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Abstract 

This paper describes an experimental Flow-based Infrastructure for Composing Autonomous 

Services (FICAS), which supports a service-composition paradigm that integrates loosely-

coupled software components.  For traditional software service composition frameworks, the 

data-flows and control-flows are centrally coordinated, and the composed service operates as the 

hub for all data communications. FICAS, on the other hand, employs a distributed data flow 

approach that supports direct data exchanges among web services. The distributed data flows can 

avoid many performance bottlenecks attending centralized processing. The performance and 

flexibility of FICAS are further improved by adopting active mediation, which distributes 

computations within the service framework, and reduces the amount of data traffic significantly 

by moving computations closer to the data.  A system has been prototyped to integrate several 

project management and scheduling software applications. The prototype implementation 

demonstrates that distributed data flow, combining with active mediation, is effective and more 

efficient than centralized processing when integrating large engineering software services.   
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1 Introduction 

A software engineering paradigm where large software services are decomposed into 

cooperating components has been envisioned for over 30 years.  Under this paradigm, software 

components are linked together through an integration framework to form composed software 

applications [1].  Software components are provided as processes managed by independent 

service providers.  The components have clearly defined functions with accessible interfaces. 

These components are either existing applications or new programs developed for specific tasks.  

These software applications are wrapped into autonomous services whose functionalities are then 

composed together.  The composed application is called a megaservice, which acts as a central 

controller for invoking, monitoring, querying, and terminating the autonomous services.  With 

the rapid development of the Internet and networking technologies, the computing environment 

is evolving toward an interconnected web of autonomous services, both inside and outside of 

enterprise boundaries. 

Performance remains to be an issue for most common service composition frameworks.  In a 

typical composed application, all results from one web service are shipped to the megaservice, 

handled there, and then shipped to the next web service.  Data are exchanged using a client-

server model where the megaservice serves as the central hub of all data traffic.  In most cases, 

this centralized data-flow approach is inefficient for integrating large-scale software services.  

This centralized data-flow approach is the default mode in many current software integration 

frameworks such as CORBA [2], J2EE [3], and Microsoft .NET [4].  

To deal with the performance issue associated with the current service composition 

frameworks, we demonstrate a Flow-based Infrastructure for Composing Web Services (FICAS) 

[5].  FICAS is implemented as a collection of software modules that support the construction of 

web services, facilitate the functional composition of web services into composed application, 

and conduct the execution of the enhanced applications. A distributed data-flow approach, 

which allows data to be exchanged directly among the services, is adopted in FICAS framework 

to address three design concerns: (1) Scalability – integration and management of a large number 

of autonomous services in the service composition infrastructure; (2) Performance – high 

efficiency in the execution of megaservices; and (3) Ease of composition – effective and 

convenient specification of service compositions by the application programmers.  FICAS uses 
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distributed data-flows to achieve better scalability and performance without sacrificing ease of 

composition.  

FICAS also applies the concept of active mediation to enhance efficient execution of 

applications employing composed services.  Active mediation allows code to be provided to 

remote services to resolve format and content incompatibilities [6].  Without being able to 

delegate such a capability to the remote service such incompatibilities have to be resolved at the 

application site.  Active mediation exploits the notion of mobile code [7] to provide for 

unforeseen remote information processing.  Specifically, matching, reformatting, rearranging, 

and mapping of data being sent or received among services can be embodied in mobile code, and 

shipped by the composed application to the remote service as needed.  Remote services that can 

accept active mediation now have the ability to adapt their behavior to the client requests.  

Active mediation distributes a class of computations within the service framework, and reduces 

the amount of data traffic significantly by moving computations closer to the data. 

The paper is organized as follows.  Section 2 gives an overview of FICAS, and then defines a 

metamodel to enable homogeneous access for autonomous services within FICAS.  Section 3 

describes the runtime environment of distributing data communications directly among 

autonomous services, and presents an empirical test to measure performance of centralized data 

flow to distributed data flow.  Section 4 introduces active mediation techniques for dispatching 

software modules to client computers to reduce data traffic.  Section 5 illustrates a prototype for 

a ubiquitous computing environment based on FICAS, and presents an example of project 

management on a building construction project.  Section 6 summarizes the findings on the direct 

data flow among services and discusses future work. 

2 Service Composition Infrastructures 

Autonomous services are composed in a loosely coupled fashion to allow flexible integration 

of heterogeneous systems in a variety of domains.  There have been many significant researches 

in service composition, particularly in creating uniform ways of describing, deploying, and 

accessing applications [8].  Research has also been reported on automated composition of web 

services [9]. While many standards have been proposed to represent processes using web 

services, such as BPEL4WS [10], WSCL [11], DAML-S [12], their implementations have not 
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yet been effectively demonstrated for distributed data flow applications.  FICAS serves as a 

reference implementation for composing applications and to investigate the performance 

implications of a distributed data flow framework for service composition. 

2.1 Autonomous Service Metamodel 
In FICAS, autonomous services are specified as a homogeneous model that promotes 

communication and cooperation with each other.  Figure 1 illustrates the autonomous service 

metamodel, which consists of a service core, an input event queue, an output event queue, an 

input data container, and an output data container: 

• The service core represents the core functionality of the autonomous service.  It is 

responsible for performing computation on the input data elements and generating resultant 

data elements.  Existing software applications are wrapped into a service core. 

• Events (messages) are exchanged between services to control the flow of autonomous service 

executions.  Asynchronous execution of autonomous services is achieved by using queues for 

event processing.  The default queuing protocol in FICAS is FIFO (first in first out), so event 

messages are processed in the order they arrive. 

• The data containers are groupings of input and output data elements for the autonomous 

service.  Input data elements are fetched from the input data container and processed by the 

service core.  The generated data elements are put into the output data container.  The data 

containers enable autonomous services to look up generated data elements.  

