized via known
working principles. As a result of the component decomposition, interaction-states and
transitions may also need to be decomposed to ensure that known working principles can be

 4

identified. Section 5 defines three operators for decomposing components, transitions, and
transition diagrams. After a detailed transition diagram has been developed as result of the
application of these operators, the conceptual design step is completed.

4. Class Definitions for Modeling Primitives

In this section we define classes for the modeling primitives shown in Figure 5. Every class
instance will have a name that will serve as the identification for the class instance. We use
notation “name.member” in this paper to refer to a member of a class instance. For example,
notation a.p refers to member p of class instance with name a. In the following subsections we
introduce the class definitions for various primitives.

We will use the following format and notations to in subsequent sections. Class name will be
described using Bold Arial font (e.g., Parameter). Class member will be described using Italic
Times Roman font (e.g., DataType). Symbol will be described using Capitalized Italic Times
Roman font (e.g., INTEGER).

4.1 Classes for Modeling Parameters and Parameter Interactions

A parameter is a type of observation of a component. For example, a motor is a component, and
the weight of the motor is a parameter. Class Parameter is defined using the following
members:

• DataType indicates the data type of this parameter. Parameter can be of several different
data types. Our framework supports basic data types such as INTEGER, REAL, BOOLEAN,
and STRING. We also support user-defined data types that are defined by using class
UserDefinedDataType in terms of basic data types.

• Unit is a string that describes the unit of a data. If the unit is not required, then it is set to
NONE.

Class UserDefinedDataType is defined using member Fields, a set of names of Parameter
instances.

For example, Parameter position can be defined in the following manner:

position : Parameter
DataType = positionVector
Unit = NONE

positionVector : UserDefinedDataType
Fields = {x, y, z}
Unit = NONE

y : Parameter
DataType = REAL
Unit = “mm”

x : Parameter
DataType = REAL
Unit = “mm”

z : Parameter
DataType = REAL
Unit = “mm”

Parameter may also take NONE or NA (not available) as a value for convenience. When a
parameter does not have a value, we assign its value as NONE. When the value of a parameter is
not known at the time of modeling, we assign the value as NA.

 5

Class Parameter can be derived from class CommonCoreObject in NIST CPM [Fenv01].

Relationships among parameters are called parameter interactions. From the perspective of the
governing equations behind the relationships, there are two types of interactions:

• Declarative Interactions: These can be modeled using algebraic or ordinary differential
equations. For example, the interaction of the mass parameter and the volume parameter of a
component with uniform density is given by m=dv, where m is the mass, d is the density, and
v is the volume of the component. However, in conceptual design stage, the exact equation
may not be available. A qualitative structure that describes the characteristics of the
interaction is then used.

• Procedural Interactions: These cannot be modeled explicitly using algebraic or ordinary
differential equations during conceptual design. In most of the cases, a procedure is needed to
describe these interactions. If simulation is necessary, then simplified numerical simulation
can be used as surrogates for these interactions. For example, the interaction among a light
source, a person, and, image at the camera lens (i.e., light from the light source reflects from
person’s face and forms an image at the camera lens) cannot be modeled by algebraic
equations or ordinary differential equations.

We define class ParameterInteraction using the following members:

• InteractionReason is a tag taken from the following options: ENERGY FLOW, SIGNAL
FLOW, MASS FLOW, SPATIAL CONSTRAINT, LAW, and OTHER.

• InteractionType is a tag taken from the following options:

o NON-CAUSAL INTERACTION: For these interactions, there is no need to specify the
dependence among parameters. For example, the interaction of the mass and the volume
of a component with uniform density is a non-causal interaction.

o CAUSAL INTERACTION: For these interactions, we have to specify the dependent
relationships between parameters.

• ParameterSet is a set of names of Parameter instances that interact with each other.

• DependantParameter is the name of a Parameter instance whose value is dependent on the
other parameters belonging to a ParameterSet as a result of the interaction. For non-causal
interactions, DependantParameter is set to NONE.

• Equation is an algebraic or ordinary differential equation (in terms of parameters) if the
interaction is declarative. In this case, it is defined as an instance of class Expression. If the
interaction is procedural or the exact form of the equation is not available, then we don’t
capture the equation. Therefore this field is set to NA.

Class Expression is defined using a member called Content. Content is a special type of string
that starts and ends with a parenthesis symbol. It includes numbers, standard and user defined
function names, logical symbols, and mathematical symbols.

 6

Class ParameterInteraction can be derived from class CommonCoreRelationship in
NIST CPM [Fenv01].

4.2 Classes for Modeling Components, Component Interactions, and Component Mappings

A component is a finite collection of parameters and the interactions among these parameters.
Class Component is defined using the following members:

• InputParameterSet is a set of names of Parameter instances. These parameters serve as the
input ports for flow types of interactions among components.

• OutputParameterSet is a set of names of Parameter instances. These parameters serve as
the output ports for energy and signal flow types of interactions among components.

• GeneralParameterSet is a set of names of Parameter instances. These parameters do not
play input or output role.

• ParameterInteractionSet is the set of names of ParameterInteraction instances describing
interactions among parameters belonging to the component.

• ComponentType is a tag assigned to either USE-ENVIRONMENT or DEVICE to classify two
different types of components.

