
 

An Architecture for Semantic Enterprise Application 
Integration Standards 

Nenad Anicic1, 2, Nenad Ivezic1, Albert Jones1 

 
1 National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, 
MD 20899, USA  {nanicic, nivezic, ajones}@nist.gov  
2 Faculty of Organization Sciences, 154 Jove Ilica Street, 11000 Belgrade, Serbia 
and Montenegro  anicic.nenad@fon.bg.ac.yu 

 

Abstract. Large, industry-wide interoperability projects use syntax-based 
standards approaches to accomplish interoperable data exchange among enterprise 
applications. We are investigating Semantic Web to advance these approaches. In 
this paper, we describe an architecture for Semantic Enterprise Application 
Integration Standards as a basis for experimental assessment of the Semantic Web 
technologies to enhance these standards approaches. The architecture relies on 
automated translation of the XML Schema-based representation of business 
document content models into an OWL-based ontology. Based on this architecture, 
we use Semantic Web representation and reasoning mechanisms to support 
consistency checking of ontological constructs and constraints specified within the 
ontology.  The proposed architecture is relevant (1) when managing multiple 
enterprise ontologies derived from, and dependent on, a common ontology and (2) 
when dealing with model-driven integration using customizable interface models 
and testing of such integration efforts. 
 

1 Introduction 

The scope of the effort reported in this paper is defined partially by the type of 
industrial problems we identify and partially by the traditional standards usage for 
enterprise application integration (EAI).  Both are discussed below.  

1.1 A Prototypical Problem 

Two independent but related industry consortia have developed enterprise 
application integration standards in the form of business document content models.  
Standards in Automotive Retail (STAR), an automotive retail consortium, has 
developed XML Schema-based standards to encode business document content 
models enable message exchanges among automotive manufacturers and their 
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retail houses.  Each STAR application adopts and implements the proposed STAR 
XML-based interface model [1].  Automotive Industry Action Group (AIAG), an 
automotive supply chain consortium, has developed XML Schema-based standards 
to encode its own business document content models that enable message 
exchanges among automotive manufacturers and their suppliers.  Each AIAG 
application adopts and implements the AIAG interface model [2]. 

Both STAR and AIAG base their interface models on the same ‘horizontal’ 
XML document standard – the Open Applications Group (OAG) Business Object 
Documents (BODs) [3].  The OAG BODs are specifications of general XML 
Schema components and general aggregations that make up XML Schema-based 
business document content models from these components.  STAR and AIAG 
independently use the OAG BOD specifications to customize their own business 
document content models and define rules of usage and constraints.  Typically, 
usage rules and constraints are captured outside of the XML Schema using a 
syntactic constraint language such as Schematron [6].   A significant manual task is 
required to identify and reconcile differences among constraints and rules of the 
two standards [4].  Consequently, major problems can arise whenever a STAR 
application attempts to exchange automotive parts ordering data with an AIAG 
application. 

In this paper, we describe an approach to enable automated checking of 
compatibility among rules and constraints that are independently developed within 
the two (or more) standards that have a common terminology as their bases.  Once 
this approach is implemented, we expect more capable testability of integration 
efforts and, consequently, more efficient application integration. 

1.2 Traditional EAI Standards Architecture 

Enterprise application integration (EAI) is being used extensively today.  The left 
portion of Figure 1 shows how a traditional EAI standards architecture could be 
applied to our STAR-AIAG integration problem assuming, a pure XML Schema-
based approach. The following steps are required to translate data and to verify the 
business document translation: 

1. 

2. 

3. 

4. 

Identify and resolve manually any semantic and syntactic similarities and 
differences between the interface models. 
Create two XSLT stylesheet transformations from source to target and vice 
versa. 
Based on 2, apply translation to the source XML Schema interface model 
to obtain a business document conformant to the target XML Schema 
interface model. 
Validate translation using equivalence test. This validation may be done by 
applying an equivalence test between the initial source business document 
and the final source business document that is obtained through a sequence 
of two (forward and reverse) translations compatible with XSLT 
transformations from step 2. 

