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Abstract 
 
We propose a Core Product Model (CPM) for modeling product information suitable 
for supporting the information needs of Product Lifecycle Management (PLM) 
systems over the lifecycle of the product from the earliest ideation to manufacturing, 
operation and disposal. We make this claim because in CPM a product is modeled as a 
triad of its function (what it is intended to do), its form (what is its shape and material) 
and its behavior (how it implements its function). Early pre-design activities can thus 
deal with the function without having a geometric model of the form, and activities 
subsequent to design can extend the behavior by the evaluation of multiple causal 
models (e.g., what is the product’s market share). 
 
The components of the conceptual model of CPM are presented in terms of the 
product’s function, form and behavior, as well as the decompositions, associations and 
various kinds of relationships among these concepts. The model is represented in 
UML so as to provide interoperability with other models. An implementation model in 
XML and an example are presented to illustrate the principal elements of the proposed 
CPM model. 
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1.INTRODUCTION 
Current computer-aided design and engineering (CAD/CAE) tools serve only a very 
narrow range in the product’s lifecycle: from the stage where the specification for the 
product has been defined to the stage where the design for the product can be turned over to 
manufacturing. Product Development Management (PDM) systems intended to support 
these tools cover the same range, with possibly some assistance for requirements 
development, on one hand,  and information transfer to manufacturing, on the other. 
Furthermore, the information being managed is typically opaque to the PDM systems as 
they tend to depend on the underlying CAD tool to manage the information about the 
product’s form, which is largely geometric in contents. 
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Interest in industry is increasingly being focused on Product Lifecycle Management (PLM) 
systems, intended to support the full spectrum of product development activities from the 
initial ideation to eventual disposal. Scaling up PDM systems to support this full spectrum 
of product development activities will not work, for the reasons given above: they are only 
geared to support geometric information for a limited range of design processes and even 
for this limited information exchange they depend on subsidiary systems [1; 2].  
 
The wide scale adoption of PLM requires a product information model that allows all 
information used or generated in all the various product development activities to be 
transmitted to other activities by way of direct electronic interchange [3]. Furthermore, 
product development across companies, and even within a single company, will almost 
invariably take place within heterogeneous software environments, requiring a conceptual 
product information model that can be implemented in a variety of environments and that 
allows seamless interoperation between environments and applications [4]. 
 
A number of recent studies have shown the role that XML can play in a semantics-based 
product data representation for data portability (transfer of information and knowledge) 
when used as the information transfer medium. Rezayat presents the bases of a knowledge 
based product development system and explains why XML must be the support on which 
the system relies [5]. Mervyn et al. present an approach for developing distributed product 
and process design applications, where compressed model information embedded in a 
product data XML schema is used to ensure data portability [6]. The Product Data Markup 
Language (PDML) is a set of XML vocabularies for deploying product data on the Internet 
[7]. 

2.OVERVIEW OF CPM2  
 

The core product model (CPM) was initially conceived as a basis of future systems that 
respond to the demands of the next generation of computer-aided design systems and 
provide for improved interoperability among software tools in the future [8]. It 
subsequently became clear that the CPM has the functionality to provide support for the 
full range of PLM activities [9]. 
 
CPM is a generic, abstract model with generic semantics, with meaningful semantics about 
a particular domain to be embedded within an implementation model and the policy of use 
of that model.  
 
The key concept that makes CPM a candidate for supporting the full range of PLM 
activities is that a product is described by a triad: 
• Function models what the artifact is supposed to do; the term function is often used 

synonymously with the term intended behavior. 
• Form models the proposed design solution for the design problem specified by the 

function; in CPM, the artifact’s physical characteristics are modeled in terms of its 
geometry (the “traditional” domain of CAD models) and material properties.  