For example, let us consider a DC motor without load. It can be represented by

motor : Component
InputParameterSet = {v, k}

OutputParameterSet = {ω}

GeneralParameterSet = {weight}

ParameterInteractionSet = {c}

ComponentType = DEVICE

c : ParameterInteraction
InteractionReason = LAW

InteractionType = CAUSAL INTERACTION

ParameterSet = {v, k, ω}

DependantParameter = ω

Equation = (ω = v/k)

ω : Parameter
DataType = REAL

Unit = “rad/s”

k : Parameter
DataType = REAL

Unit = NONE

v : Parameter
DataType = REAL

Unit = “m/s”

weight : Parameter
DataType = REAL

Unit = “kg”

Where v is the input voltage, k is the motor constant, ω is the no-load speed.

If a is the name of a Component, then we use notation a::p to refer to Parameter p of
Component a.

Class Component can be derived from class Artifact in NIST CPM [Fenv01].

 7

Components interact with each other to affect their mutual behaviors. Complex components can
also be decomposed into simple components. These two relationships about components are
modeled using classes ComponentInteraction and ComponentMapping.

Component interactions usually result due to interactions among their parameters. We define
class ComponentInteraction using the following members:

• ComponentSet is the set of names of the Component instances in the interaction.

• InteractionInfo is defined as the set of names of ParameterInteraction instances that
describe the parameter interactions between the components.

All component interactions can finally be modeled as parameter interactions

A component mapping is defined as the relationship between a component and its children
components. The relationship includes component hierarchy and parameter mapping between
parent component and children components. We define class ComponentMapping using the
following members:

• Component is the name of the Component instance being decomposed.

• ChildrenComponentSet is the set of the names of children Component instances resulting
from the decomposition of Component.

• ParameterMappingSet is a set of Expression instances. Each Expression instance
defines the relationship between the parent component’s parameters and its children
components’ parameters. For example, suppose parameter p1 of parent a1 is mapped to
parameter p2 of children component a2 and parameter p3 of children component a3. Then, a
possible expression can be (a1::p1 = a2::p2 + a3::p3).

Class ComponentMapping can be derived from class CommonCoreRelationship in NIST
CPM [Fenv01].

4.3 Classes for Modeling Interaction-States

An interaction-state describes the interactions between a set of components. For example, if a
motor is driving a gearbox to transmit mechanical energy, then the interaction-state of this set of
components is the description of the motor, the power source, the gearbox, and their interactions.
Every component in the component set of this interaction-state must participate in at least one
component interaction in this state. A component is active in the interaction-state if it belongs to
the component set of the state. Otherwise, the component is considered inactive in the state.
Usually when we refer to the components in a state, we refer to the active components in the
state.

We use symbol t to denote the time variable associated with the internal clock of the state. We
call t the local time variable because t only exists with respect to a specific state. On the other
hand, during simulation we need another variable to indicate the time in the design world, which
includes all states of the device. This time variable is denoted as T and is call the global time

 8

variable. At a given global time T=T*, the device is in a particular state with its own
corresponding local time t=t*. Within a state, t starts from 0. Ending time of a state is denoted by
symbol te. At a particular time t, the value of a parameter p of component a is denoted by
a::p(t=t′). a::p(t) is used to represent the value of a parameter parametrically. On the other hand,
if the global time variable is used to indicate the value of a parameter, we use a::p(T=T′) for a
specific time, and a::p(T) to represent it parametrically.

Notation s::a::p will be used to refer to the Parameter p of Component a in State s.

We define class InteractionState using the following members:

• ComponentSet is a set of names of Component instances that are active in the state.

• ComponentInteractionSet is a set of names of ComponentInteraction instances between
the active components in this state.

• InitialValueSet is a set of names of class ValueAssignment instances that describes how
parameter values are initialized.

• ChangeModeSet is a set of names of class ChangeMode instances that describes how
parameter values will change inside of the interaction-state.

Class ValueAssignment is defined using the following members:

• ParameterName is the name of a Parameter instance.

• InitializationType is a tag taken from the following options:

o INHERIT indicates that the parameter inherits its value from previous state. Let the
current state be s, and its previous state be s′, then the initial value of a parameter a::p
belonging to this component can be obtained in the following manner: s::a::p (t = 0) =
s′::a::p (t = te), where te is the ending time of state s′.

o DERIVE indicates the value of a parameter is derived from other parameter values that
belong to some components in the same state.

o ASSIGN indicates the value of a parameter is assigned to a particular value.

• Value denotes the value of a parameter. If the InitializationType is set to INHERIT or
DERIVE, it is set to NA.

Class ChangeMode is defined using the following members:

• ParameterName is the name of the Parameter instance.

• ChangeType is a tag taken from the following options:

o CONSTANT indicates the value is a constant within the state.

 9

o DERIVE indicates the value changes according to the values of parameters it interacts
with.

o EQUATION indicates the value is changing according to time variable t.

• Equation is an equation in terms of a parameter with respect to the local time in a state. In
this case, it is defined using class Expression. If the ChangeType is set to CONSTANT or
DERIVE, it is set to NA.

Some limitations may apply on combining initialization types and value-changing modes as
shown in the Table 1.

States may be inconsistent if the underlying interactions are inconsistent. An Interaction-state s
is inconsistent if equations defined in ComponentInteractionSet are inconsistent. Equations may
turn out to be inconsistent if the system of equations is over-constrained.

4.4 Classes for Modeling Event and Event Spaces

An event occurs when a use-environment component becomes active or inactive, or a parameter
or parameters of the use-environment components change their values. Event space refers to the
set of all possible events that can happen in the use-environment. Class Event Space is defined
using the member ParameterRangeSet, a set of names of ParameterValueRange instances.

Class ParameterValueRange is defined using the following members:

• Parameter is the name of a Parameter instance.

• RangeType is a tag taken from the following options:

o CONTINOUS means that values are bound between ValueLowerLimit and
ValueUpperLimit.

o DISCRETE means that values are assigned from a ValueSet.