Autonomous services export the service functionalities contained in the encapsulated software 

applications.  Although the service functionalities differ, the way by which the functionalities are 

exported is similar for all the autonomous services.  The autonomous services share many 

common components, such as the event queues and the data containers.  In addition, the 

interactions among the components are largely identical.  Hence, the construction of autonomous 

services can be significantly simplified by building the common components into a standard 

autonomous service wrapper, which facilitates the encapsulation of software applications into 

autonomous services. 
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Figure 1: FICAS Autonomous Service Metamodel 

In FICAS, the autonomous service wrapper has been implemented in Java.  With the 

autonomous service wrapper provided as a standard module, the wrapping of a software 

application into an autonomous service is simplified to a matter of defining the ServiceCore 

interface, as shown in Figure 2.  The application core connects to the autonomous service 

wrapper through three methods.  The setup() method defines the actions of the application when 

the service is initialized; the execute() method is called when the service is invoked, triggering 

the application to process the data in the containers; and the terminate() method is called when 

the service is terminated.  Each method takes three parameters.  The inputcontainer provides the 

reference to the input data container of the autonomous service; the outputcontainer provides the 

reference to the output data container of the autonomous service; and the flowid identifies the 

flow to which the service request belongs.  With the references to the data containers and the 

flow identifier of the request, the software application can look up the input parameters from the 

input data container and generate the results into the output data container. 

In FICAS, the control-flow is primarily related to the event processing and the state 

management of the service core, and the data-flow is concerned with the exchange of data 

elements between the data containers and the processing of the data elements by the service core.  

While each component uses its own computational thread, the service core ties together the 

components into a coordinated entity. 
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public interface ServiceCore { 
 
  public boolean setup(Container inputcontainer, 
                 Container outputcontainer, FlowId flowid); 
 
  public boolean execute(Container inputcontainer, 
                 Container outputcontainer, FlowId flowid); 
 
  public boolean terminate(Container inputcontainer,  
                 Container outputcontainer, FlowId flowid); 
}  

Figure 2: Class Interface of ServiceCore 

2.2 Autonomous Service Access Protocol 
Given the autonomous service metamodel, we define an autonomous service access protocol, 

ASAP, by which the autonomous services are accessed.  ASAP manages control-flows and data-

flows through a set of events.  These events exist in the form of XML (eXtensible Markup 

Language) based messages that are used to interact with autonomous services.  The hierarchical 

structure of XML provides a convenient method to define the composition of an event.  ASAP is 

asynchronous and non-blocking, i.e., the sender of an event does not wait for a response.  

Instead, the sender continues to execute other activities that are independent on any response of 

the event.  The protocol removes the barriers imposed by different megaservice programming 

languages and distribution protocols.  For simplicity, the ASAP events are represented using 

their abbreviated functional representations instead of their full XML representations.  The key 

ASAP events that are related to data-flow scheduling are listed below: 

• SETUP (Service) 

The SETUP event is used to initialize an autonomous service, which is to prepare necessary 

system resources for the actual invocations.  A reply event is issued after initialization of an 

autonomous service. 

• TERMINATE (Service) 

The TERMINATE event unconditionally terminates an autonomous service.  Garbage 

collection is conducted during the termination process to release any system resources involved 

with a service instance.  A reply event is issued after the termination of an autonomous service. 
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• INVOKE (Service) 

The INVOKE event requests an autonomous service.  The service core of the autonomous 

service is started upon the processing of the INVOKE event.  Upon completion of the service 

invocation, output data elements generated by the service core are placed onto the output data 

container.  In addition, a reply event is sent. 

• MAPDATA (DataElement, SourceService, DestinationService) 

The MAPDATA event is used to establish a data-flow between two data containers.  The 

event enables the distribution of data-flows within the service composition infrastructure.  The 

sender of the MAPDATA event does not need to be the recipient of the data element.  The events 

are usually sent from the megaservice controller that coordinates the autonomous service 

invocations, and the data elements are exchanged directly among the data containers of the 

autonomous services.  While the support of the MAPDATA event makes it possible to have 

distributed data-flows, it is up to the megaservice controller to generate an execution plan that 

can take advantage of this capability. 

There are two forms of implementation for the MAPDATA event.  The first is called “push 

MAPDATA,” in which case the event is sent to the SourceService.  The SourceService fetches 

the data element from its output data container and pushes the data element over to the 

DestinationService.  Another implementation is called “pull MAPDATA,” in which the event is 

sent to the DestinationService.  The DestinationService pulls the data element from the 

SourceService and puts the data element onto its input data container.  Both implementations are 

supported by FICAS. 

2.3 Components in FICAS 
The service composition infrastructure, FICAS, allows distributed software applications to 

hide heterogeneities in the network, platform, and language.  FICAS is built upon a previously 

developed service composition infrastructure CHAIMS (Compiling High-level Access Interfaces 

for Multi-site Software) [13, 14], which focuses on the composition of services that are large 

distributed components.  Residing on different computers, the services are inherently concurrent 

in nature, and the long duration of service execution necessitates asynchronous invocation and 

collection of results.  CHAIMS developed a simple compositional language and runtime support 
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for applications composed from distributed modules.  FICAS builds on the prior efforts of 

CHAIMS because the compositional language supports the goal for ease of composition. 

Figure 3 illustrates the main components of FICAS.  The buildtime components are 

responsible for specifying megaservices and compiling megaservice specifications into control 

sequences that serve as inputs to the runtime environment.  For FICAS, a Compositional 

Language for Autonomous Services (CLAS) is defined to provide the application programmers 

the necessary abstractions to describe the behaviors of their megaservices. The CLAS language 

focuses on functional composition of autonomous services.  A CLAS program is essentially a 

sequential specification of the relationships among collaborating autonomous services, without 

providing primitives to schedule or to coordinate control-flows and data-flows.  The CLAS 

program is compiled by the buildtime component into a control sequence that can be executed by 

the runtime environment.  The control sequence is language and platform independent, providing 

a bridge between the buildtime and runtime environments of FICAS. 