Validation using an equivalence test is not straightforward because issues that 
require capabilities beyond a simple, syntax-based equivalence checking arise 
often.  Consider the following two examples. First, elements that are ordered 
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differently syntactically may, in fact, be equivalent semantically, if that order is not 
significant.  Second, a time period can be specified either by a start date with an 
end date or with a start date and a duration.  While they are semantically 
equivalent, they are syntactically quite different. 
 

 
 
Fig. 1.  Traditional and Semantic Web-based EAI Standards Architectures. 
 

2  A Semantic Web-Based EAI Standards Architecture 

For our approach, which is shown in the right portion of Figure 2, we use the 
OWL-DL Web ontology language to integrate enterprise applications.  The 
language is based on a subset of the First Order Logic formalism called 
Description Logics.  To do this, we assume that the OAG, STAR, and AIAG 
business document content models have been rendered into OWL-DL ontologies – 
a step that will be discussed in detail later in the document. This, in turn, enables us 
to readily use automated reasoning methods provided by DL reasoners such as 
Racer [5].  These reasoning methods are fundamental enablers of automated 
transformations, mapping and translation functions, between OWL-DL interface 
models that are independently developed but based on a common terminology. 

The following steps are envisioned to translate and verify the translations in the 
proposed architecture.   We provide details of executing these steps below. 

1. Perform model-based equivalence analysis of STAR and AIAG schemas. 
a. Create ontologies of the common OAG-based general 

terminology and from respective XML Schemas for STAR and 
AIAG. 
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b. Create a merged ontology from independently developed STAR 
and AIAG ontologies and check for unsatisfiability. 

c. Identify similarity between two schemas based on the 
comparison of their respective semantic models. (We assume that 
a high degree of equivalence may be obtained as a result of 
common usage of core components of the OAG standard.) 

2. Apply semantic translation using the merged ontology and an OWL-DL 
reasoner. 

a. Translate the source (STAR) XML instance to the source 
(STAR) OWL representation. 

b. Check for consistency and sufficiency w.r.t the merged (source-
STAR+target-AIAG) ontology. 

c. Classify the source OWL individual into the target ontology 
(AIAG) and perform validation and serialization. 

 

3  A Semantic Web-Based Integration Methodology 

Figure 2 illustrates the proposed Web-based integration methodology using a 
scenario-based view of the semantic integration architecture.  The top portion 
shows the ontology-creation activities.  These activities, which occur at design 
time, help us define and test possible interoperable data exchanges. The bottom 
portion shows   translation activities. These activities, which occur at run time, help 
us reason about concrete transformation from one XML format to another. 
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Fig. 2.  Scenario-based view of the semantic integration architecture. 
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We give a brief summary of the sequence of the eleven activities from  Figure 2. 

1. 

2. 

3. 

4. 

5. 

                                                

Apply Xsd2Owl Transformation.  We began by applying an automated 
transformation to the OAG XML Schema representation to obtain an OAG 
OWL-based generalized ontology. This is a generalized ontology that 
contains concept descriptions only and no definitions 1.  The automated 
transformation was possible because we took into account the decisions 
and the rationale that led to the OAG components and document design.  
The automated transformation is captured in the XSLT transformation 
rules. 
Calculate concept subsumption and check satisfiability of the new 
OAG ontology.  This results in a new subsumption hierarchy for the OAG 
generalized ontology and an indication from the reasoner that the new 
ontology is either satisfiable or not.  It can be unsatisfiable for several 
reasons. For example, an element that is mandatory in the super-type 
declaration is only optional in the new declaration.  All such conditions 
must be resolved before proceeding. 
Create regular terminologies.  Once we have a satisfiable generalized 
terminology, any individual application integrator, typically a human 
being, can use the terminology to specify additional constraints or to 
provide definitions for concepts in a particular context.  The original STAR 
and AIAG Schemas include free-text descriptions of the additional 
document constraints that need to be ‘layered on top’ of the OAG 
generalized terminology.  For each such schema, these constraints are used 
to specify concept definitions based on the original concept descriptions.  
The outcome of this step are  regular STAR and AIAG terminologies. 
Check satisfiability of each individual regular ontology.  Similar to Step 
2, the outcome of this step is an indication from the reasoner whether each 
individual ontology (i.e., regular terminology) is satisfiable.  All 
unsatisfiable conditions must be resolved before proceeding to step 5. 
Apply automated transformation from source (STAR) XML data to 
OWL data.  This step initiates the run-time activities required for a 
successful and interoperable data exchange.  We transform XMLSchema 
instances into OWL-DL individuals that conform to the OWL model-based 
assumptions used in ontological reasoning. The outcome is STAR OWL 
data that corresponds to the initial XML data and transformed with respect 
to STAR ontology. The transormation rules are only dependent on XML 
Schema to OWL mapping (i.e., the transformation includes annotation of 
XML data with coresponding ontology (e.g., STAR ontology)). 