• ValueSet is a set of Expression instances. If RangeType is set to CONTINOUS, ValueSet is
set to NA.

• ValueLowerLimit is a value for the parameter. If RangeType is set to DISCRETE, Value
LowerLimit is set to NA.

• ValueUpperLimit is a value for the parameter. If RangeType is set to DISCRETE,
ValueUpperLimit is set to NA.

During the simulation, global time variable T represents time in the design world, which includes
the device and the use-environment. Every event happens in the use-environment at a certain
specific value of T.

We define class Event using the following members:

 10

• GlobalTime is the value of the global timer that describes the time when this event happens.

• EventCondition is defined as an instance of class Expression that describes parameter
value changes during the event.

4.5 Classes for Modeling Unsafe Parameter Value Sets

A parameter value set is a snapshot of an interaction-state. In a transition diagram, interaction-
states may contain a set (possibly infinite) of parameter value sets. A unique parameter value set
can be extracted from an interaction-state by selecting a specific time instant in the interaction-
state. For example at T = 5, the values of all parameters belonging to both the device and the
use-environment components define the world-state at T = 5. An unsafe parameter value set is a
parameter value set that is forbidden by requirements.

Class UnsafeParameterValueSet is defined using member ParameterValueSet, where
ParameterValueSet is a set of Expression instances that indicates the forbidden parameter
values or value ranges by the requirements.

A design concept should never enter an unsafe parameter value set. Therefore, a design concept
should be such that in response to all possible events contained in the event space, it should
never enter an interaction-state that will contain unsafe parameter value sets.

4.6 Classes for Modeling Interaction-State Transitions and Transition Diagrams

An interaction-state transition is the indication of changes from one interaction-state to another
interaction-state. We define class InteractionStateTransition using the following members:

• StartState is the InteractionState instance where the transition starts.

• EndState is the InteractionState instance where the transition ends.

• TransitionCondition is an Expression instance that indicates the condition under which the
transition occurs. This is a composite expression that may contain (1) sub-expressions
indicating the internal time clock of a state reaches a particular value, such as (t=4) or (2)
sub-expressions indicating some parameters take particular values, such as (a::p(t)=5).

• ClosureActionSet is a set of Expression instances that describes how the parameters value
will be set in the starting state before leaving it. For example, {(a1::p1(t=te) = 1), (a1::p2(t=te)
= 2), (a2::p1(t=te) = 3)}.

• Initialization Action Set is a set of Expression instances that describe how the parameters
value will be set in the ending state before entering it. {(a1::p1(t=0) = 2), (a1::p2(t=0) = 3),
(a2::p1(t =0) = 3)}. Expressions in this set override the initialization expressions defined for a
state.

InteractionStateTransition r is realizable for InteractionState s if there exists a sequence
of events such that the device reaches s and transition condition for r is satisfied. If a transition is

 11

not realizable, then it is called unrealizable. Unrealizable transitions should be eliminated from
the design concept, as they do not contribute anything to the behavior.

A transition may be unrealizable because of a variety of reasons. In Figure 6 transitions r1, r2 ,
and r4 are not realizable. Transition r4 is unrealizable because condition for transition r3 is always
satisfied before condition for transition r4 is satisfied. Therefore, transition r4 never takes place.

A transition diagram is a graph whose nodes are interaction-states and edges are interaction-state
transitions. We define class TransitionDiagram using the following members.

• InitialState is the name of a special InteractionState instance. Every transition diagram
must include an initial state, which is the device interaction-state at T = 0. As a special
interaction-state, the initial state has all the components including device components and
use-environment components. Parameters of these components are initialized in the initial
state. However, all the components remain inactive until events trigger the device to leave the
initial state.

• InteractionStateSet is the set of names of remaining InteractionState instances.

• InteractionStateTransition Set is the set of names of InteractionStateTransition
instances.

A transition diagram is considered safe with respect to an event space E and a set of unsafe
world-states U, if there does not exist a sequence of events Es that results in one of the unsafe
world-states. Figure 7 graphically shows an example of an unsafe transition diagram that reaches
an unsafe world-state. In this example, p1 is a parameter of component a1 and p2 is a parameter of
component a2. This diagram has four interaction-states including initial state s0. In each state, the
local time variable t is from 0 to some ending time te. In state s1, we have

s1::a1::p1(t)=s1::a1::p1(t=0) + 1.

In state s2, we have

s2::a1::p1(t)=s2::a1::p1(t=0) + 2t, s2::a2::p2(t)=s2::a1::p1(t) + 1.

As per the definition of the event space, the parameter p1 can take value between 0 and 10. The
unsafe state is and the unsafe parameter is define as {(p1 = 4), (p2 = 5)}. The transition condition
from state s1 to s2 is defined using expression (a1::p1(t)=3). Thus, when an event (a1::p1(t=0):=2)
happens, it will result in unsafe parameter value set u, which happens in s2, when t=0.5.

We define a transition diagram as valid when the following conditions are met:

• Every state in the transition diagram is consistent.

• Every transition in the transition diagram is realizable.

 12

Given a valid transition diagram and an event space, we can simulate how the transition diagram
responds to different events in the event space.

5. Elaboration Operators

As described in Section 3, in our framework, an initial transition diagram, which represents the
specifications of observable behaviors of a device, is constructed first. After that, the conceptual
design is performed by elaborating the initial transition diagram and by creating the internal
structures of the mechatronic device being designed. The following operators are used for this
purpose.