The runtime environment of FICAS is responsible for executing control sequences.  At its 

minimum, the runtime can consist of just one autonomous service, along with the service 

directory.  The runtime environment can be expanded simply by plugging additional autonomous 

services into the communication network and registering the autonomous services with the 

service directory.  The directory keeps track of available autonomous services within the 

infrastructure.  While the directory is viewed logically as a centralized entity, it may be 

implemented as a distributed structure.  In the prototype FICAS system, a centralized directory 

service is used. 

A metamodel is defined to allow the construction of homogeneous autonomous services in a 

heterogeneous computing environment.  The control-flows are coordinated by a megaservice 

controller, which is the centralized coordinator that carries out the execution of a megaservice.  

The controller generates an execution plan based on an input control sequence, and then follows 

the plan, coordinating control-flows among respective autonomous services.  The controller is 

also responsible for optimizing the performance of the megaservice. 
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Figure 3: FICAS Architecture 

3 Distributed Data-flow Planning 

In FICAS, the megaservice controller has the sole responsibility for managing the control-

flows for a megaservice.  Based on an execution plan, the controller executes and schedules 

autonomous services by managing and coordinating the choice, timing, sequence, and 

dependencies of the outgoing ASAP events.  The purpose of scheduling is to improve the Quality 

of Service (QoS) of the megaservice.  Many techniques used to improve QoS for distributed 

workflows have been proposed for web service processes [15, 16].  The current implementation 

of FICAS focuses on minimizing the aggregate data communication cost among services. 

One key characteristic of the FICAS service model is the explicit separation of control-flow 

and data-flow; such a separation is similar to the concept of separating the data-oriented view 

and the activity-oriented view [17].  The idea of separating data-flow from control-flow can also 

be seen in some distributed workflow environments.  For instance, Exotica/FMQM adopts 

distributed workflow execution and data management for distributed workflow applications [18, 

19].  However, data flow in a distributed workflow environment is often supported by a set of 

loosely synchronized replicated databases instead of direct messages, as supported by FICAS. 
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3.1 Distribution of Data-flows 
Traditionally, both control-flows and data-flows are centrally coordinated, as illustrated in 

Figure 4(a).  The megaservice requests information from Service1 and passes the information 

onto Service2 for further processing.  The result of Service2 is then forwarded to Service3.  The 

central megaservice coordinates all the autonomous service invocations.  Since the data-flows 

and the control-flows are not separated, the megaservice control serves as the hub for all the data 

communications.  We call this runtime model the centralized control-flow centralized data-flow 

model (1C1D) model.  The 1C1D model represents the simplest form of service composition 

runtime environment.  Examples of the 1C1D model include the default usage of CORBA [2], 

J2EE [3], and Microsoft .NET architecture [4]. 

Service
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Service
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Mega
Service

(a) (b)
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Data-flow

Service
2

Service
1
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3

Mega
Service

Service
2

 
Figure 4: Centralized and Distributed Data-flows 

There are performance and scalability issues associated with the 1C1D model.  The 

megaservice must forward all data among autonomous services.  Since data flows indirectly, 

there is extra communication traffic.  The megaservice control becomes a communication 

bottleneck when large amounts of data are exchanged among the services.  Furthermore, since all 

data traffic goes through the megaservice, the communication links of the megaservice become 

the critical system resource.  It is especially problematic in an Internet environment, where the 

communication links between the megaservice and autonomous services likely suffer limited 

bandwidth.  The centralized communication topology makes the 1C1D model difficult to scale. 

The issues observed in the 1C1D model motivate the possible advantages to distribute the 

data-flows for the executions of megaservices.  Figure 4(b) shows the control-flows and the data-
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flows exhibited in a distributed data-flow infrastructure.  The megaservice can inform two 

autonomous services to establish a direct data-flow.  For instance, data are exchanged between 

autonomous services, from Service1 to Service2, and from Service2 to Service3, without going 

through the megaservice.  This paper describes how FICAS distributes data-flows while 

maintaining centralized control mechanism as in the 1C1D model.  This runtime model is called 

the centralized control-flow distributed data-flow model (1CnD) model.  The decision to retain a 

centralized control-flow hinges upon ease of implementation and management. Applying 

distributed control-flow models effectively to conduct service composition is difficult in that it is 

hard to monitor the execution processes.  In addition, there remain many technical challenges to 

convert a centralized megaservice specification of control sequences into distributed operational 

code segments. 

By distributing data-flows, FICAS eliminates the focused, redundant, and heavy data traffic 

caused by forwarding everything through the megaservice.  The distributed data-flow model 

utilizes the communication network among autonomous services, and thus alleviates 

communication loads on the megaservice.  Furthermore, FICAS allows computations to be 

distributed efficiently to where data resides, and in doing so the data can be processed on 

location with minimal communication traffic. 

3.2 Planning Distributed Data-flows 
Optimizing the placement of data processing to minimize data transfer has been a subject of 

interests for distributed database systems [20-23].  Query optimization on distributed database 

systems generally requires deciding where to send the data and where to perform query 

operations.  A similar concept is adopted in FICAS to plan the distributed data-flows.  There are 

three steps in generating an execution plan.  First, the megaservice program is analyzed to 

discover data dependencies among autonomous services.  Then, a data dependency graph is 

constructed to identify independent data-flows.  Finally, based on the data dependency graph, the 

megaservice controller then builds an execution plan for the megaservice. 

