
* Corresponding author
Address: Bâtiment Nautibus, Université Claude Bernard Lyon 1, 43, Boulevard du 11 novembre 1918
69622 Villeurbanne Cedex, France
fax: +33 (0)4 72 43 15 36
email addresses: dartigue@unice.fr, parisa.ghodous@liris.cnrs.fr, gruning@cme.nist.gov,

denis.pallez@liris.cnrs.fr, sriram@nist.gov

CAD/CAPP Integration using Feature Ontology

Christel Dartigues 1*, Parisa Ghodous 1, Michael Gruninger 2, Denis Pallez 1, Ram
Sriram 2

1 LIRIS, University Claude Bernard of Lyon, 43, Boulevard du 11 novembre 1918
69622 Villeurbanne Cedex, FRANCE

2 NIST, 100 Bureau Drive, Gaithersburg, MD 20899-8260, USA

Abstract:
In a collaborative computer-supported engineering environment, the interoperation of
various applications will need a representation that goes beyond the current geometry-
based representation, which is inadequate for capturing semantic information. The
primary purpose of this paper is to discuss a semantically-based information exchange
protocol that will facilitate seamless interoperability among current and next generation
computer-aided design systems (CAD) and between CAD and other systems that use
product data. We describe an ontological approach to integrating computer-aided
design (CAD) and computer-aided process planning (CAPP). Two commercial software
applications are used to demonstrate our approach. The approach involves the
development of a shared ontology and domain-specific ontologies in the KIF
(Knowledge Interchange Format) language. Domain-specific ontologies--which are
feature-based—are developed after a detailed analysis of the CAD and the CAPP
software. A shared ontology is generated from the domain ontologies. This shared
ontology is used as a basis for mapping to and from native files of CAD/CAPP systems.
The approach is validated by using a variety of parts.

Keywords: CAD; CAPP; Interoperability; Ontologies; Design; Process Planning;
Knowledge Interchange Format

1. Introduction

The early part of this millennium has witnessed the emergence of an Internet-based
engineering marketplace, where engineers, designers, and manufacturers from small and
large companies are collaborating through the Internet to participate in various product
development and marketing activities. This will be further enhanced by the next
generation manufacturing environment, which will consist of a network of engineering
applications, where state of the art multi-media tools and techniques will enhance closer
collaboration between geographically distributed applications, virtual reality tools will
allow visualization and simulation in a synthetic environment, and information
exchange standards will facilitate seamless interoperation of heterogeneous
applications. The interoperation of various applications will need a representation that
goes beyond the current geometry-based representation, which is inadequate for
capturing semantic information. The primary purpose of this paper is to discuss a
semantically-based information exchange protocol that will facilitate seamless
interoperability among current and next generation computer-aided design systems
(CAD) and between CAD and other systems that use product data. Our focus will be on

design/process planning integration during the later design stages. In this paper, we
present an approach using a neutral format based on a feature ontology.

Our approach involves a three stage process, as outlined below and described in detail
in later sections (see Figure 1):

• Stage 1: An analysis of traditional CAD (computer-aided design) and CAPP
(computer-aided process planning) is performed. Based on this analysis, we
identify various features used in these systems. Next, we generate formal
ontologies for each of the domain.

• Stage2: A shared or a common ontology for the two stated domains is
developed. This shared ontology is based on the individual domain
ontologies.

• Stage 3: Mapping rules from the native files of the CAD and CAPP systems
to and from the shared ontology are developed. These rules lead to a
pragmatic implementation.

In the next section we provide a brief overview of design/process planning integration.
This will be followed by a discussion of representative standards for interoperating
design and process planning. The need for ontological approaches is presented followed
by descriptions of ontologies in the design and process planning domains. A shared
ontology generated from the domain ontologies is described next. This shared ontology
is used as a basis for mapping to and from native files of CAD/CAPP systems. Rules for
such mappings are presented. Finally, we illustrate our approach with an example.

2. Design/Process Planning Integration: An Overview

Engineering a product involves several stages with considerable iterations, starting with
planning products, generating product specifications, performing preliminary and
detailed design, developing process plans, building product facilities, manufacturing
product, managing workflow, and finally marketing and maintaining products [1]. In
this paper we focus on an important aspect of the above cycle: design and process-
planning integration. We believe that it is important to integrate design and process
planning at various levels of abstraction, as errors made during early design stages
could have a significant impact on the overall product quality and costs [1-4].