• Decompose Component. This operator is called DECOMPOSE-COMPONENT and used to
decompose a component into a set of components. This operator is defined as the following.

o Input: component a, transition diagram D in which a exists

o Output: a set of components A, the component mapping M between a and A, and the new
transition diagram D′ after a is decomposed

o Action: decompose a into A by establishing a component mapping between a and A.
Replace a in D, which leads to D′. The component interactions involving a in D will be
converted to component interactions involving A.

Component decomposition should define the parent component’s parameters in terms of its
children and preserve all interactions present at the parent.

• Decompose State: This operator is called DECOMPOSE-STATE and used to decompose an
interaction-state into several sub-states and state transitions among these sub-states. This
operator is defined as the following.

o Input: state s and a transition diagram D that contains s.

o Output: new state set S, new state transition set R and a new transition diagram D′.

o Action: Replace the original state by a new state set and a new state transition set.
Redirect transitions that involve the original state to the decomposed state.

• Decompose Transition: This operator is called DECOMPOSE-TRANSITION and used to
decompose an interaction-state transition into several states and state transitions among these
states. This operator is defined as the following.

o Input: state transition r

o Output: new state set S and new state transition set R

o Action: Replace the original state transition by a new state set and a new state transition
set. In other words, this operator substitutes a state transition with a new transition
diagram.

 13

The transition diagram generated as a result of applying the elaboration operators described
above will not violate the behavioral requirements represented in the initial transition diagram
and hence it is referred as an elaboration of the initial behavior specification.

The conceptual design step results in an ordered set (Di, Df, E, U), in which Di is the initial
behavior specification, Df is the fully elaborated transition diagram, E is the event space, U is the
set of unsafe world-states with respect to E. The conceptual design solution is considered valid
if it meets the following conditions:

• Di and Df are valid transition diagrams.

• Di and Df are safe with respect to E and U.

• Every component interaction in every state of Df can be expressed in terms of parameter
interactions. For every parameter interaction and state transition, there exists a known
working principle.

• Df is an elaboration of Di.

6. Simulating Transition Diagrams

Transition diagrams either at the beginning of the conceptual design or at the end of the
conceptual design can be simulated. This allows designers to understand how the conceptual
design solution and/or behavior specifications respond to events in the use environment.

Because of space restrictions, we have omitted the detailed description of the simulation
algorithm. But the idea behind simulation algorithm is as follows. First, we generate a sequence
of events. This event sequence serves as an input to the simulation algorithm. We initialize the
current state with the initial state. Current state is updated as the simulation proceeds.

For the current state, we initialize the state parameters using the appropriate values. If necessary,
these values are inherited from the previous state. Then, all the equations that are applicable in
this state are collected by considering all the constraints and interactions relevant for this state.
Then, we compute the exit time for this state by considering the outgoing transitions for this
state. If an event in the event sequence can trigger an outgoing transition, the exit time is
determined. However, before exiting the current state, we check to determine if parameters take
unsafe values in this state. If unsafe values are encountered, then the algorithm reports those
values. Checking of unsafe parameters can be done using either (1) discretising the time and
computing state parameters values at these discrete time values, or (2) by using variable
substitution techniques and computing the time when the state parameters take unsafe values.
Our simulation infrastructure first tries the second method, if it fails then it uses the first
methods.

After processing of the current state has been completed, we transit to the next state based on the
outing going transition. The next state is marked as the current state and the steps in the previous
paragraph are repeated. When we exhaust the event sequence, the simulation stops.

 14

7. Example of Modeling Autonomous Vacuum Cleaner

This section describes application of the framework presented in this paper to the design of an
autonomous vacuum cleaner (AVC). The design task is to develop a device that is able to collect
the debris on a surface while avoiding collision from obstacles on the surface. The requirements
are: 1) AVC cleans Surface; and 2) AVC avoids Obstacles. Use-environment components
include: Surface, Interface, Obstacles and Power source. The two steps described in Section 3 are
carried out in the following manner:

1. Define Behavior Specifications: Parameters that are used to define behavior specifications
are shown in Table 2. For example, AVC stores the debris thus it has a remaining capacity
parameter. The possible interactions between AVC and its use-environment are summarized
into the event space shown in Table 3. Unsafe parameter value sets are described in Table 4.
From the requirements, the primary working modes of AVC (e.g., interaction-states) are also
identified. Figure 8 shows proposed behavior specifications for AVC. Detailed descriptions
for interaction-states are shown in Figures 9 through 13. This behavior specification was
simulated using a synthetic room with a large obstacle in the middle and a predefined zigzag
vacuuming path and was found to be safe.

2. Elaborate Transition Diagram: Since there is no known component that can fulfill the
behavior specification of AVC directly, we need to decompose AVC into components that can
be realized. Starting points of the decomposition are the component interactions between
AVC and use-environment components. The operator DECOMPOSE-COMPONENT is
applied to replace the AVC in behavior specification with its major components shown in
Table 5. AVC’s parameters are mapped to the parameters of its children components. In this
example the major parameters of AVC are directly mapped to one parameter of one children
component respectively. Furthermore, the “Waiting” state also needs to be decomposed using
operator DECOMPOSE-STATE. It is decomposed into “Waiting”, “Recharge” and “Empty”
states. The corresponding transitions are also redirected and decomposed. A detailed
interaction-state transition diagram for conceptual design is shown in Figure 14. Detailed
descriptions of interaction-states used in the diagram are shown in Figures 15 through 21.