The data dependencies among the autonomous services are analyzed when the program is 

interpreted.  The megaservice controller extracts from the statements the data dependencies 

among autonomous services. Figure 5 presents an example of a megaservice program segment, 

which shows implicit data dependencies between autonomous services.  Invocation of Service3 
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takes A and B as input, which are the outputs of the invocations of Service1 and Service2, 

respectively.  Hence, Service3 is data dependent on Service1 and Service2.  The dependencies 

are mapped into a data dependency graph (DDG) as shown in Figure 6.  The nodes represent 

autonomous service invocations, and the directed arcs represent data dependencies between 

autonomous service invocations.  Each directed arc points to the dependent autonomous service 

and is tagged with the data elements exchanged between the pair of autonomous services.  For 

example, the arc between Invocation1 and Invocation3 represents that Invocation3 is dependent 

on Invocation1, with A being the data element passed from Invocation1 to Invocation3. 

The megaservice execution plan is represented by an event dependency graph (EDG).  The 

node in the EDG contains an outgoing ASAP event from the megaservice controller.  The arc 

establishes a predecessor-successor relationship between a pair of ASAP events.  The successor 

ASAP event cannot be sent until the action taken by the predecessor ASAP event is completed, 

i.e., the megaservice controller receives the response of the predecessor ASAP event.  The 

megaservice controller uses the EDG to coordinate the execution of the megaservice.  Invocation 

nodes in the DDG can be directly mapped onto the INVOKE event nodes in the EDG.  

Invocation1 = Service1.invoke() 
Invocation2 = Service2.invoke() 
 
A = Invocation1.extract(); 
B = Invocation2.extract(); 
 
Invocation3 = Service3.invoke(A, B) 
 
C = Invocation3.extract(); 
 
Invocation4 = Service4.invoke(C) 
D = Invocation4.extract(); 

Figure 5: Example Megaservice Program Segment 

Figure 7 shows the mapping scheme where data communications are directed between 

dependent autonomous services, resulting in the 1CnD execution model.  The megaservice 

controller functions merely as a coordinator for the ASAP events that control the data 

communication activities.  Each directed arc in the DDG is mapped onto a MAPDATA event 

node with arcs connecting the predecessor and successor event nodes.  For instance, the arc 

tagged with A in the DDG (shown in Figure 6) is mapped onto the MAPDATA(A, Service1, 
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Service3) event node in the EDG (shown in Figure 7).  In addition to the predecessor-successor 

statements as shown in this example, FICAS has also implemented some of the basic control 

constructs such as switching and looping.  Details on these operations are discussed by Liu [5].  

Invocation1 Invocation2

Invocation3

Invocation4

A B

C

D

 
Figure 6: Sample DDG 

INVOKE
(Service1)

INVOKE
(Service2)

MAPDATA
  (A, Service1,

Service3)

INVOKE
(Service3)

MAPDATA
(C, Service3,

Service4)

MAPDATA
(B, Service2,

Service3)

INVOKE
(Service4)

MAPDATA
(D, Service4,
Megaservice)

 
Figure 7: EDG with Distributed Data-flows 
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3.3 Performance Analysis 
This section examines the performance of a sample megaservice supported by FICAS using 

different configurations of the computing environment.  FICAS is compared with the centralized 

data-flow model by implementing the same megaservice under SOAP (Simple Object Access 

Protocol) [24].  As a lightweight protocol for exchanging information between applications in a 

distributed computing environment, SOAP has shown great potential for simplifying web service 

composition and the distribution of software over the Internet.  There are several 

implementations of SOAP.  They differ in their support for class binding, ease of use and 

performance [25].  As one of the popular choices for the SOAP implementations, Apache SOAP 

is selected to be the reference implementation. 

Figure 8 illustrates the computing environment for the performance evaluation.  Two 

autonomous services that focus on data communications are involved.  No computational 

processing occurs on these autonomous services.  Autonomous service S1 randomly generates 

and returns a string whose size is specified by the input parameter.  Autonomous service S2 takes 

the string as input and immediately returns without doing anything.  Two megaservices that 

utilize the autonomous services are constructed.  The first megaservice, MultiService, forwards 

the string generated by the autonomous service S1 to the autonomous service S2.  This 

megaservice is designed to examine the impact of the data-flow distribution.  The second 

megaservice, SingleService, simply invokes the autonomous service S1.  This megaservice is 

used to measure the cost of a single service call. 

The autonomous services and the megaservices are implemented for both SOAP and FICAS.  

The megaservices are implemented as Java applications that invoke the services using the 

Apache SOAP v2.2 API (Application Program Interface) library.  For FICAS, the autonomous 

services are wrapped using our developed Java library.  The service cores of the autonomous 

services are identical in functionality to their SOAP counterparts.  The megaservices are 

specified as CLAS programs, which are compiled into control sequences by the FICAS buildtime 

environment.  The megaservices are executed by sending the control sequences to a megaservice 

controller. 
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Figure 8: Test Environment for Comparing SOAP and FICAS 

The tests are performed in a distributed computing environment.  The machines are each 

configured with a Pentium-III 1 GHz processor and 256 MB RAM, running Windows 2000 

Professional.  The autonomous services run on two separate servers connected to a switch via a 

Local Area Network (LAN), whose bandwidth is 10 mbps each way.  The megaservices run on 

the client machine.  Two types of network connections are used to connect the client machine to 

the servers.  The first connection uses LAN, whose communication bandwidth among all 

machines is 10 mbps each way.  This type of connection resembles many corporate computing 

environments.  The second connection uses an 802.11b wireless link.  The downloading 

bandwidth is approximately 2 mbps, and the uploading bandwidth is approximately 0.5 mbps.  

This type of connection resembles a computing center environment, where servers are connected 

by high-speed communication links, but are accessed via relatively slower communication links. 

The execution times of the megaservices are measured with different settings on the data 

volume involved with the megaservices.  The data volume is specified by the input parameter to 

the autonomous service S1.  Figure 9 shows the measured performance of the megaservices 

when the client machine is connected to the LAN.  The following observations can be made: 

• FICAS performs worse than SOAP when the data volume is low.  This is expected and can 

be explained for two reasons.  First, FICAS has more complicated control-flows than SOAP.  