Engineering design involves mapping a specified function (or functional specifications)
onto a (description of a) realizable physical structure – the design artifact. Over the past
several decades considerable research has been done in developing various design
product and process models [5]. We will not delve into a detailed description of the
design process, much as we feel a need for the adequate representations for process
knowledge. The reader is referred to [1] for a formal description of a design process
model. At this stage our primary concern is on the product or artifact representation. For
this we use the NIST Core Product Model (CPM) presented in [6].

Process planning is an intermediate phase between design and manufacture [7, 8]. More
precisely, it links these two decisive phases of product development [9]. It depends on
choices made in design and determines precisely actions that will be achieved during

 2

manufacture (Figure 2). Different definitions have been given for process planning [3,
10-12]. We use the following definition in this paper: process planning is the phase that,
from information generated during design (product geometry for instance), determines:
the necessary operations and actions to transform a raw part into a finished or semi-
finished part, the necessary human and material resources to manufacture the product,
and the product development cost.

A wide variety of manufacturing processes are available for the actual artifact
production. In the current work we focus on the machining processes for part
production, in particular material cutting processes. Figure 3 provides a representation
of this process: the cutting tool comes against the surface, creating a chip that will be
removed from the part.

The interactions between design and process planning occur at various stages, from
conceptual to detailed design/process planning as shown in Figure 4 [13]. However, it
must be noted that most of the commercial tools for process planning operate on
detailed geometry, although the approach presented here can be used for integrating
process planning with early design stages. In other words, current interfaces between
design and process planning are defined during the detailed design stage. This is
primarily achieved through use of geometric features. However, there is considerable
difference in the methods and terminology used: features are used to design a product
(design by feature) [4, 9, 14, 15] while in process planning features are extracted from
the product (design recognition or extraction) [9, 14-17], and a consistent feature
terminology does not exist for the two domains. These differences are illustrated in the
software used by designers and process planners:

• CAD software, such as Pro/Engineer and SolidWorks, offer a limited number
of features to users. The objective here is to have a compact set of parametric
features, which can help designers to intuitively find more suitable features.

• CAPP software, such as PART, utilizes a feature extraction algorithm and
contains a large number of features. The objective here is not to have a
limited set of significant features but to have a very large number of features,
which can improve the efficiency of the feature extraction algorithm.

These different viewpoints of designers and process planners on features makes data
exchange a tedious task. Although features are considered differently in design and
process planning, they represent a natural link between these two domains. Hence,
features provide a valuable mechanism for information exchange. Next we review the
current standards in design and process planning interoperability and discuss extensions
needed for feature-based interoperability.

3. Standards for Interoperability

We illustrate the interoperability issue between CAD systems by considering a potential
information exchange scenario during the design of the Boeing 777. For Boeing to
incorporate Rolls Royce engines into the design, the data format has to be converted
from Computer Vision’s CADDS (used by Rolls Royce) to Dassault’s CATIA.
Similarly, for Rolls Royce to understand changes made by Boeing engineers, the data

 3

need to be converted from CATIA to CADDS. Hence, we need at least 2 translators.
For three systems this grows to 6 translators and for n systems we need n(n-1)
translators. Hence, there is a need to design, build, and maintain n(n-1) translators. A
solution to this problem is to use a neutral format and make all the CAD applications
output this format. Doing so will reduce the number of translators to 2*n, i.e., for each
CAD system we will need two translators –- one from the CAD system to the neutral
format and the other from the neutral format to the CAD.

A standard of primary interest to design is ISO 10303, also known informally as STEP
(Standard for the Exchange of Product model data) and developed by the International
Organization for Standardization Technical Committee 184/ Subcommittee SC4 (ISO
TC 184/SC4). Its intention is to enable the exchange of product model data between
different modules of a product realization system, or the sharing of that data by different
modules through the use of a common database. The first parts of STEP to achieve
International Standard status were published in 1994, but many other parts have since
been published or are under development and will eventually be added to the standard.
Recent updates (and other relevant details) can be found at the following websites:
www.tc-184-sc4.org, and http://www.iso.ch/iso/en/ISOOnline.frontpage.