 
1 Concept refers to expressions that define a class in the OWL-DL language, which also 
provides constructs for establishing relationships between concepts. The meaning of 
concepts is specified using logical semantics, which distinguishes between concept 
description and concept definition. Concept description refers to a class with necessary 
conditions only; concept definition refers to a class with both necessary and sufficient 
conditions. 
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6. 

7. 

8. 

9. 

                                                

Validate source data.  Validation of STAR OWL data includes 
consistency checking under both Open World Assumption (OWA) and 
Closed World Assumption (CWA).  The outcome of this step, if successful, 
is an indication from the reasoner that the STAR OWL data are consistent 
with respect to the STAR ontology. An individual is valid only if it is 
consistent (belongs to specific concept) in both OWA reasoning and CWA 
reasoning.  Validation is necessary to check the transformation and to 
check other semantic constraints, which are defined in the corresponding 
ontology.  Examples of such constraints include additional semantic 
business rules based on Schematron rules and free-text descriptions 
provided with a schema. Because a DL reasoner makes the open world 
assumption, if a mandatory property is not present, the reasoner cannot 
conclude that it is false (as it is wrong to assume it will never be present). 
For that reason, the reasoner can conclude only contradictory but not 
insufficient information (i.e., missing properties). In a B2B context, a 
document being exchanged contains all required information and  in order 
to compute that an instance has all mandatory properties it is necessary to 
validate instance with CWA. 
Create a merged ontology and check satifiability.  In order to translate 
from STAR to AIAG OWL data, we need to create a merged ontology 
from the two individual ones and calculate new, concept-subsumption 
hierarchy2. Because new independently defined ontologies are based on the 
same generalized OAG terminology, a reasoner may combine axioms and 
calculate the new, concept-subsumption hierarchy. In the merged ontology 
one concept might be dependent on some concepts in the other ontology 
namespace. The merged semantics provides support for inferences over the 
source data that may yield unexpected results (such as those we discussed 
in the previous section).  However, it is possible that the merged ontology 
is created at design time. In that case, the merged ontology will be 
referenced and  (for the performance reasons) can be reduced only to 
include a sufficient set of concepts that is needed during the data 
transformation step. This step also includes satisfiability checking of 
merged concepts form source and the target ontology. The tool has to 
check satisfiability for every concept of the merged ontology and only a 
satisfiable merged ontology can be used in the next steps.   
Check consistency of the source (STAR) data with the new merged 
ontology.  The successful outcome of this step is an indication from the 
reasoner that all STAR OWL source data are consistent with respect to the 
merged ontology.  Because the integration tool is a complete reasoner that 
includes consistency checkers, all axioms of the merged ontology must be 
loaded.  
Compute classification of the source (STAR) OWL data in the target 
(AIAG) ontology. Assuming successful completion of the preceding steps,  
then we can use the individual classification capability of a DL reasoner to 

 
2 We include this step in the run-time activities, but it could also be done at design time.   
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compute target data in the AIAG ontology.  The result is an assignment of 
the STAR OWL data to the specific AIAG class(es). At this point, specific 
STAR XML data may be successfully translated into target AIAG XML 
data.  This, however, doesn’t mean that all STAR data may be successfully 
translated to AIAG. 