FICAS breaks down a single service call in SOAP into multiple control messages.  FICAS 

also incurs more overhead in initializing and terminating the autonomous services.  Second, 
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it is expected that Apache SOAP, being developed for quite some time, is better optimized 

than FICAS in terms of its Java source code.  

• The performance of the FICAS megaservice MultiService is comparable to that of the SOAP 

megaservice SingleService.  The megaservices are similar in performance because two 

megaservices incur the same amount of data-flows.  For SingleService, the string generated 

by the autonomous service S1 is sent to the megaservice.  For MultiService, the same string is 

sent from the autonomous service S1 to the autonomous service S2. The slight difference in 

the execution times of the megaservices can be attributed to the differences in control-flows. 

• FICAS outperforms SOAP when the data volume is high.  This is because the SOAP 

megaservice incurs twice as much data-flow as the FICAS megaservice.  For the SOAP 

megaservice, two data messages are used to send the string from the autonomous service S1 

to the autonomous service S2, via the megaservice controller.  For the FICAS megaservice, 

only one data message is used to send the string from the autonomous service S1 to the 

autonomous service S2. 
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Figure 9: Comparison Between FICAS and SOAP on Local Area Network 
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Figure 10 compares the performance of the SOAP megaservice MultiService and the FICAS 

megaservice MultiService under various network settings.  Under the LAN setting, the 

megaservices access the autonomous services through the 10 mbps LAN.  Under the wireless 

setting, the megaservices access the autonomous services via a slower 802.11b access point.  In 

both cases, communications with the megaservice have much lower bandwidth than 

communications among the autonomous services.  Comparing the megaservice performance 

between the LAN and the wireless 802.11b settings, the following can be observed: 

• The execution times for the SOAP megaservice increase significantly as the bandwidth of the 

communications with the megaservice decreases.  Since all data-flows and control-flows go 

through the megaservice, the communications with the megaservice become the bottleneck of 

the system.   

• The execution times for the FICAS megaservice increase only slightly when comparing the 

wireless and the LAN settings.  As the data-flows are distributed among the autonomous 

services, communications with the megaservice are only used for the control-flows.  Because 

the control messages are small and compact in nature, the control-flows place little burden on 

the network.  Thus, the performance of the megaservice is barely affected. 
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Figure 10: Megaservice Performance Under Different Network Configurations 
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To summarize, 1CnD model responds better than 1C1D when the data volume is large or 

when the bandwidth is limited for communicating with the megaservice.  All network traffic in 

1C1D goes through the megaservice, and thus places heavy burden on its communication links.  

In contrast, 1CnD distributes the data-flows and takes advantage of the communication network 

among the autonomous services. 

4 Mobile Classes and Active Mediation 

While the FICAS approach gains from direct data communication among the services, it does 

not have the capability to directly map incompatible sources or to integrate information from 

diverse sources.  For example, in the semantic web setting [26, 27], where there are a large 

collection of autonomous and diverse providers, it cannot be expected that each service can 

deliver results that can be fully compatible and useful to other services that the composed 

application may need to invoke.  Active mediation is introduced to provide client-specific 

functionalities so that services can be viewed as if they were intended for the specific needs of 

the client [6].  This section describes a mediation architecture that supports the execution of 

mobile classes.  In addition, an algorithm is presented that determines the optimal location to 

carry out the execution of a mobile class.  

4.1 Mobile Classes 
A mobile class is an information-processing module that can be dynamically loaded and 

executed.  Conceptually, a mobile class is a function that takes some input data elements, 

performs certain operations, and then outputs a new data element.  The mobile class supported in 

FICAS is similar to the mobile agent technology [28-30].  Both approaches utilize executable 

programs that can migrate during execution from machine to machine in a heterogeneous 

network.  However, mobile agents are self-governing in that they decide when and where to 

migrate on their own.  On the other hand, the mobile class is an integral part of the service 

composition framework.  Since mobile classes are controlled by megaservices, their management 

and deployment become easier.   

Mobile classes can be implemented in many general-purpose programming languages [31-33].  

In this work, Java is chosen as the specification language for mobile classes [34].  First, Java is 

suitable for specifying computational intensive tasks.  There are many available standard 
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libraries that provide a wide range of computational functionalities.  Second, Java has extensive 

support for portability.  Java programs can be executed on any platform that incorporates a Java 

virtual machine.  Third, Java supports dynamic linking and loading.  Java class files are object 

files rather than executables in the traditional sense.  Linking is performed when the Java class 

files are loaded onto the Java virtual machine.  Compiled into a Java class, the mobile class can 

be dynamically loaded at runtime.  

Mobile classes enable megaservices to perform computations with greater efficiency.  Figure 

11 shows an example where mobile classes are used in place of type broker services to conduct 

type conversions.  Traditionally, an autonomous service serving as a type broker or a distributed 

network of type brokers can be used to mediate the difference among data in various formats 

[35].  A type graph is used to figure out the chain of necessary conversions.  An example of 

automating this process can be seen in the Ninja project [36].  Figure 11(a) presents an example 

of data-flows in the type-broker architecture.  Data from the source service are represented in the 

type T1, and the destination service consumes data in the type T3.  Two type brokers are 

employed to convert source data from the type T1 to the type T3.  A potentially large amount of 

data is passed among the type brokers.  Alternatively, mobile classes can be used in place of type 

brokers to handle type mediation.  Rather than forwarding data among the type brokers, the 

megaservice loads the mobile classes onto the autonomous services to provide the type 

mediation functions.  Multiple mobile classes for type mediation can be utilized together, 

forming a network of type brokers.  As shown in Figure 11(b), two mobile classes are used to 

convert data from type T1 to type T3.  The type mediation is conducted at the source 

autonomous service, where the source data of type T1 is converted to type T3.  Data in the 

consumable format T3 is directly sent to the destination autonomous service.  Since the mobile 

classes are invoked on the source autonomous service, the multiple interim data transfers are 

eliminated and data traffic is limited to essential transmissions.   
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Figure 11: Type Conversion Using Type Broker Services and Mobile Classes 

4.2 Active Mediation 
An active mediator is an information-processing engine that resides between source 

information services and information clients.  Incorporation of an active mediator allows an 

autonomous service to support the execution of mobile classes.  Active mediator processes the 

source information by executing mobile classes specified by information clients. Figure 12 

illustrates the architecture of an active mediator: 
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Figure 12: Active Mediation Architecture 

• The Mobile Class Fetcher is responsible for loading the Java code of the mobile class.  The 

name of the mobile class indicates where the Java class file can be found.   
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• The Mobile Class Cache is a temporary storage for the loaded Java class.  The Mobile Class 

Cache is used to avoid the duplicate loading of a mobile class.  The cache is looked up first 

before any Java classes are loaded.  Only when a cache miss occurs is the Mobile Class 

Fetcher used. 