• Behavior models how the artifact implements its function in terms of the engineering 
principles incorporated into a behavioral or causal model; application of the behavioral 
model to the artifact describes or simulates the artifact’s observed behavior based on its 
form. 
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Figure 1 shows a UML diagram of the Core Product Model (CPM). The descriptions below 
are condensed from the report on the second version of CPM, called CPM2 [9]. There are 
four categories of classes in CPM: classes that provide supporting information for the 
objects (abstract classes): classes of physical or conceptual objects; classes that describe 
associations (relationships) among the objects; and classes that are commonly used by 
other classes.  
 
In the rest of this paper, the following naming conventions are used: names of CPM classes 
are written in boldface and capitalized (e.g., CoreProductModel, EntityAssociation, 
Artifact). Names of attributes are in boldface (e.g., information) and lower case. 
Names of XML elements are also in boldface but in a different font and they start with 
lower case (e.g., artifact, hasFeature). Literals (e.g., attribute values and content of 
XML elements) and names of instances are in italics (e.g., cylindricalForm). 
 
There are five supporting classes for storing common information: 
 
CoreProductModel represents the highest level of generalization. The common attributes 
type2, name and information for all CPM classes are defined for this class 
 
CommonCoreObject is the base class for all the object classes. 
CommonCoreRelationship and its specializations may be applied to instances of classes 
derived from this class.  
 
CommonCoreRelationship is the base class from which all association classes are 
specialized.   
 
CoreEntity is the base class from which the classes Artifact and Feature are specialized. 
EntityAssociation relationships may be applied to entities in this class. 
 
CoreProperty is an abstract class from which the classes Function, Flow, Form, 
Geometry and Material are specialized. Constraint relationships may be applied to 
instances of this class. 
 
The following constitute the object classes: 
 
Artifact is the key object class in the model; it represents a distinct entity in a product, 
whether that entity is a component, part, subassembly or assembly. All the latter entities 
can be represented and interrelated through the subArtifacts/subArtifactOf 
containment hierarchy.  
 
Feature is a portion of the artifact’s form that has some specific function assigned to it. 
Thus, an artifact may have design features, analysis features, manufacturing features, etc. 
Feature has its own containment hierarchy, so that compound features can be created out 

                                                 
 

2 The value of the type attribute corresponds to one of the terms within a distinct hierarchical taxonomy of terms associated with 
the class and provides the taxonomy for the given class. 
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of other features. A Feature has attributes of Function and Form, but does not have a 
separate Behavior. 
 
Port is a specific kind of feature, sometimes referred to as an interface feature. 
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Figure 1 : Class Diagram of the Core Product Model 
 
Specification is the collection of information relevant to an Artifact deriving from 
customer needs and/or engineering requirements; it is a container for the specific 
Requirements that the artifact must satisfy.  
 
Requirement is a specific element of the Specification of an artifact that governs some 
aspect of its function, form, geometry or material. Requirements cannot apply to behavior, 
which is strictly determined by a behavioral model. 
 
Function represents what the artifact or feature is supposed to do. The artifact satisfies 
customer needs and/or engineering requirements largely through its function.  
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TransferFunction is a specialized form of Function involving the transfer of an input 
flow into an output flow.  
 
Flow is the medium that serves as the output of one or more transfer function(s) and the 
input of one or more other transfer function(s). 
  
Behavior describes how the artifact implements its function; it is governed by physical, 
chemical or other engineering principles that are incorporated into a behavioral or causal 
model.  
 
Form of the artifact or feature is the design solution for the problem specified by the 
function. In the CPM, the artifact’s or feature’s physical characteristics are represented by 
two distinct classes:  
 
Geometry is the spatial description of an artifact or feature. 
 
Material is the material composition of an artifact or feature. 
 
The following constitutes the association (relationship) classes derived from the 
CommonCoreRelationship class: 
 
Constraint is a specific shared property of a set of entities that must hold in all cases. At 
the level of the CPM, only the entity instances that constitute the constrained set are 
identified.  
 
EntityAssociation is a simple set membership relationship among artifacts and features. 
 