8. Conclusions

This paper describes the class definitions of primitives and elaboration operators needed to
support the conceptual design of multiple interaction state devices. We use state transition
diagrams as the underlying modeling construct in our framework to capture different working
modes of the device. We also provide rationale for each primitive and its role in the conceptual
design. The distinction between our approach and traditional functional representation
approaches for conceptual design is as following:

• We use interactions instead of function flows or input/output flows to describe relationships
between components. Interactions are more general than flows. In addition to capturing
flows, they can also be used to capture non-flow based relationships such as spatial
constraints. Therefore, our approach is more expressive.

 15

• We use interaction-states to capture the operating modes of a device. Hence we can support
devices with multiple interaction-states (i.e., devices whose interactions with the use
environment change with time). Therefore, models created using our framework can be
simulated more accurately. For example, events can be used to simulate the behavior of a
proposed design solution in response to events in the use-environment.

We believe this new modeling framework will have the following benefits. First, it provides
computer interpretable representation schemes for supporting conceptual design of mechatronic
systems. Hence it provides an improved support for design information archival and reuse.
Second, it provides the foundation for the development of computer aided evaluation and
synthesis support during conceptual design.

Acknowledgments and Disclaimer. The authors gratefully acknowledge the support provided
by NIST's Manufacturing System Integration Division. Commercial product or company names
in this paper are given for informational purposes only. Their use does not imply
recommendation or endorsement by the National Institute of Standards and Technology or the
University of Maryland.

REFERENCES

[Booc98] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley Press, 1998.

[Bohm04] M.R. Bohm and R.B. Stone. Representing functionality to support reuse: conceptual
and supporting functions. In Proceedings of the ASME Design Engineering
Technical Conference, Salt Lake City, Utah, USA, September 2004.

[Chan94] B. Chandrasekaran. Functional representations: a brief historical perspective.
Applied artificial intelligence, special issue on functional reasoning, vol. 8:173-197,
1994.

[Chen02] L. Chen, M. Jayaram and J.F. Xi. A new functional representation scheme for
conceptual modeling of mechatronic systems. In Proceedings of the ASME Design
Engineering Technical Conferences, Montreal, Canada, September 2002.

[Deng99] Y.M. Deng, S.B. Tor and G.A. Britton. A computerized design environment for
functional modeling of mechanical products. In Proceedings of the Fifth ACM
Symposium on Solid Modeling, Ann Arbor, Michigan, USA, 1999.

[Erde03] Z. Erden, A. Erden and A.M. Erkmen. Petri net approach to behavioral simulation
of design artifacts with application to mechatronic design. Research in Engineering
Design, 14(1):34-46 , February 2003.

[Fenv01] S.J. Fenves. A core product model for representing design information. Technical
Report, Number NISTIR6736, National Institute of Standards and Technology,
Gaithersburg, MD, USA, 2001.

 16

[Gaus01] J. Gausemeier, M. Flath and S. Mohringer. Conceptual design of mechatronic
systems supported by semi-formal specification. IEEE/ASME International
Conference on Advanced Intelligent Mechatronics, AIM, v 2, 2001, p 888-892

[Grab99] H. Grabowski, S. Rude and M. Huang. Supporting early phase of mechatronic
product design with layered function models. IEEE International Symposium on
Industrial Electronics, v 2, 1999, p 914-918

[Hirt01] J. Hirtz, R. Stone, D. McAdams, S. Szykman, and K. Wood. A functional basis for
engineering design: reconciling and evolving previous efforts. Research In
Engineering Design, 13(2):65-82, March 2002.

[Iwas95] Y. Iwasaki, M. Vescovi, R. Fikes, and B. Chandrasekaran. Casual functional
representation language with behavior-based semantics. Applied Artificial
Intelligence, 9:5-31.

[Jaya03] M. Jayaram and L. Chen. Functional modeling of complex mechatronic systems. In
Proceedings of the ASME Design Engineering Technical Conferences, Chicago,
Illinois, USA, September 2003.

[Pahl96] G. Pahl and W. Beitz. Engineering Design: A Systematic Approach. Springer-
Verlag, 1996.

[Sasa96] M. Sasajima, Y. Kitamura, M. Ikeda, and M. Mizoguchi. Representation language
for behavior and function: FBRL. Expert Systems with Applications, 10(3/4):471-
479, 1996.

[Shoo00] S.B. Shooter, W.T. Keirouz, S. Szykman and S. Fenves. A model for information
flow in design. In Proceedings of the ASME Design Engineering Technical
Conferences, Baltimore, Maryland, USA, September 2000.

[Ston00] R.B. Stone and K.L. Wood. Development of a functional basis for design. Journal
of Mechanical Design, 122(4):359-370, December 2000.

[Umed96] Y. Umeda et al. Supporting conceptual design based on the function-behavior-state
modeler. AIEDAM, 10(4):275–288, September 1996.

[Varg04] N. Vargas-Hernandez and J.J. Shah. 2nd-CAD: a tool for conceptual systems design
in electromechanical domain. Journal of Computing and Information Science in
Engineering, 4(3):28-36, 2004.

[Will92] B.C. Williams. Interaction-based design: constructing novel devices from first
principles. In Intelligent Computer Aided Design, edited by D.C. Brown, M.
Waldron and H. Yoshikawa, pages 255-274, Elsevier Science Publishers, 1992.

[Zein04] A. Zeiny. Computable dynamic design repository for product data representation. In
Proceedings of the ASME Design Engineering Technical Conference, Salt Lake
City, Utah, USA, September 2004.