ISO 10303 (STEP) consists of many parts and can be viewed as consisting of several
layers. The top layer consists of a set of application protocols or APs, which address
specific product classes and life-cycle stages (e.g., mechanical, electronic, ships,
automotive, design, process planning). These APs specify the actual data exchange, and
are constructed from a lower layer set of modules called integrated resources, which are
common for all disciplines. The language for modeling various STEP entities and their
relationships is called EXPRESS. Other parts specify standard mechanisms for the
actual transfer of data, the conformance testing methodology, and various test suites.

The primary emphasis of STEP AP 203 (STEP Application Protocol 203) is on shape
description plus product configuration data. Facilities are provided for capturing, in
standard format, the following representations: 3D wireframes, surface models and solid
models. This reflects the state of CAD technology as it was when the STEP
development effort began in the mid-1980s. However, CAD technology has progressed
since that time, and most major CAD systems now provide facilities for parametric,
variational design (including constraints) and/or feature-based design. In addition,
many of these systems have facilities to record design histories. These systems generate
additional information, beyond the pure shape descriptions created by older systems.
STEP AP 203 Edition 1 did not provide any means for capturing and transmitting this
additional information. The short term parametrics effort under Working Group 12
(WG 12) of ISO TC 184/SC4 is addressing this problem. WG 12’s efforts include Part
108 for parametric information and Part 111 for construction history encoding.
Attempts are being made to incorporate these parts into STEP AP 203 Edition 2, which
extends STEP AP 203 to the support of GD&T (geometric dimensioning and
tolerancing), colors, layers, construction history, material data, etc. The technical
specification document for STEP AP 203 Edition 2 was released in 2004. It is assumed
that this technical specification document will reach the DIS (draft international
standard) and FIS (final international standard) stages, after additional balloting.

 4

http://www.tc-184-sc4.org/
http://www.iso.ch/iso/en/ISOOnline.frontpage

Considerable research has been performed on mapping CAD data onto process planning
systems. However, this work has met with limited success, such as the one reported by
[18]. One problem with the current standards is the lack of integration between CAD
data output and process planning input. For example, the primary focus of STEP AP
203 is the interoperability between geometry-centered CAD systems, while the focus of
STEP AP 224 (Mechanical product definition for process plans using machining
features) has been on input to process planning systems with a primary focus on
representation of machine features. The idea of features has been in vogue for some
time and the literature is abound with definitions of features [11, 15, 19-25]. For
example, Shah et al. suggest that features “are primitive or low level designs with their
attributes, qualifiers and restrictions which affect functionality and/or manufacturability.
Features can describe form (size and shape), precision (tolerances and finishing), or
materials (type, grade, properties and treatment), and vary with product and
manufacturing process.”

To achieve truly collaborative design and engineering, exchange representations of both
design and process information must support multiple levels of abstraction. To
adequately achieve this we will need a more formal method for representing features,
such as the ontological approach described in the next section. Our approach has some
similarities to the one presented in [26], but our overall methodology is different.

4. Ontological Approach to Interoperability

In all types of communication, the ability to share information is often hindered because
the meaning of information can be drastically affected by the context in which it is
viewed and interpreted. This is especially true in manufacturing, because of the growing
complexity of manufacturing information and the increasing need to exchange this
information among various software applications. Different representations of the same
information may be based on different assumptions about the world, and use differing
concepts and terminology -- and conversely, the same terms may be used in different
contexts to mean different things. Often, the loosely defined natural-language
definitions associated with the terms will be too ambiguous to make the differences
evident, or will not provide enough information to resolve the differences.

To address these challenges, various groups within industry, academia, and government
have been developing sharable and reusable models known as ontologies. All ontologies
consist of a vocabulary along with some specification of the meaning or semantics of
the terminology within the vocabulary. In doing so, ontologies support interoperability
by providing a common vocabulary with a shared semantics. Rather than develop point-
to-point translators for every pair of applications, one simply needs to write one
translator between the application's terminology and the common ontology. Similarly,
ontologies support reusability by providing a shared understanding of generic concepts
that span across multiple projects, tasks and environments.