Usage is a mapping from CommonCoreObject to CommonCoreObject, useful when 
constraints apply to multiple “target” entities but not to the generic “source” entity. 
 
Trace is structurally identical to Usage, useful when the “target” entity in the current 
product description depends on a “source” entity in another product description.  
 
The following three utility classes, not shown on Figure 1, provide additional detail: 
 
Information, an attribute of CoreProductModel and all its specializations, is a container 
consisting of three attributes: (i) a textual description; (ii) a textual 
documentation; and (iii) properties, a set of attribute-value pairs representing all 
domain- or object-specific attributes.  
 
ProcessInformation, an attribute of Artifact, contains product development process 
parameters that may be used in a Product Lifecycle Management (PLM) environment.  
 
Rationale, an attribute of CoreProperty, documents decision in the product development 
process.  
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The classes described are linked by three kinds of associations. First, all object classes have 
their own separate, independent decomposition hierarchies3 by attributes such as 
subArtifacts/subArtifactOf for the Artifact class.  
 
Second, there are associations between:  
• a Specification and the Artifact that results from it  
• a Flow and its source and destination Artifacts and its input and output Functions  
• an Artifact and its Features. 
 
Third, and most importantly, four aggregations are fundamental to the CPM: 
• Function, Form and Behavior aggregate into Artifact  
• Function and Form aggregate into Feature  
• Geometry and Material aggregate into Form 
• Requirement aggregates into Specification. 
 
The conceptual model of CPM may be used in actual applications, albeit at a high overhead 
cost: specific instances of entities must be located by means of their type and their 
attributes stored in and retrieved from the properties slot of the associated 
Information instance. These same two constructs, type and properties, may be used by a 
model compiler to create subclasses of Artifact from the specifications in the type slot, 
and define attributes on the subclasses from the properies list [8]. 

3. AN XML IMPLEMENTATION OF THE CPM 
 
In order to illustrate the implementation and use of the CPM, we have generated the Core 
Product XML Schema (CPXS) equivalent to the CPM and a set of Java classes. We have 
also developed a Java graphical user interface to input product data and generate valid 
XML documents according to the CPXS schema. 
 
The full XML implementation of CPXS is presented in [8]. Here we present only one 
illustrative example of the consequences of the fact that the XML schema language is not 
an object-oriented language. The XML schema resulting from the conversion of an UML 
class diagram needs to be constrained to ensure the consistency of the XML instance 
document. 
 
3.1. The XML Artifact complexType 
 
Figure 2 shows the XML complexType representing an artifact. Inherited attributes are not 
shown in this figure; the listOfxxx type represents a set of strings referring to the name 
subelement of elements of type xxx (e.g., within an artifact, the hasFeature element 
contains a set of subelements, each of which refers to the name of a feature of that 
artifact).  
 
As an example of the added constraints needed for XML document consistency, consider 
the element satisfies within the artifact element. This tag references the name or code of 

                                                 
 

3 For clarity, only the subArtifacts/subArtifactOf containment hierarchy of Artifact is labeled in Figure 1. 
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the specification element that the artifact satisfies; the referenced specification 
element must be an element of the XML document; otherwise the document is not 
consistent.  

<xsd:complexType name="Artifact"> 
<xsd:complexContent> 
 <xsd:extension base="CoreEntity"> 
 <xsd:sequence> 
 <xsd:element name="hasBehavior" type="listOfBehaviors" minOccurs="0"/> 
 <xsd:element name="hasFunction" type="listOfFunctions" minOccurs="0"/> 
 <xsd:element name="hasForm" type="listOfForms" minOccurs="0"/> 
 <xsd:element name="satisfies" type="xsd:string" minOccurs="1"/> 
 <xsd:element name="hasFeature" type="listOfFeatures" minOccurs="0"/> 
 <xsd:element name="subArtifacts" type="listOfArtifacts" minOccurs="0"/> 
 <xsd:element name="subArtifactOf" type="xsd:string" minOccurs="0"/> 
 <xsd:element name="hasInputFlow" type="listOfFlows" minOccurs="0"/> 
 <xsd:element name="hasOutputFlow" type="listOfFlows" minOccurs="0"/> 
 </xsd:sequence> 
 </xsd:extension> 
</xsd:complexContent> 
</xsd:complexType> 