 17

Wheel Motor

BatteriesEngine

Energy flow in
downhill travel

Wheel Motor

BatteriesEngine

Energy flow in
uphill travel

Figure 1: Example of interaction-states in a hybrid car

Requirements

Final Design

Design Concept

Need Analysis

Detailed Design

Conceptual Design

Figure 2: An abstraction of information flow in design
(this figure only shows the information flow and does not
depict loops generated by the iterative nature of the design
process)

Interaction State Transition Diagram

Component Interaction

…

Component
Interaction

Interaction
State

Transition

Interaction
State

…

Transition

Parameter Interaction

Parameter Parameter

Interaction State

Component

Component

Parameter Parameter

Parameter Interaction

Parameter

Component

Figure 4: Primitives needed to define an interaction-state

Figure 3: Top level primitives needed to define behavior specifications

Interaction-State
transition diagram

Event Space

Unsafe Parameter Value Set

Behavior
Specification

Parameter
(Section 4.1)

Parameter
Interaction

(Section 4.1)

Component
(Section 4.2)

Component
Interaction

(Section 4.2)

Component
Mapping

(Section 4.2)

Figure 5: Relationships between main primitives

Interaction
State

(Section 4.3)

Event Space
(Section 4.4)

Parameter
Value Set

(Section 4.5)

State
Transition

(Section 4.6)

1..* 0..*
0..*

1..*

1..*

0..*

1..*
0..*

1..* 1..*

1..*

1..*
Transition
Diagram

(Section 4.6)

1..*

1..*
1..*

0..*

Legend:

Primitive

A B Primitive B is dependant on primitive A

A B
n..* m..* An instance of primitive B is comprised of at least n

instances of primitive A. An instance of primitive
A may be part of at least n instances of primitive B.
An instance of primitive B must be comprised of at
least n instances of primitive A. An instance of
primitive A must be part of at least n instances of
primitive B.

n..* m..*
BA

x3 = 2 + 2t2

x1 = 2x2

Transition r1 Condition: x3+x4=8

Transition r2 Condition: x2=4 & x1=3

Transition r3 Condition: x3=8

Transition r4 Condition: x3=10

Event Space:
x4 and x5 are external continuous environment parameters
1 ≤ x4 ≤2, 1 ≤ x5 ≤2

Figure 6: Unrealizable transitions

e1 e2

a1

s1

a1

s2

a2

r1 r2

Figure 7: Example of unsafe transition diagram

Transition list

r3 r6

s0

Reposition
r5

r7 r8

Vacuum

Avoid

Waiting

Name Condition

r1 Interface::Power = ON

Interface ::Power = OFF

Interface::PauseStatus = OFF

r4 Surface::MovePossible = FALSE

r8 Obstacle:: AVCInContact = FALSE

r9 AVC::RemainingCapacity ≤ 2%

r10 AVC::RemainingEnergy ≤ 10%

r11 AVC::RemainingEnergy ≤ 10%

r12 AVC::RemainingEnergy ≤ 10%

r13 AVC::RemainingCapacity ≤ 2%

Surface::LocationVisited = FALSE

r6 Surface::LocationVisited = TRUE

r7 Obstacle:: AVCInContact = TRUE

r14 AVC::RemainingEnergy ≤ 10%

r2

r3

r5

r1
r2

r4
r9

r10

r11

r12

r13

r14

Figure 8: AVC behavior specification

s0 (Initial State)

Parameter Initialization
Type

Initialization
Value

Change
Type

Equation

AVC::Speed ASSIGN 0 CONSTANT NONE

AVC::RemainingCapacity ASSIGN 100% CONSTANT NONE

AVC::RemainingEnergy ASSIGN 100% CONSTANT NONE

AVC::Power ASSIGN OFF CONSTANT NONE

AVC::PauseStatus ASSIGN ON CONSTANT NONE

AVC::ObstacleInContact ASSIGN FALSE CONSTANT NONE

AVC::InputVoltage ASSIGN 0 CONSTANT NONE

Parameters Initialization and Change

Surface

AVC

Obstacle

Component Interaction Equations

None

Interface

Figure 9: Definition of state s0

Figure 10: Definition of state s1

s1 (Waiting)

Parameters Initialization and Change

AVC

Component Interaction Equations

AVC::Power = Interface::Power
AVC::PauseStatus = Interface::PauseStatus
AVC::InputVoltage = PowerSource::VoltageOutput

Parameter Initialization
Type

Initialization
Value

Change
Type

Equation

AVC::Speed INHERIT NA CONSTANT NONE

AVC::RemainingCapacity INHERIT NA EQUATION AVC::RemainingCapacity(t) =
AVC::RemainingCapacity(t=0) +
t / 200

AVC::RemainingEnergy INHERIT NA EQUATION AVC:: RemainingEnergy(t) =
AVC:: RemainingEnergy(t=0) +
t / 200

AVC::Power DERIVE NA DERIVE NONE

AVC ::PauseStatus DERIVE NA DERIVE NONE

AVC::ObstacleInContact INHERIT NA CONSTANT NONE

AVC::InpuVoltage INHERIT NA CONSTANT NONE

Interface PowerSource

s2 (Reposition)

Parameters Initialization and Change

AVC Surface

Component Interaction Equations

None

Parameter Initialization
Type

Initialization
Value

Change
Type

Equation

AVC::Speed ASSIGN 0.05m/s CONSTANT NONE

AVC::RemainingCapacity INHERIT NA CONSTANT NONE

AVC::RemainingEnergy INHERIT NA EQUATION AVC::RemainingEnergy(t) =
AVC::RemainingEnergy(t=0)
− AVC::Speed × t / 400

AVC::Power INHERIT NA CONSTANT NONE

AVC::PauseStatus INHERIT NA CONSTANT NONE

AVC::ObstacleInContact INHERIT NA CONSTANT NONE

AVC::InputVoltage INHERIT NA CONSTANT NONE

Figure 11: Definition of state s2

s3 (Vacuum)