The various ontologies that have been developed can be distinguished by their degree of
formality in the specification of meaning. With informal ontologies, the definitions are
expressed loosely in natural language. Semi-formal ontologies, such as taxonomies,
provide weak constraints for the interpretation of the terminology. Formal ontologies

 5

use languages based on mathematical logic. Informal and semi-formal ontologies can
serve as a framework for shared understanding among people, but they are often
insufficient to support interoperability, since any ambiguity can lead to inconsistent
interpretations and hence hinder integration.
Another source of semantic heterogeneity lies in the languages used to represent the
ontologies. There have been several efforts within academia and industry to develop
common languages, such as OWL (Web Ontology Language,
http://www.w3.org/TR/owl-features/) and KIF (Knowledge Interchange Format,
http://www-ksl.stanford.edu/knowledge-sharing/kif/), that can be used as the basis for
encoding ontologies to support semantic integration. The most expressive of these
efforts is the Common Logic project, which combines the Knowledge Interchange
Format [27-29] and Conceptual Graphs (CG) [30] languages. Common Logic includes a
core language that has the expressiveness of first-order logic; its syntax and semantics
are those of traditional first-order logic. Most recently, this has been extended to include
extensions that allow sorted formulae for the specification of class hierarchies, and the
specification of the meta theory of KIF within the language itself.

Our objective in this paper is to demonstrate an ontological approach for data exchange
between designers and process planners. To realize this, we developed a shared feature
ontology, which is based on individual domain feature ontologies. This ontology
represents all the common knowledge between designers and process planners. We use
the shared ontology as follows: a designer creates an artifact shape model using a CAD
software (such as Pro/Engineer); this model is then transformed, using CAD-files-to-
shared-ontology mapping rules (see Section 8), into instances of the shared ontology.
These instances of the shared ontology are then transformed using shared ontology-to-
CAPP-files mapping rules, into a representation interpretable by CAPP software (such
as PART). We assume that the CAPP software is capable of appropriate feature
extraction. All ontologies in this work are expressed in KIF. In a related project we
have developed the ontologies in OWL, which is aimed at representing knowledge on
the Web. In that project the mappings are done between feature ontologies and the
shared ontologies, rather than between native file formats and the shared ontology [31].
Computational issues associated with such mappings are currently being addressed.

In the following sections, we present various feature ontologies and a description of
the mapping rules used to translate data.

5. Design Feature Ontology

Our ultimate goal is to develop a comprehensive feature model that can be used through
the entire design life cycle. However, for our prototype we restricted the NIST CPM’s
extensions to the information generated by commercial CAD systems. To identify these
concepts, we first performed an extensive analysis to understand various designers’
needs. This analysis phase involved the following:

• the extraction of designer know-how--which is implicit--in order to formalize
designer’s knowledge; and

• the analysis of different CAD software such as Pro/Engineer and SolidWorks
(we used these to create various parts in order to better understand the design

 6

process).

Based on this analysis we concluded that the NIST CPM had most of the necessary
classes to represent detailed design data. We added a few classes in order to increase the
coverage to CAD software, such as: the datum coordinate system in which the artifact is
defined, the dimensions associated to an artifact, the precision of the dimensions of an
artifact, the different versions of an artifact and the constraints associated to each
feature. Figure 5 represents these concepts.

We also defined different types of constraints as shown in Figure 6. The initial
categories that we considered are position and orientation constraints, which can be
further classified into attachment and geometric constraints. Attachment constraints
specify how a feature instance is attached to the global model by coupling some of the
feature faces with the pre-existing faces. Geometric constraints specify geometric
relations such as parallelism of two faces or distance between two faces. Validity
constraints correspond to another constraint category defined in our ontology. These
validity constraints can be further classified into:

• dimension constraints, which specify the authorized set of values for each
feature parameter. e.g., radius parameter of a crossing hole can be limited to
values between 1 and 10 millimeters;

• algebraic constraints, which are used when feature shapes are geometrically
constrained with explicit relations (these relations can be simple equalities
between two parameters or, in general, algebraic expressions implying two or
more of two parameters or constants);

• boundary constraints, which specify if feature faces are on the boundary or
not on the boundary of the conceived object; and

• feature interaction constraints, which are used to indicate that a particular
type of interaction is or is not allowed for a feature instance.