 Figure 2: The XML Artifact complexType 
To ensure this consistency, we define the name element to be the key of the 
specification element (Figure 3) and indicate that the element satisfies within the 
artifact element is a reference to this key. The figure also shows that the element 
containedIn in the requirement element must reference a valid and unique specification 
name (i.e., a key). 

<xsd:key name="pKSpec"> 
 <xsd:selector xpath="cpm:specification"/> 
 <xsd:field xpath="cpm:name"/> 
</xsd:key> 
 
<!-- Elements that shall reference a specification name --> 
<xsd:keyref name="specRef" refer="pKSpec"> 
 <xsd:selector xpath="cpm:artifact"/> 
 <xsd:field xpath="cpm:satisfies"/> 
</xsd:keyref> 
<xsd:keyref name="spec1fRef" refer="pKSpec"> 
 <xsd:selector xpath="cpm:requirement"/> 
 <xsd:field xpath="cpm:containedIn"/> 
</xsd:keyref> 

 

Figure 3: Example of a Consistency Constraint in the XML Artifact Schema 
  
3.2. Example: XML representation of a planetary gear 
 
The planetary gear system (PGS) example considered in this section was presented in detail 
in [10], where it was used to illustrate the representation of both the Artifact containment 
hierarchy and the assembly associations comprising the Open Assembly Model, an 
extension of CPM. Our interest in the example here is to show how CPM captures design 

7 
 



 
 

information about a product; thus, only data important from the design point of view are 
modeled.  
 
Figure 4 shows the components of the PGS: the main artifact is the planetary gear; it is 
composed of 13 subartifacts: 8 screws, the output housing, the input housing, the ring gear, 
the sun gear, and the planet gear carrier. Information pertaining to the function, form, 
behavior and specification related to these subartifacts is not presented here. 
 
 

   

• •• 

8 Screws Output 
housing 

Input 
Housing 

Ring Gear Sun Gear 
Planet Gear 
Carrier 

Planetary Gear 

 

Figure 4: The Planetary Gear System  
 
Figure 5 shows an XML artifact element describing the PGS. The figure shows that this 
element includes the following set of subelements:  
 

• information: a description and brief documentation of the PGS artifact4 
• behaviors: a list of names of elements that describe the behavior of the PGS  

artifact.  
• functions, forms, features: three lists, the elements of which give the names of 

the function changeSpeedOfRotation, the form cylindricalForm, and the features 
fasteningHoles and outputShaftHole of the PGS, respectively.  

• satisfies:  name of the XML element that gives the specification that the PGS 
shall satisfy. In the full example presented in [8], this specification is decomposed 
into a set of requirements that include form, input speed, output speed, input torque 
and output torque requirements.  

• subArtifacts: a list of the names of the subartifacts of the PGS artifact: 
planetGearCarrier, sunGear, ringGear, inputHousing, outputHousing and eight 
screws.  

 

                                                 
 

4 Since XML is not an object-oriented language, the Information entity and its attributes  description, documentation and 
properties have been inserted in the parent entity. 