10. 

11. 

Apply validation of newly created target (AIAG) OWL data. The 
outcome of this step, if successful, is an indication from the reasoner that 
the AIAG OWL data are consistent with respect to the AIAG ontology.  As 
discussed above, this requires OWA consistency and validation that the 
same individual is a valid instance of the target concept in the CWA 
reasoning.  The individual consistency checking in OWA is already done 
with respect to the merged ontology. The OWL individuals classified to the 
AIAG concept hierarchy have to be checked for sufficiency with respective 
to target (AIAG) concepts. If an individual is inconsistent in CWA, then 
translation is not possible.  If successful, however, then we can be sure that 
specific XML source data can be translated into a target OWL data and that 
the integration will succeed. 
Apply serialization of AIAG OWL data into AIAG XML data.  The 
outcome of this step is an AIAG XML instance that preserves semantics 
defined in the original STAR OWL data.  For serialization into XML 
format we use concept and property hierarchy. If we use default XSD 
serialization from our OWL ontology, then the serialization is also 
provided. If we have a customized mapping to specific XMLSchema 
syntax (e.g., a sequence of elements defined in separate file), then that 
serialization is dependent on the mapping rules. The algorithm for 
serialization takes into account information provided during step 1 where 
all information about the source XML Schema syntax is captured.   

 

4  Initial Findings and Lessons Learned 

In this section, we discuss some initial findings and lessons learned. 

4.1  Individual Equivalence Test 

When dealing with B2B application integration, it is imperative to determine if two 
business documents are semantically equal. As mentioned before, during XML to 
OWL transformation, every new OWL individual is assigned a new URI identifier. 
That identifier is only necessary for individual classification and its actual value is 
not significant. That means that the same XML business document instance may be 
transformed to individuals with different URI identifiers but the same content. For 
datatypes, "semantically equal" means that the lexical representation of the literals 
maps to the same value. For individuals it means that they either have the same 
URI reference or are defined as being the same individual.  We have developed a 
tool that helps us to do this.  It is described below. 
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For every individual, the testing tool creates a temporary concept definition that 
contains the values constrained to the values specified in the individual properties.  
In addition, cardinality constraints on the properties of the temporary concept 
definition are based on the property occurrence in the particular individual. All the 
temporary concepts are considered by the reasoner to determine equivalence 
among the corresponding individuals.  Then, for every pair of equivalent concepts, 
the tool asserts sameAs mapping between two individuals. This means that the tool 
creates an assertion that explicitly defines equality between the two individuals. 
That new assertion will help the reasoner to calculate any new equivalence. For 
example, consider two individuals a1 and a2 that belong to the same concept C1 
with same occurrence of the property p1 but with different fillers b1 and b2 (i.e., 
values of the property p1). If we calculate or insert the equality between fillers 
b1=b2, then corresponding temporary concepts for individuals a1 and a2 will be 
equivalent and, based on our definition of semantically equal individuals, we can 
conclude equality between individuals a1 and a2.The process is iterative and will 
end when no new concept equivalence is identified. 

We emphasize that a reasoner can calculate a new subsumption tree and 
identify new concept equivalence by taking into account both concept definitions 
and individual assertions. 
 

4.2  Concept Equivalence With Inconsistent Document Instances 

We investigated whether two ontologies can facilitate interoperable data exchange 
and we used reasoner capabilities to perform satisfiability check between them.  
We determined that a necessary condition for interoperable data exchange is that 
there are no contradictory concepts in the merged ontology.  It is, unfortunately, 
not a sufficient condition because some individuals may violate business 
constraints defined for a particular concept.  Consider the following example. 

Suppose a mandatory property, a necessary condition, is present within the 
target concept. Since the reasoner uses only definitions to calculate subsumption 
and equivalence among concepts and since a mandatory property is only a 
necessary condition, it will not be part of definition. This may give rise to an 
inconsistent source individual if the source concept specifies that property as 
optional.  In a general case, any logical constraint that is not a part of either target 
or source concept definition but only their necessary conditions may cause a 
similar inconsistency and prevent interoperable data exchange. 