The above extensions suffice to illustrate our approach. Additional classes will be
needed for a wider coverage. KIF representations of a representative set are shown in
Figure 7.

6. Process Planning Ontology

Our feature ontology is also representative of the process planning viewpoint. We
followed a similar approach used for design: we asked process planners to describe how
they work, what kind of information they need, what are the different phases of their
work, etc. We also studied a CAPP software: PART1. This analysis of process planning
turned out to be a more difficult task than obtaining the design features. While designers
have a consistent notion of what design is, process planners seem to be in less
agreement on the terminology in their domain. Based on our discussions, we decided to
use the concepts presented in Figure 8.

1 http://www.opm.wb.utwente.nl/projects/part/part-doc/

 7

In this figure, an artifact is associated with a manufacturing model. This model is used
to create a process plan. The input of this process plan is a raw part and the output is a
semi-finished or finished part. A process plan identifies the machining operations that
are necessary to manufacture an artifact. Hence, a process plan is composed of
machining setups, which contains all the machining operations that are realized with the
same machine and without changing various attachments. For each machining setup,
there is a set of machining operations. Each machining operation is then realized with
the same machine and attachments. Every machining operation is composed of a set of
machining sequences, which corresponds to a transformation of a part that is achieved
with the help of a material removal tool moving according to a tool path. Finally, a
machining operation modifies a surface in accordance to a required finish: raw, semi-
finish, finish or super-finish. KIF representations of a representative set are shown in
Figure 9.

7. Common Feature Ontology or Shared Ontology

Our final ontology corresponds to the common concepts between design and process
planning and is composed of a number of classes and relationships. We base our
ontology on the NIST Core Product Model (CPM), which was extended to deal with
features identified here. Figure 10 represents the main classes and relationships
composing NIST’s CPM and its extensions in this work, where the extensions are
shown as darkened boxes (ideally, the NIST CPM should be a package in UML
(Unified Modeling Language) and our extensions should be in a separate package). The
descriptions of key entities in the NIST CPM are as follows (taken from [6]).

An Artifact represents a distinct entity in a design, whether that entity is a component,
product, subassembly or assembly. The Artifact’s attributes refer to the Specification
responsible for the Artifact and the Form, Function, and Behavior comprising the
Artifact. The Function represents what the Artifact is supposed to do. The Artifact
satisfies the engineering requirements largely through its Functions. The term function
is often used synonymously with the term intended behavior. The Form of the Artifact
can be viewed as the proposed design solution for the design problem specified by the
Functions. More precisely, the physical characteristics of an Artifact are represented in
terms of its Geometry and Material properties.

Another important class of the CPM is the Feature. An Artifact is composed of a set of
features, where a feature is a subset of the form of an object that has some function
assigned to it. We can have several types of features: analysis features, design features,
manufacturing features, interface or port features, etc.. Compound features can be
generated from primitive features. The notion of a feature is further elaborated in the
work presented here.

We modified the NIST CPM by adding some concepts that are common to design and
process planning, are both necessary for designers and process planners, and are
considered in CAD and CAPP software. Examples of these include:

• the surfaces composing any feature;
• the tolerances associated to any feature (such as the perpendicularity between

 8

two surfaces) (a more complete treatment of tolerances and assemblies is
provided in [32]); and

• the units used to represent any artifact.

Our main objective is to find a common feature representation between design and
process planning. To do so, we extended NIST CPM to address the following:

• the way each feature is represented, such as a B-Rep representation, a CSG
representation, a swept representation, etc. (Feature Representation concept);
and

• the elements composing each feature, such as a bottom side, an intermediary
face, etc. (Feature Element concept).

We also characterized a complete feature decomposition which is based on the feature
categories proposed in part 48 of STEP [33]. Figure 11 illustrates this decomposition.
Features are classified into:

• volume features, which are viewed as a volume added to or subtracted from
pre-existing volume;

• transition features, which are viewed as separating or blending two or more
surface elements; and

• pattern features, which are viewed as consisting of a number of identical sub
features arranged in a mathematical pattern.

Volume features can be subtractive or additive, and transition features can be corner or
flat transitions. A more detailed description of this decomposition can be seen at [33,
34]. The KIF version of representative entities is shown in Figure 12.

