

An Architecture for Semantic Enterprise Application
Integration Standards

Nenad Anicic1, 2, Nenad Ivezic1, Albert Jones1

1 National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg,
MD 20899, USA {nanicic, nivezic, ajones}@nist.gov
2 Faculty of Organization Sciences, 154 Jove Ilica Street, 11000 Belgrade, Serbia
and Montenegro anicic.nenad@fon.bg.ac.yu

Abstract. Large, industry-wide interoperability projects use syntax-based
standards approaches to accomplish interoperable data exchange among enterprise
applications. We are investigating Semantic Web to advance these approaches. In
this paper, we describe an architecture for Semantic Enterprise Application
Integration Standards as a basis for experimental assessment of the Semantic Web
technologies to enhance these standards approaches. The architecture relies on
automated translation of the XML Schema-based representation of business
document content models into an OWL-based ontology. Based on this architecture,
we use Semantic Web representation and reasoning mechanisms to support
consistency checking of ontological constructs and constraints specified within the
ontology. The proposed architecture is relevant (1) when managing multiple
enterprise ontologies derived from, and dependent on, a common ontology and (2)
when dealing with model-driven integration using customizable interface models
and testing of such integration efforts.

1 Introduction

The scope of the effort reported in this paper is defined partially by the type of
industrial problems we identify and partially by the traditional standards usage for
enterprise application integration (EAI). Both are discussed below.

1.1 A Prototypical Problem

Two independent but related industry consortia have developed enterprise
application integration standards in the form of business document content models.
Standards in Automotive Retail (STAR), an automotive retail consortium, has
developed XML Schema-based standards to encode business document content
models enable message exchanges among automotive manufacturers and their

2 Anicic, Ivezic, and Jones

retail houses. Each STAR application adopts and implements the proposed STAR
XML-based interface model [1]. Automotive Industry Action Group (AIAG), an
automotive supply chain consortium, has developed XML Schema-based standards
to encode its own business document content models that enable message
exchanges among automotive manufacturers and their suppliers. Each AIAG
application adopts and implements the AIAG interface model [2].

Both STAR and AIAG base their interface models on the same ‘horizontal’
XML document standard – the Open Applications Group (OAG) Business Object
Documents (BODs) [3]. The OAG BODs are specifications of general XML
Schema components and general aggregations that make up XML Schema-based
business document content models from these components. STAR and AIAG
independently use the OAG BOD specifications to customize their own business
document content models and define rules of usage and constraints. Typically,
usage rules and constraints are captured outside of the XML Schema using a
syntactic constraint language such as Schematron [6]. A significant manual task is
required to identify and reconcile differences among constraints and rules of the
two standards [4]. Consequently, major problems can arise whenever a STAR
application attempts to exchange automotive parts ordering data with an AIAG
application.

In this paper, we describe an approach to enable automated checking of
compatibility among rules and constraints that are independently developed within
the two (or more) standards that have a common terminology as their bases. Once
this approach is implemented, we expect more capable testability of integration
efforts and, consequently, more efficient application integration.

1.2 Traditional EAI Standards Architecture

Enterprise application integration (EAI) is being used extensively today. The left
portion of Figure 1 shows how a traditional EAI standards architecture could be
applied to our STAR-AIAG integration problem assuming, a pure XML Schema-
based approach. The following steps are required to translate data and to verify the
business document translation:

1.

2.

3.

4.

Identify and resolve manually any semantic and syntactic similarities and
differences between the interface models.
Create two XSLT stylesheet transformations from source to target and vice
versa.
Based on 2, apply translation to the source XML Schema interface model
to obtain a business document conformant to the target XML Schema
interface model.
Validate translation using equivalence test. This validation may be done by
applying an equivalence test between the initial source business document
and the final source business document that is obtained through a sequence
of two (forward and reverse) translations compatible with XSLT
transformations from step 2.

Validation using an equivalence test is not straightforward because issues that
require capabilities beyond a simple, syntax-based equivalence checking arise
often. Consider the following two examples. First, elements that are ordered

 An Architecture for Semantic Enterprise Application Integration Standards 3

differently syntactically may, in fact, be equivalent semantically, if that order is not
significant. Second, a time period can be specified either by a start date with an
end date or with a start date and a duration. While they are semantically
equivalent, they are syntactically quite different.

Fig. 1. Traditional and Semantic Web-based EAI Standards Architectures.