• The Mobile Class API (Application Program Interface) Library stores the utility classes that 

make the construction of mobile classes more convenient.  For instance, the Java 

Development Kit library [37] is provided as part of the Mobile Class API Library. 

• The Mobile Class Runtime is the execution engine for the mobile classes.  To execute a 

mobile class, the Mobile Class Runtime loads the Java class from the Mobile Class Cache 

and invokes the execute() function.  The runtime uses the data containers of the autonomous 

service to manage the input and output data of the mobile class.  The parameters for invoking 

the mobile class are loaded into the input data container by the megaservice controller before 

the invocation of the mobile class.  The parameters are looked up and supplied to the 

execute() function.  The result of the execute() function is put into the output data container, 

and can then be utilized by the megaservice controller. 

• The Exception Handling module provides error handling for the loading and the execution of 

mobile classes. 

4.3 Placement of Mobile Classes 
The choice of which autonomous service executes the mobile class affects how the data-flows 

are formed for the megaservice to which the mobile class belongs.  The placement of the mobile 

class therefore has significant impact on the performance of the megaservice.  An example 

megaservice, as shown in Figure 13, is used to demonstrate such an impact.  The megaservice 

involves two autonomous services and one mobile class.  The autonomous services, S1 and S2, 

are the same as the ones in the example illustrated in Figure 8.  The mobile class FILTER takes a 

large string as input, filters through the content, and returns a string that consists of every 10th 

character of the input string.  Effectively, the mobile class compresses the content by ten fold.  

Since the mobile class can be executed on any one of the autonomous services involved in the 

megaservice, there are three potential placement strategies, as shown in Figure 14: 
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• Strategy 1:  By placing the mobile class FILTER at the autonomous service that hosts the 

megaservice controller, we can construct the execution plan as shown in Figure 14(a).  S1 

generates the data element A and passes it to the megaservice.  The mobile class processes A 

at the megaservice, and the result B is then sent to S2 for further processing. 

• Strategy 2:  By placing the mobile class FILTER at S1, the execution plan as shown in Figure 

14(b) can be constructed.  S1 generates the data element A and processes it locally using the 

mobile class.  The result B is sent from S1 to S2 for further processing. 

• Strategy 3:  By placing the mobile class FILTER at S2, we can construct the execution plan 

as shown in Figure 14(c).  S1 generates the data element A and passes it to S2.  S2 processes 

A locally using the mobile class to generate the result B. 

To compare the strategies, it is assumed that the performance of loading and executing the 

mobile class is the same on all autonomous services.  Strategy 1 requires both the input data 

element A and the output data element B to be transmitted among the megaservice and the 

autonomous services.  Thus Strategy 1 incurs the most communication traffic compared to the 

other two strategies and has the worst performance.  Strategy 2 and Strategy 3 differ in the data 

sent between the autonomous services.  The data element B is sent from S1 to S2 in Strategy 2, 

and the data element A is sent from S1 to S2 in Strategy 3.  Since the data element B is one tenth 

in size compared to the data element A, Strategy 2 incurs the least amount of communication 

traffic.  Therefore, Strategy 2 is the placement strategy that has the best performance. 
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     Invocation1 = S1.invoke(size)
     A = Invocation1.extract()
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Figure 13: Example Megaservice that Utilizes the Mobile Class FILTER 
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Figure 14: Execution Plans with Different Placements for the Mobile Class 

The optimal placement of a mobile class should usually minimize the data-flows among 

related autonomous services.  For a mobile class, each input data element to the mobile class is 

represented as a pair, (Si, Vi), where Si is the autonomous service that generates the ith input data 

element, and Vi is the volume of the data element.  The output is a (S0, V0) pair, where S0 is the 

destination autonomous service to which the result of the mobile class will be sent, and V0 is the 

size of the data element.  Two observations can be made.  First, the sum of Vi remains the same 

regardless where the mobile class is executed.  Second, placing the mobile class on the 

autonomous service Si can eliminate the corresponding data-flow volume Vi as the data element 

is local to the autonomous service.  Therefore, the optimal placement of the mobile class is the 

autonomous service Si that has the largest aggregated Vi. 

Figure 15 shows the LDS (Largest Data Size) algorithm that selects the autonomous service 

that generates and consumes the largest volume of data for a given mobile class.  The algorithm 

first computes the total amount of data attributed to each unique autonomous service.  Then, the 

autonomous service with the largest data volume is selected as Smax, which represents the optimal 

placement for the mobile class.  Smax is returned as the output of the algorithm. 

The LDS algorithm is applicable when the input and output data sizes are known for the 

mobile classes.   For a situation where the output data size of a mobile class is only determined 

after the execution of the mobile class, the output data size needs to be estimated.  The output 

data size of a mobile class can be viewed as a function of the input data sizes of the mobile class: 

SO = f (SA, SB, …).  The function f is called the sizing function of the mobile class, where SO is 
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the output data size and SA, SB are the input data sizes.  The sizing function may be stored along 

with the Java byte code in the mobile class repository.  The megaservice controller can then use 

the sizing function to estimate the output data size for running the LDS algorithm. 
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Figure 15: LDS Algorithm for Optimal Mobile Class Placement 

The LDS algorithm assumes that the network links among all autonomous services are of 

comparable performance.  When this assumption does not hold, a more complicated model can 

be adopted to minimize the aggregated time.   Various network parameters, such as topology of 

network and bandwidth of network channels, can have impact on the performance of the 

megaservice, and other algorithms (for example, see [22]) can also be implemented in FICAS. 