8 
 



 
 

<artifact> 
    <name>PlanetaryGearSystem</name> 
    <information> 
        <description> 
             The PlanetaryGearSystem for changing speed rotation  
        </description> 
        <documentation> 
             This is an assembly of 13 different  
             subartifacts and subassemblies 
        </documentation> 
    </information> 
    <behaviors> <theBehavior name="pgsBehavior"/> </behaviors> 
    <functions> <theFunction name="changeSpeedOfRotation"/>  
    </functions> 
    <forms> <theForm name="cylindricalForm"/> </forms> 
    <satisfies>pgsSpecification</satisfies> 
    <features> 
        <theFeature name="fasteningHoles"/> 
        <theFeature name="outputShaftHole"/> 
    </features> 
    <subArtifacts> 
        <theArtifact name = "planetGearCarrier"/> 
        <theArtifact name = "sunGear"/> 
        <theArtifact name = "ringGear"/> 
        <theArtifact name = "inputHousing"/> 
        <theArtifact name = "outputHousing"/> 
        <theArtifact name = "screw1"/> 
  … 
        <theArtifact name = "screw8"/> 
    </subArtifacts> 
</artifact>  

Figure 5: Artifact Element of the Planetary Gear System 
Figure 6 and Figure 7 show the definitions of the behavior and the function of the above 
artifact, respectively, by means of the pgsBehavior and pgsFunction elements. One can see 
how the properties slot of the information element is used to capture important 
information such as speed ratio and output torque. 

<behavior> 
  <name>pgsBehavior</name> 
  <information> 
    <description>the behavior of the planetary gear 
        system after assembly analysis and validation 
    </description> 
    <properties> 
      <property name="speedRatio">3.0:1</property> 
      <property name="torqueOut">6.78 N.m</property> 
    </properties> 
  </information> 
  <artifact>PlanetaryGearSystem</artifact> 
</behavior> 

 

Figure 6: Behavior Element of the Planetary Gear System 
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 The content of the artifact element, within the behavior, and the content of 
functionOfArtifact element, within the function, are the names of the artifact to which 
these two elements pertain. As the content is the same for both elements, we understand 
that they pertain to the same artifact, which is the main artifact of the planetary gear 
system. 

 

<function> 
   <name>changeSpeedOfRotation</name> 
   <information> 

<description>the main function of thePlanetaryGearSystem. It   
provides adequate and variable speed for all possible 
operations 

      </description> 
      <properties> 
    <property name="input">rotational energy</property> 
    <property name="output">rotational energy</property> 
    <property name="speedIn">1800rpm</property> 
    <property name="speedOut">TBD</property> 
    <property name="torqueIn">2.26 N.m</property> 
    <property name="torqueOut">TBD</property> 
 </properties> 
   </information> 
   <functionOfArtifact>PlanetaryGearSystem</functionOfArtifact> 
</function> 

Figure 7: Function Element of the Planetary Gear System 
The XML standard has been used for data representation to overcome a number of 
interoperability problems in various domain of application (e.g. MathML, CML). By 
separating the content (data) from the presentation, XML documents are excellent supports 
to capture product data, for later diffusion (in various formats) and/or any further automatic 
treatments. The CPM implementation given in this section is far from being complete or 
final. It is provided to show how CPM and XML can be combined and used as a basis for 
future product data management systems.  

4.CONCLUSION 
 
The Core Product Model presented in this paper can be seen as a first step toward the 
definition of a product model suitable for supporting the information needs of Product 
Lifecycle Management (PLM) systems over the lifecycle of the product from the earliest 
ideation to manufacturing, operation and disposal. The CPM captures a wide range of 
common product information (specification, requirements, function, form, behavior, 
material, constraints, etc.). Domain-specific models have been defined as extensions of this 
conceptual model [10]. Implementation models can be generated using the contents of the 
conceptual model to semi-automatically create domain-specific subclasses with their 
attributes. 
 
The XML implementation and the planetary gear system  example show how the CMP can 
be used with semantic web standards technologies to model product data in an 
interoperable manner. 
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This work is part of the Interoperability Program in the Manufacturing Systems Integration 
Division of the Manufacturing Engineering Laboratory at NIST. As part of this program, 
future work will involve the collection and correlation of product information throughout 
the Virtual Manufacturing Enterprise (VME) under development, leading towards 
extensions of the CPM to serve as the basic organizing principle for the information in the 
VME. 
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