2 A Semantic Web-Based EAI Standards Architecture

For our approach, which is shown in the right portion of Figure 2, we use the
OWL-DL Web ontology language to integrate enterprise applications. The
language is based on a subset of the First Order Logic formalism called
Description Logics. To do this, we assume that the OAG, STAR, and AIAG
business document content models have been rendered into OWL-DL ontologies –
a step that will be discussed in detail later in the document. This, in turn, enables us
to readily use automated reasoning methods provided by DL reasoners such as
Racer [5]. These reasoning methods are fundamental enablers of automated
transformations, mapping and translation functions, between OWL-DL interface
models that are independently developed but based on a common terminology.

The following steps are envisioned to translate and verify the translations in the
proposed architecture. We provide details of executing these steps below.

1. Perform model-based equivalence analysis of STAR and AIAG schemas.
a. Create ontologies of the common OAG-based general

terminology and from respective XML Schemas for STAR and
AIAG.

4 Anicic, Ivezic, and Jones

b. Create a merged ontology from independently developed STAR
and AIAG ontologies and check for unsatisfiability.

c. Identify similarity between two schemas based on the
comparison of their respective semantic models. (We assume that
a high degree of equivalence may be obtained as a result of
common usage of core components of the OAG standard.)

2. Apply semantic translation using the merged ontology and an OWL-DL
reasoner.

a. Translate the source (STAR) XML instance to the source
(STAR) OWL representation.

b. Check for consistency and sufficiency w.r.t the merged (source-
STAR+target-AIAG) ontology.

c. Classify the source OWL individual into the target ontology
(AIAG) and perform validation and serialization.

3 A Semantic Web-Based Integration Methodology

Figure 2 illustrates the proposed Web-based integration methodology using a
scenario-based view of the semantic integration architecture. The top portion
shows the ontology-creation activities. These activities, which occur at design
time, help us define and test possible interoperable data exchanges. The bottom
portion shows translation activities. These activities, which occur at run time, help
us reason about concrete transformation from one XML format to another.

OAG
XML

Schema

STAR
XML Schema

AIAG
XML Schema

AIAG
OWL DL

STAR
OWL DL

OAG
OWL DL

(Generalized
Terminology)

DL Reasoner

1

Apply Xsd2Owl
XSLT Transformatione

Calculate
Concept

Subsumption
 & Check

Satisfiability

2

Create Regular Terminologies
(each concept contains a

definition)

Calculate New
Concept Hierarchies
/ Check Satisfiability

4

3

STAR
XML Data

AIAG
XML data

5

NIST-OWL
Integrator

6
 STAR OWL

data
Apply Xml2Owl
Transformation

(XSLT)

 AIAG OWL
data

7

11

8

Check STAR Data
Consistency
(w.r.t. Merged Ontology)

CCrreeaattiinngg oonnttoollooggyy ((ddeessiiggnn ttiimmee))

TTrraannssllaattiioonn

AIAG
STAR
OAG

10

9

Validate Source Data
(CWA Reasoning

w.r.t. STAR ontology)

Owl2Xml
Serialization

Validate Target Data
w.r.t. AIAG ontology

Compute Target Data
(Individual
Classification)

Create
Satisfiable

Merged
Ontology

Fig. 2. Scenario-based view of the semantic integration architecture.

 An Architecture for Semantic Enterprise Application Integration Standards 5

We give a brief summary of the sequence of the eleven activities from Figure 2.

1.

2.

3.

4.

5.

Apply Xsd2Owl Transformation. We began by applying an automated
transformation to the OAG XML Schema representation to obtain an OAG
OWL-based generalized ontology. This is a generalized ontology that
contains concept descriptions only and no definitions 1. The automated
transformation was possible because we took into account the decisions
and the rationale that led to the OAG components and document design.
The automated transformation is captured in the XSLT transformation
rules.
Calculate concept subsumption and check satisfiability of the new
OAG ontology. This results in a new subsumption hierarchy for the OAG
generalized ontology and an indication from the reasoner that the new
ontology is either satisfiable or not. It can be unsatisfiable for several
reasons. For example, an element that is mandatory in the super-type
declaration is only optional in the new declaration. All such conditions
must be resolved before proceeding.
Create regular terminologies. Once we have a satisfiable generalized
terminology, any individual application integrator, typically a human
being, can use the terminology to specify additional constraints or to
provide definitions for concepts in a particular context. The original STAR
and AIAG Schemas include free-text descriptions of the additional
document constraints that need to be ‘layered on top’ of the OAG
generalized terminology. For each such schema, these constraints are used
to specify concept definitions based on the original concept descriptions.
The outcome of this step are regular STAR and AIAG terminologies.
Check satisfiability of each individual regular ontology. Similar to Step
2, the outcome of this step is an indication from the reasoner whether each
individual ontology (i.e., regular terminology) is satisfiable. All
unsatisfiable conditions must be resolved before proceeding to step 5.
Apply automated transformation from source (STAR) XML data to
OWL data. This step initiates the run-time activities required for a
successful and interoperable data exchange. We transform XMLSchema
instances into OWL-DL individuals that conform to the OWL model-based
assumptions used in ontological reasoning. The outcome is STAR OWL
data that corresponds to the initial XML data and transformed with respect
to STAR ontology. The transormation rules are only dependent on XML
Schema to OWL mapping (i.e., the transformation includes annotation of
XML data with coresponding ontology (e.g., STAR ontology)).