5 Example Application 

The examples shown in the previous section show that FICAS is well suited for composing 

autonomous services that exchange large amounts of data.  The distribution of data-flows and the 

use of mobile classes facilitate service composition and improve the performance of the 

megaservice.  To demonstrate the effectiveness of FICAS, an engineering service infrastructure 

for construction project management applications has been implemented [38].  The process of 

building the service infrastructure includes: (1) wrapping software applications into autonomous 

services, (2) implementing mobile classes, and (3) constructing megaservices to accomplish the 

engineering tasks. 
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5.1 Building Autonomous Services 
The first step in building the engineering service infrastructure is to wrap each software 

application into an autonomous service.  The service core of the autonomous service is created 

by defining the ServiceCore interface based on the software application.  The service core is then 

linked to an autonomous service wrapper (ASW).  Figure 16 shows an example of wrapping the 

Primavera P3™ application software into an autonomous service that supports project 

scheduling.  The P3Service class implements the three methods in the ServiceCore interface.  

The setup() method and the terminate() method specify that no action is performed for the 

initialization and the termination of the autonomous service.  The execute() method defines the 

actions for the invocation of the autonomous service.  The method starts by fetching the input 

parameters from the input data container.  The first parameter specifies the service request, and 

the second parameter contains the input data for a schedule, based on which the Primavera P3™ 

application is utilized to conduct scheduling.  The result of the scheduling is encapsulated into a 

data element and put into the output data container.  The P3Service class is provided as an input 

to the constructor of the ASW class to connect the Primavera P3™ application with the 

autonomous service wrapper.  After the autonomous service is built, it is registered with the 

autonomous service directory.  The registration entry specifies the name, the IP address, and the 

port number of the autonomous service.  Once registered, the autonomous service is ready to be 

used for composition. 

5.2 Constructing Mobile Classes 
Lightweight information processing routines are specified as mobile classes, whose executions 

are determined by megaservices during runtime.  Figure 17 shows a sample mobile class that 

converts data from Process Specification Language (PSL) format [39] into Microsoft Excel 

format.  The psltoexcel class implements the MobileClass interface, whose definition is provided 

in the FICAS.zip class library.  The execute() function takes the first argument for the mobile 

class as the input data in PSL, converts the data into Microsoft Excel format, and returns the 

converted data as the output data element. 

In the engineering information service infrastructure, mobile classes are compiled and their 

byte codes are stored in a repository that is accessible from the web.  Megaservices locate a 

mobile class by attaching a base URL to the mobile class name.  For instance, if the base URL 
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for the mobile class repository is http://ficas.stanford.edu/mcrepo, then the byte codes for 

psltoexcel can be located at http://ficas.stanford.edu/mcrepo/psltoexcel.class. 

 

public class P3Service implements ServiceCore 
{ 
  public boolean setup(Container inc, Container outc, FlowId inf) { 
    return true; 
  } 
 
  public boolean terminate(Container inc, Container outc, FlowId inf) 
  { 
    return true; 
  } 
 
  public boolean execute(Container inc, Container outc, FlowId inf) { 
    /* Fetch the desired operation from the input data container */ 
    String operation = inc.fetch(inf, 0).getStringValue(); 
 
    if (operation.equals("reschedule")) { 
      /* Fetch the input schedule from the input data container */ 
      String input = inc.fetch(inf, 1).getStringValue(); 
 
      /* Invoke P3 to conduct rescheduling */ 
      String output = P3Schedule(input); 
 
      /* Put regenerated schedule on the output container */ 
      outc.put(inf, 0, new DataElement().setValue(output)); 
    } 
 
    return true; 
  } 
 
  private String P3Schedule(String schedule) { 
    /* Invokes the Primavera P3 software to process the input, 
       the result of the rescheduling is returned */ 
    ... 
  } 
 
  public static void main(String argv[]) throws Exception { 
    if (argv.length != 1) { 
      System.err.println("Usage: java P3Service port"); 
      return; 
 } 
 
    /* Creating the autonomous service */ 
      new ASM(Integer.parseInt(argv[0]), new P3Service()); 
  } 
} 

Figure 16: Example Autonomous Service that Utilizes Primavera P3 
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public class psltoexcel implements MobileClass 
{ 
  public DataElement execute(Vector params) { 
    /* Fetch the input data, in PSL format */ 
    String p3 = 
      ((DataElement) params.firstElement()).getStringValue(); 
 
    /* Convert the input data to excel format */ 
    String excel = Convert_PSL_To_Excel(p3); 
 
    /* Return the converted data, in Excel format */ 
    return new DataElement().setValue(excel); 
  } 
 
  private String Convert_PSL_To_Excel(String p3) { 
    ... 
  } 
} 

Figure 17: Example Mobile Class that Converts Data from PSL to Microsoft Excel 

5.3 A Sample Megaservice 
Figure 18 shows an example megaservice that utilizes multiple autonomous services and 

mobile classes to perform rescheduling of project plans.  The megaservice is specified as a 

CLAS program.  Three autonomous services are utilized by the megaservice: (1) the PSLService 

that handles the access of the project models, (2) the P3Service that conducts the scheduling of a 

project plan, and (3) the ExcelService that displays the project plan.  In addition, the mobile class 

psltoexcel is used to convert data between the PSL format and the Microsoft Excel format.  The 

megaservice is compiled into a control sequence in FICAS.  The invocation of the megaservice 

causes the PSLService to fetch the project model, which is then rescheduled by the P3Service.  