Human designers face a similar problem every time they create a normalized 
ontology for a new business document content model specification. This problem 
deals with establishing whether an axiom is a part of concept definition, which 
includes necessary and sufficient conditions or only a part of concept description, 
which includes necessary conditions only. This distinction is critical because a 
concept definition is the mechanism used to classify concepts. 

We are in a position to develop a tool that helps the designer evaluate 
alternative ways to specify concept description and concept definitions and to 
determine the potential drawbacks of each. We also plan to investigate ontology 
design patterns, which may avoid the “concept equivalence-individual 
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inconsistency” type of translation problem. Additionally, we may expand default 
reasoner satisfiability checking to provide additional testing capability. 
 

4.3  Lessons Learned 

Based on our initial examination of Semantic Web technologies, we believe that 
they are sufficiently mature to allow experimental assessment in a fairly realistic 
enterprise-application-integration context.  Our experiments used production-level 
XML Schema encoding of OAGIS 9.0 core components.  The Xsd2Owl 
transformation takes a complete set of core component types from OAGIS 9.0 and 
is capable of creating OWL-DL ontology successfully.  We worked successfully 
with some, but not all, examples of XML Schema definitions for OAGIS Business 
Object Documents (BODs). 

The currently available tools are clearly not sufficiently robust and scalable for 
risk-free development of specialized add-on tools to support industrial 
interoperability efforts with all the complexities typically encountered.  However, 
the rate of maturation and adoption of these tools is encouraging and it seems that 
these issues of robustness and scalability may be addressed in the near future. 

When planning for future usage of the Semantic Web technologies within 
industrial enterprise application integration efforts, it is important to provide a 
transitioning path for moving from XML Schema-based to OWL-based application 
integration.  While there are potentially other significant issues, we showed that it 
is possible to translate XML instances into OWL individuals and, in the opposite 
direction, to serialize OWL individuals as XML instances conforming to a specific 
XML Schema.  This capability is important when presenting these new approaches 
to industrial communities as it shows that the existing legacy applications do not 
have to change all their interfaces over night to enjoy the benefits of this new 
technology.  We were encouraged by the initial positive reactions from industry to 
the initial results from our experimental approach. 
 

5  Conclusions 

In this paper, we described a Semantic Web-based approach and a methodology to 
enhance syntax-based standards for enterprise applications integration (EAI).  The 
methodology contains a number of integration and validation steps that are 
performed both at design time and run time.  During design time, the methodology 
supports development of generalized and normalized ontologies  and allows 
model-based similarity analysis of these ontological models.  During run time, the 
methodology enables semantic translation of instances of business documents 
using the previously developed ontologies and automated reasoning tools. 

Initial findings in testing the methodology show interesting capabilities such as 
the ability to perform individual equivalence tests that are content based.  Through 
experimental work, we have gained a significant insight into the issues of 
necessary and sufficient conditions for achieving interoperable data exchange.  The 
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lessons learned so far indicate that the Semantic Web technologies are sufficiently 
mature to allow experimental assessment in a fairly realistic enterprise application 
integration context. 

Our immediate future work will focus on further assessment of the initial ideas 
for Semantic Web-based EAI standards.  The work will draw from on-going 
industrial standards-based integration efforts such as the ones going within STAR 
and AIAG industrial groups.  We expect to identify key technical issues for the 
proposed approach, and through experimental demonstration show how such issues 
may or may not be addressed using the proposed approach. Our key contribution, 
we anticipate, will be to provide an increased understanding of whether and how 
Semantic Web technologies may be applied in a near future to industrial 
integration efforts. 
 

Disclaimer 

Certain commercial software products are identified in this paper. These products 
were used only for demonstration purposes. This use does not imply approval or 
endorsement by NIST, nor does it imply these products are necessarily the best 
available for the purpose. 
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