1 Concept refers to expressions that define a class in the OWL-DL language, which also
provides constructs for establishing relationships between concepts. The meaning of
concepts is specified using logical semantics, which distinguishes between concept
description and concept definition. Concept description refers to a class with necessary
conditions only; concept definition refers to a class with both necessary and sufficient
conditions.

6 Anicic, Ivezic, and Jones

6.

7.

8.

9.

Validate source data. Validation of STAR OWL data includes
consistency checking under both Open World Assumption (OWA) and
Closed World Assumption (CWA). The outcome of this step, if successful,
is an indication from the reasoner that the STAR OWL data are consistent
with respect to the STAR ontology. An individual is valid only if it is
consistent (belongs to specific concept) in both OWA reasoning and CWA
reasoning. Validation is necessary to check the transformation and to
check other semantic constraints, which are defined in the corresponding
ontology. Examples of such constraints include additional semantic
business rules based on Schematron rules and free-text descriptions
provided with a schema. Because a DL reasoner makes the open world
assumption, if a mandatory property is not present, the reasoner cannot
conclude that it is false (as it is wrong to assume it will never be present).
For that reason, the reasoner can conclude only contradictory but not
insufficient information (i.e., missing properties). In a B2B context, a
document being exchanged contains all required information and in order
to compute that an instance has all mandatory properties it is necessary to
validate instance with CWA.
Create a merged ontology and check satifiability. In order to translate
from STAR to AIAG OWL data, we need to create a merged ontology
from the two individual ones and calculate new, concept-subsumption
hierarchy2. Because new independently defined ontologies are based on the
same generalized OAG terminology, a reasoner may combine axioms and
calculate the new, concept-subsumption hierarchy. In the merged ontology
one concept might be dependent on some concepts in the other ontology
namespace. The merged semantics provides support for inferences over the
source data that may yield unexpected results (such as those we discussed
in the previous section). However, it is possible that the merged ontology
is created at design time. In that case, the merged ontology will be
referenced and (for the performance reasons) can be reduced only to
include a sufficient set of concepts that is needed during the data
transformation step. This step also includes satisfiability checking of
merged concepts form source and the target ontology. The tool has to
check satisfiability for every concept of the merged ontology and only a
satisfiable merged ontology can be used in the next steps.
Check consistency of the source (STAR) data with the new merged
ontology. The successful outcome of this step is an indication from the
reasoner that all STAR OWL source data are consistent with respect to the
merged ontology. Because the integration tool is a complete reasoner that
includes consistency checkers, all axioms of the merged ontology must be
loaded.
Compute classification of the source (STAR) OWL data in the target
(AIAG) ontology. Assuming successful completion of the preceding steps,
then we can use the individual classification capability of a DL reasoner to

2 We include this step in the run-time activities, but it could also be done at design time.

 An Architecture for Semantic Enterprise Application Integration Standards 7

compute target data in the AIAG ontology. The result is an assignment of
the STAR OWL data to the specific AIAG class(es). At this point, specific
STAR XML data may be successfully translated into target AIAG XML
data. This, however, doesn’t mean that all STAR data may be successfully
translated to AIAG.

10.

11.