Parameters Initialization and Change

Component Interaction Equations

AVC::RemainingCapacity(t) = AVC::RemainingCapacity(t=0) −
Surface::AreaCovered / 20

SurfaceAVC

Parameter Initialization
Type

Initialization
Value

Change
Type

Equation

AVC::Speed ASSIGN 0.05m/s CONSTANT NONE

AVC::RemainingCapacity INHERIT NA EQUATION NONE

AVC::RemainingEnergy INHERIT NA EQUATION AVC::RemainingEnergy(t) =
AVC::RemainingEnergy(t=0)
– AVC::Speed × t / 400

AVC::Power INHERIT NA CONSTANT NONE

AVC::PauseStatus INHERIT NA CONSTANT NONE

AVC::ObstacleInContact INHERIT NA CONSTANT NONE

AVC::InputVoltage INHERIT NA CONSTANT NONE

Figure 12: Definition of state s3

s4 (Avoid)

Parameters Initialization and Change

Component Interaction Equations

AVC::RemainingCapacity(t) = AVC::RemainingCapacity(t=0) −
Surface::AreaCovered / 80
AVC::ObstacleInContact = Obstacle::AVCInContact

AVC
Obstacle

Surface

Parameter Initialization
Type

Initialization
Value

Change
Type

Equation

AVC::Speed ASSIGN 0.05m/s CONSTANT NONE

AVC::RemainingCapacity INHERIT NA EQUATION NONE

AVC::RemainingEnergy INHERIT NA EQUATION AVC::RemainingEnergy(t) =
AVC::RemainingEnergy (t=0) –
AVC::Speed × t / 400

AVC::Power INHERIT NA CONSTANT NONE

AVC::PauseStatus INHERIT NA CONSTANT NONE

AVC::ObstacleInContact INHERIT NA CONSTANT NONE

AVC::InputVoltage INHERIT NA CONSTANT NONE

Figure 13: Definition of state s4

Transition list

r3
r6

r13

s0

Reposition
r5

r10

r7

r11

r8 RechargeVacuum

Avoid

Waiting

r1 r2

r12

r4

r9

Empty
r14

Name Condition

r1 Interface::Power = ON

Interface::Power = OFF

Interface::PauseStatus = OFF

r4 Surface::MovePossible = FALSE

r9 Obstacle::AVCInContact = TRUE

r13 Vacuum::RemainingCapacity ≤ 2%

r14 Vacuum::RemainingCapacity = 100%

r12 Battery::RemainingEnergy = 100%

Surface::LocationVisited = FALSE

r6 Surface::LocationVisited = TRUE

r10 Obstacle::AVCInContact = FALSE

r11 Battery::RemainingEnergy ≤ 10%

r7 Battery::RemainingEnergy ≤ 10%

r8 Battery::RemainingEnergy ≤ 10%

r2

r3

r5

Figure 14: detailed transition diagram for AVC

s0 (Initial State)

Parameters Initialization and Change

Transporter

Path Planning Alg. Battery

Surface

Obstacle

Vacuum

Parameter Initialization
Type

Initialization
Value

Change
Type

Equation

Transporter::Speed ASSIGN 0 CONSTANT NONE

Transporter::EnergyInput ASSIGN 0 CONSTANT NONE

Controller::ObstacleInContact ASSIGN FALSE CONSTANT NONE

PPA::SpeedOutput ASSIGN 0 CONSTANT NONE

Battery ::InputVoltage ASSIGN 0 CONSTANT NONE

Vacuum::RemaininCapacity ASSIGN 100% CONSTANT NONE

Controller::PauseStatus ASSIGN ON CONSTANT NONE

Battery::RemainingEnergy ASSIGN 100% CONSTANT NONE

Controller::Power ASSIGN OFF CONSTANT NONE

Component Interaction Equations

None

Controller

PowerSource

Figure 15: Definition of state s0

s1 (Waiting)

Controller

Interface

Component Interaction Equations

Controller::Power = Interface::Power
Controller::PauseStatus = Interface::PauseStatus

Parameters Initialization and Change

Parameter Initialization
Type

Initialization
Value

Change
Type

Equation

Controller::Power DERIVE NA DERIVE NONE

Controller::ObstacleInContact INHERIT NA CONSTANT NONE

Controller::PauseStatus DERIVE NA DERIVE NONE

Figure 16: Definition of state s1

s2 (Reposition)

Transporter

Surface
PathPlanningAlg.

Battery

Component Interaction Equations

Transporter::Speed = PPA::SpeedOutput
Transporter::EnergyInput = Battery::RemainingEnergy
Battery::RemainingEnergy(t) = Battery(t)::RemainingEnergy(t=0) −
Transporter::Speed × t / 400

Parameters Initialization and Change

Parameter Initialization
Type

Initialization
Value

Change
Type

Equation

Transporter::Speed DERIVE NA DERIVE NONE

Transporter::EnergyInput DERIVE NA DERIVE NONE

PPA::SpeedOutput ASSIGN 0.05m/s CONSTANT NONE

Battery::InputVoltage INHERIT NA CONSTANT NONE

Battery::RemainingEnergy INHERIT NA EQUATION NONE

Figure 17: Definition of state s1

s3 (Vacuum)

Parameters Initialization and Change

Figure 18: Definition of state s3

Component Interaction Equations

Transporter::Speed = PPA::SpeedOutput
Transporter::EnergyInput = Battery::RemainingEnergy
Vacuum::RemainingCapacity(t) = Vacuum::RemainingCapacity(t=0)
− Surface::AreaCovered / 20
Battery::RemainingEnergy(t) = Battery(t)::RemainingEnergy(t=0) −
Transporter::Speed × t / 400

Transporter
Surface

Path Planning Alg.