The update schedule is stored back to the database using the PSLService and shown to the project 

personnel using the ExcelService. 

A sample scenario is presented to demonstrate how the engineering service infrastructure 

helps facilitate personnel, from different functional groups, conduct collaborations.  The data for 

the test case model is part of the Mortenson Ceiling project (part of the construction of the 

Disney Concert Hall, designed by Frank Gehry).  Figure 19 shows the view of the scheduling 

information using Primavera P3™.  The project data is stored in a relational database.  The data 

is shared between the relational data model and the proprietary Primavera data model using the 

PSLService.  The project schedule can also be reviewed using a handheld Palm device to directly 

access the relational database.  This capability can be helpful for the on-site personnel of the 
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construction project.  Suppose that the duration for the activity 18T1-33201, for erecting a roof 

element, is hypothetically changed from 1 day to 40 days, as shown in Figure 20.  The change 

can be made remotely using the Palm device.  The update will then trigger the SchedulingDemo 

megaservice, which updates the project schedule.  As part of the SchedulingDemo megaservice, 

the project schedule is also automatically updated in Excel to notify the project personnel, as 

shown in Figure 21.  The updated schedule can also be displayed using MS Project either 

retrieving the data from the relational database or directly exchanging with Primavera P3™ via a 

PSL data exchange service.  Figure 22 shows that not only the activity 18T1-33201 is updated, 

but the dependent activities are also updated as well. 

The example infrastructure involves software applications (Primavera P3™, Excel, Microsoft 

Project, Oracle database, PALM service, etc.) that exchange large amount of data.  The 

applications are conveniently wrapped into autonomous services.  Computational tasks are easily 

specified using mobile classes. Engineering processes are systematically defined as 

megaservices.  This example demonstrates the applicability of FICAS model for the composition 

of large-scale engineering web services. Other examples of using FICAS for project management 

applications can be found elsewhere [5, 40].  

For the current implementation of FICAS, sophisticated concurrent control is not fully 

supported.  When a process sends a write request to the project data, the data will be locked for 

further write requests, but read requests are still permitted.  To improve system performance and 

flexibility, granular lock [41] may be implemented.  
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SchedulingDemo "http://ficas.stanford.edu/mcrepo" 
{ 
  psl_svc = SETUP("PSLService") 
  p3_svc = SETUP("P3Service") 
  excel_svc = SETUP("ExcelService") 
 
  /* Fetch project data from database */ 
  psl = psl_svc.INVOKE("to-psl", "%%") 
  original_schedule = psl.EXTRACT() 
 
  /* Reschedule project */ 
  p3 = p3_svc.INVOKE("reschedule", original_schedule) 
  updated_schedule = p3.EXTRACT() 
 
  /* Store the updated project data into database */ 
  oracle = psl_svc.INVOKE("to-oracle", updated_schedule) 
  status1 = oracle.EXTRACT() 
 
  /* Populate Excel Service with updated project data */ 
  excel_data = MCLASS("psltoexcel", updated_schedule) 
  excel = excel_svc.INVOKE("populate", excel_data) 
 
  psl_svc.TERMINATE() 
  p3_svc.TERMINATE() 
  excel_svc.TERMINATE() 
} 

Figure 18: Sample Megaservice Specified in CLAS 

 
Figure 19: Reviewing the Project Schedule in Primavera P3 
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Review the schedule and make 
appropriate updates by changing the
value in duration: 

SCHEDULEID
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01-31-2001 
40…………………….. Update
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02-01-2001 
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18T1-33201 (“Erect Roof Element 1”)
From 1 day to 40 days

 
Figure 20: Revising the Project Schedule via a Palm Device 

 
Figure 21: Reviewing the Updated Project Schedule in Microsoft Excel 
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Figure 22: Reviewing the Updated Schedule in Microsoft Project 

6 Summary 

This paper investigates the integration of web services that communicate large volumes of 

data.  Traditionally, a megaservice resides at the central hub that handles all the data traffic, 

while each web service processes data supplied by the composed application.  This centralized 

data flow is shown to be inefficient when data are substantial. To improve effective use, the 

distributed data flow approach is introduced which allows direct data exchange among the web 

services.  The FICAS architecture is defined to enable smooth adoption of distributed data-flow 

and active mediation in services composition.  Programmers or users can specify in FICAS a 

metamodel for autonomous services, based on which services can be accessed and composed in a 

homogeneous manner.  The metamodel leads to the ASAP protocol that separates the data 

communications from the control processing in autonomous services.  The analysis shows that 

the distribution of data communications improves megaservice performance, especially when 

large volumes of data are exchanged among the services.  The distributed data-flow approach 

also eliminates the bottleneck on the communication links of the megaservice by taking 

advantage of the communication network among the services.  

Used appropriately, active mediation will greatly facilitate service composition, both in 

functionality and in performance. Active mediation increases the customizability and flexibility 

of web services.  Specifically, active mediation enables interoperation of web services without 

requiring that heterogeneous data be transmitted via central nodes.  It utilizes code mobility to 
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facilitate dynamic information processing in service composition. Delegating the maintenance of 

software is an important benefit of the services model [42].  Active mediation allows data-

processing tasks to be specified for composed applications, at the same time separating 

computation from composition.  

An application scenario is presented to demonstrate the process by which services are built 

and integrated using FICAS.  Legacy engineering applications are tied together to form 

integrated work processes.  This example shows that distributed data flow, combining with 

mobile classes, is effective and more efficient than centralized processing when integrating large 

engineering software services.  In the example engineering application, the controlling node can 

run on a low bandwidth device and thus has tremendous effects on performance.  Typically, 

mobile devices are attractive to manage complex scenarios in dealing with governmental 

regulation [43], engineering [38], healthcare [26], and military situations [44].  These cases can 

be benefited significantly by distributed dataflow and active mediation model, such as FICAS. 
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