Apply validation of newly created target (AIAG) OWL data. The
outcome of this step, if successful, is an indication from the reasoner that
the AIAG OWL data are consistent with respect to the AIAG ontology. As
discussed above, this requires OWA consistency and validation that the
same individual is a valid instance of the target concept in the CWA
reasoning. The individual consistency checking in OWA is already done
with respect to the merged ontology. The OWL individuals classified to the
AIAG concept hierarchy have to be checked for sufficiency with respective
to target (AIAG) concepts. If an individual is inconsistent in CWA, then
translation is not possible. If successful, however, then we can be sure that
specific XML source data can be translated into a target OWL data and that
the integration will succeed.
Apply serialization of AIAG OWL data into AIAG XML data. The
outcome of this step is an AIAG XML instance that preserves semantics
defined in the original STAR OWL data. For serialization into XML
format we use concept and property hierarchy. If we use default XSD
serialization from our OWL ontology, then the serialization is also
provided. If we have a customized mapping to specific XMLSchema
syntax (e.g., a sequence of elements defined in separate file), then that
serialization is dependent on the mapping rules. The algorithm for
serialization takes into account information provided during step 1 where
all information about the source XML Schema syntax is captured.

4 Initial Findings and Lessons Learned

In this section, we discuss some initial findings and lessons learned.

4.1 Individual Equivalence Test

When dealing with B2B application integration, it is imperative to determine if two
business documents are semantically equal. As mentioned before, during XML to
OWL transformation, every new OWL individual is assigned a new URI identifier.
That identifier is only necessary for individual classification and its actual value is
not significant. That means that the same XML business document instance may be
transformed to individuals with different URI identifiers but the same content. For
datatypes, "semantically equal" means that the lexical representation of the literals
maps to the same value. For individuals it means that they either have the same
URI reference or are defined as being the same individual. We have developed a
tool that helps us to do this. It is described below.

8 Anicic, Ivezic, and Jones

For every individual, the testing tool creates a temporary concept definition that
contains the values constrained to the values specified in the individual properties.
In addition, cardinality constraints on the properties of the temporary concept
definition are based on the property occurrence in the particular individual. All the
temporary concepts are considered by the reasoner to determine equivalence
among the corresponding individuals. Then, for every pair of equivalent concepts,
the tool asserts sameAs mapping between two individuals. This means that the tool
creates an assertion that explicitly defines equality between the two individuals.
That new assertion will help the reasoner to calculate any new equivalence. For
example, consider two individuals a1 and a2 that belong to the same concept C1
with same occurrence of the property p1 but with different fillers b1 and b2 (i.e.,
values of the property p1). If we calculate or insert the equality between fillers
b1=b2, then corresponding temporary concepts for individuals a1 and a2 will be
equivalent and, based on our definition of semantically equal individuals, we can
conclude equality between individuals a1 and a2.The process is iterative and will
end when no new concept equivalence is identified.

We emphasize that a reasoner can calculate a new subsumption tree and
identify new concept equivalence by taking into account both concept definitions
and individual assertions.

4.2 Concept Equivalence With Inconsistent Document Instances

We investigated whether two ontologies can facilitate interoperable data exchange
and we used reasoner capabilities to perform satisfiability check between them.
We determined that a necessary condition for interoperable data exchange is that
there are no contradictory concepts in the merged ontology. It is, unfortunately,
not a sufficient condition because some individuals may violate business
constraints defined for a particular concept. Consider the following example.

Suppose a mandatory property, a necessary condition, is present within the
target concept. Since the reasoner uses only definitions to calculate subsumption
and equivalence among concepts and since a mandatory property is only a
necessary condition, it will not be part of definition. This may give rise to an
inconsistent source individual if the source concept specifies that property as
optional. In a general case, any logical constraint that is not a part of either target
or source concept definition but only their necessary conditions may cause a
similar inconsistency and prevent interoperable data exchange.

Human designers face a similar problem every time they create a normalized
ontology for a new business document content model specification. This problem
deals with establishing whether an axiom is a part of concept definition, which
includes necessary and sufficient conditions or only a part of concept description,
which includes necessary conditions only. This distinction is critical because a
concept definition is the mechanism used to classify concepts.

We are in a position to develop a tool that helps the designer evaluate
alternative ways to specify concept description and concept definitions and to
determine the potential drawbacks of each. We also plan to investigate ontology
design patterns, which may avoid the “concept equivalence-individual

 An Architecture for Semantic Enterprise Application Integration Standards 9

inconsistency” type of translation problem. Additionally, we may expand default
reasoner satisfiability checking to provide additional testing capability.