Battery

Vacuum

Parameter Initialization
Type

Initialization
Value

Change
Type

Equation

Transporter::Speed DERIVE NA DERIVE NONE

Transporter::EnergyInput DERIVE NA DERIVE NONE

Vacuum::RemainingCapacity INHERIT NA EQUATION NONE

PPA::SpeedOutput ASSIGN 0.01m/s CONSTANT NONE

Battery::InputVoltage INHERIT NA CONSTANT NONE

Battery::RemainingEnergy INHERIT NA EQUATION NONE

s4 (Avoid)

Transporter
Obstacle

PathPlanningAlg. Battery
Vacuum

Surface

Controller

Component Interaction Equations
Transporter::Speed = PPA::SpeedOutput
Transporter::EnergyInput = Battery::RemainingEnergy
Vacuum::RemainingCapacity(t) = Vacuum::RemainingCapacity(t=0) −
Surface::AreaCovered / 60
Controller::ObstacleInContact = Obstacle::AVCInContact
Battery::RemainingEnergy(t) = Battery(t)::RemainingEnergy(t=0) −
Transporter::Speed × t / 400

Parameters Initialization and Change

Parameter Initialization
Type

Initialization
Value

Change
Type

Equation

Transporter::Speed DERIVE NA DERIVE NONE

Transporter::EnergyInput DERIVE NA DERIVE NONE

Controller::Power INHERIT NA CONSTANT NONE

Controller::ObstacleInContact INHERIT NA CONSTANT NONE

Controller::PauseStatus INHERIT NA CONSTANT NONE

Vacuum::RemainingCapacity INHERIT NA EQUATION NONE

PPA::SpeedOutput ASSIGN 0.01m/s CONSTANT NONE

Battery ::InputVoltage INHERIT NA CONSTANT NONE

Battery::RemainingEnergy INHERIT NA EQUATION NONE

Figure 19: Definition of state s3

s5 (Recharge)

Battery PowerSource

Parameter Initialization
Type

Initialization
Value

Change
Type

Equation

Battery::InputVoltage DERIVE NA CONSTANT NONE

Battery::RemainingE
nergy

INHERIT NA EQUATION Battery::RemainingEnergy(t) =
Battery::RemainingEnergy(t=0) +
t / 200

Parameters Initialization and Change

Component Interaction Equations

Battery::InputVoltage = PowerSource::VoltageOutput

Figure 20: Definition of state s5

s6 (Empty)

Component Interaction Equations

Vacuum

None

Parameters Initialization and Change

Parameter Initialization
Type

Initialization
Value

Change
Type

Equation

Vacuum::RemainingCapacity INHERIT NA EQUATI
ON

Vacuum::RemainingCapacity(t) =
Vacuum::RemainingCapacity(t=0) +
t / 200

Figure 21: Definition of state s5

Table 1:Limitations on combining initialization types and value-changing modes

Initialization type Value changing mode

CONSTANTASSIGN

EQUATION

CONSTANTINHERIT

EQUATION

DERIVE DERIVE

Table 2: Components and parameters used in AVC behavior specification

REALVoltageOutputPower
Source

ON/OFFBOOLEANPauseStatus

TRUE/FALSEBOOLEANAVCInContactObstacle

TRUE/FALSEBOOLEANMovePossible

ON/OFFBOOLEANPower

REALInputVoltage

0 to 100%REALRemainingCapacity

ON/OFFBOOLEANPowerInterface

ON/OFFBOOLEANPauseStatus

0 to 100%REALRemainingEnergy

TRUE/FALSEBOOLEANLocationVisited

TRUE/FALSEBOOLEANObstacleInContact

REALAreaCoveredSurface

REALSpeedAVC

ConventionTypeParameterComponent

Table 3: Event space used in AVC behavioral specification

Parameter Value

Surface::LocationVisited {TRUE, FALSE}

{TRUE, FALSE}

Interface::Power {ON, OFF}

Interface::PauseStatus {ON, OFF}

{TRUE, FALSE}

Surface::MovePossible

Obstacle::AVCInContact

Table 4: Unsafe state used in AVC behavioral specification

AVC::RemainingEnergy ≤ 10%
AVC::RemainingCapacity ≤ 2%

Table 5: Decomposed components and parameters of AVC

Component Parameter Type Convention

Transporter Speed REAL

EnergyInput REAL

PauseStatus BOOLEAN ON/OFF

ObstacleInContact BOOLEAN TRUE/FALSE

PathPlanningAlg.(PPA) SpeedOutput REAL

Vacuum RemainingCapacity REAL 0 to 100%

Controller Power BOOLEAN ON/OFF

Battery InputVoltage REAL

RemainingEnergy REAL 0 to 100%

	1. Introduction
	2. Related work
	Previous research in conceptual design modeling area is main
	Class Definitions for Modeling Primitives
	4.1 Classes for Modeling Parameters and Parameter Interactio
	4.2 Classes for Modeling Components, Component Interactions,
	Class ComponentMapping can be derived from class CommonCoreR
	4.3 Classes for Modeling Interaction-States
	4.4 Classes for Modeling Event and Event Spaces
	4.5 Classes for Modeling Unsafe Parameter Value Sets
	4.6 Classes for Modeling Interaction-State Transitions and T

	5. Elaboration Operators
	6. Simulating Transition Diagrams
	7. Example of Modeling Autonomous Vacuum Cleaner
	8. Conclusions
	REFERENCES