4.3 Lessons Learned

Based on our initial examination of Semantic Web technologies, we believe that
they are sufficiently mature to allow experimental assessment in a fairly realistic
enterprise-application-integration context. Our experiments used production-level
XML Schema encoding of OAGIS 9.0 core components. The Xsd2Owl
transformation takes a complete set of core component types from OAGIS 9.0 and
is capable of creating OWL-DL ontology successfully. We worked successfully
with some, but not all, examples of XML Schema definitions for OAGIS Business
Object Documents (BODs).

The currently available tools are clearly not sufficiently robust and scalable for
risk-free development of specialized add-on tools to support industrial
interoperability efforts with all the complexities typically encountered. However,
the rate of maturation and adoption of these tools is encouraging and it seems that
these issues of robustness and scalability may be addressed in the near future.

When planning for future usage of the Semantic Web technologies within
industrial enterprise application integration efforts, it is important to provide a
transitioning path for moving from XML Schema-based to OWL-based application
integration. While there are potentially other significant issues, we showed that it
is possible to translate XML instances into OWL individuals and, in the opposite
direction, to serialize OWL individuals as XML instances conforming to a specific
XML Schema. This capability is important when presenting these new approaches
to industrial communities as it shows that the existing legacy applications do not
have to change all their interfaces over night to enjoy the benefits of this new
technology. We were encouraged by the initial positive reactions from industry to
the initial results from our experimental approach.

5 Conclusions

In this paper, we described a Semantic Web-based approach and a methodology to
enhance syntax-based standards for enterprise applications integration (EAI). The
methodology contains a number of integration and validation steps that are
performed both at design time and run time. During design time, the methodology
supports development of generalized and normalized ontologies and allows
model-based similarity analysis of these ontological models. During run time, the
methodology enables semantic translation of instances of business documents
using the previously developed ontologies and automated reasoning tools.

Initial findings in testing the methodology show interesting capabilities such as
the ability to perform individual equivalence tests that are content based. Through
experimental work, we have gained a significant insight into the issues of
necessary and sufficient conditions for achieving interoperable data exchange. The

10 Anicic, Ivezic, and Jones

lessons learned so far indicate that the Semantic Web technologies are sufficiently
mature to allow experimental assessment in a fairly realistic enterprise application
integration context.

Our immediate future work will focus on further assessment of the initial ideas
for Semantic Web-based EAI standards. The work will draw from on-going
industrial standards-based integration efforts such as the ones going within STAR
and AIAG industrial groups. We expect to identify key technical issues for the
proposed approach, and through experimental demonstration show how such issues
may or may not be addressed using the proposed approach. Our key contribution,
we anticipate, will be to provide an increased understanding of whether and how
Semantic Web technologies may be applied in a near future to industrial
integration efforts.

Disclaimer

Certain commercial software products are identified in this paper. These products
were used only for demonstration purposes. This use does not imply approval or
endorsement by NIST, nor does it imply these products are necessarily the best
available for the purpose.

References

[1] Standards for Technology in Automotive Retail (STAR) Web Site, accessed
November 2004. Available at http://www.starstandard.org/.

[2] Automotive Industry Action Group (AIAG) Web Site, accessed November 2004.
Available at http://www.aiag.org/.

[3] Open Applications Group (OAG) Web Site, accessed November 2004. Available at
http://www.openapplications.org/.

[4] D.Trastour, C.Preist , and D.Coleman, “Using Semantic Web Technology to Enhance
Current Business-to-Business Integration Approaches”. 7th IEEE International
Enterprise Distributed Object Computing Conference, EDOC 2003, Brisbane,
Australia, Sept 16-19th , 2003.

[5] V. Haarslev and R. Moller. Description of the RACER system and its applications. In
Proceedings InternationalWorkshop on Description Logics (DL-2001), 2001.

[6] R. Jelliffe, The Schematron Assertion Languages 1.5. Web Site, accessed November
2004. Available at http://xml.ascc.net/resource/schematron/Schematron2000.html.

http://www.aiag.org/
http://www.aiag.org/
http://www.openapplications.org/

	An Architecture for Semantic Enterprise Application Integration Standards
	1 Introduction
	1.1 A Prototypical Problem
	1.2 Traditional EAI Standards Architecture
	2 A Semantic Web-Based EAI Standards Architecture
	3 A Semantic Web-Based Integration Methodology
	4 Initial Findings and Lessons Learned
	4.1 Individual Equivalence Test
	4.2 Concept Equivalence With Inconsistent Document Instances
	4.3 Lessons Learned

	5 Conclusions
	Disclaimer
	References