8. Mapping Rules For Case Study

Once the feature ontologies in various domains are defined, the next step is to define the
mapping rules that will transform specific files onto instances of our common ontology.
For our case study, we choose the following software: Pro/Engineer, which is used by
CAD experts, and PART, which is used by CAPP experts. The methodology that we
followed is described in Figure 13.

We first analyzed the existing export and import formats of Pro/Engineer and PART.
Then, we selected one format for each of them: a proprietary format -- Neutral File
Format (.PRT) -- for Pro/Engineer and the ACIS2 format for PART. Once the formats
were chosen, we analyzed the representation of different artifacts in the two formats.
The objective is to extract all the important concepts represented in each file in order to
correlate them with the domain ontology entities. Once this is done our approach
utilizes two algorithms: one to translate a file generated by a CAD software into a set of
instances of the feature ontology and one to translate this generated file into a file that
can be interpreted and processed by a CAPP software. We would like the reader to note
that the feature extraction is done by the CAPP software; our system only maps the
shared ontology into a format that is recognized by the CAPP software.

2 http://www.spatial.com

 9

The inputs to the first algorithm are:

• the file containing the entire description of the ontology, which is expressed
in KIF, and

• the file generated by the CAD software (Pro/Engineer in this case), which
represents the geometry and topology of the part that has to be manufactured.

The inputs to the second algorithm are:
• the file containing the entire description of the ontology, which is the

common ontology expressed in KIF, and
• the file generated by the first algorithm.

As we previously stated, the only assumption made during the elaboration of the
ontology and the mapping rules was that we only considered parts that do not have any
assembly; solving this problem for simple machining parts containing only features by
itself is a difficult task. In a future work we will consider more complex parts and
assemblies by using NIST’s OAM (object assembly model) [32]. If the two algorithms
that we developed do not provide a “correct mapping” then:

• the mapping rules implemented in the algorithms are not correct; and/or
• the ontology is not correct, in which case we have to modify the ontology and

then modify the mapping rules to take into account these changes.

For a simple artifact such as a box with one hole (Figure 14), the file generated by
Pro/Engineer is hierarchically structured: it contains the dimensions characterizing the
artifact, the features used to build it, the surfaces determining the features and the edges
composing the surfaces. PART files are totally different: information is stored with no
specific order, and data contained in such files relates to geometric and topologic
information. This kind of file format doesn’t explicitly provide information about
features composing an artifact.

Using different instances of Pro/Engineer and PART files, we extracted a list of entities
or concepts and their attributes in these files. Example concepts are: plane surface,
cylindrical surface, straight curve, linear curve, edge, point, vertex, etc. Once this
analysis is done, we generated the mapping rules between a Pro/Engineer file and a file
containing instances of our ontology, and between this generated file and a PART file.
The purpose of these rules is to identify in our shared ontology the entities that are
equivalent to the concepts that we identified in Pro/Engineer and PART native files.
Initially we expressed these mapping rules graphically. In this graphical representation,
we display the relationships between the attributes of the entities represented in
Pro/Engineer or PART file and attributes of the entities of our ontology. Figure 15
shows the graphical representation of one such mapping rule. This mapping rule shows
the correspondence between a plane surface expressed in a neutral file generated by
Pro/Engineer and the equivalent concepts in our ontology.

Once this step is finished, we obtained two sets of mapping rules. The next step consists
in implementing these rules to be able to translate a CAD file into a CAPP file via our
ontology. As we have previously stated, our method involves starting from a file

 10

generated by Pro/Engineer, applying a first set of mapping rules to generate a neutral
file, and then applying our second set of mapping rules on this neutral file to obtain a
file interpretable by PART. A description of our mapping algorithm is shown in Figure
16. Next, we briefly describe the algorithm.

Using Pro/Engineer we create all the features associated with a part. For each feature,
we extract from our ontology all the attributes that we have identified for a feature (for
example the list of surfaces, the list of dimensions, etc.). For each of these attributes we
retrieve, still in our ontology, the nature of the attribute, which can be either simple (i.e.,
integer, string, boolean) or complex (i.e., the attribute is composed of sub-attributes). If
the attribute is a simple one, we extract the associated value in the original file (i.e.,
CAD file) and we add a new instance in the neutral file. If the attribute is more
complex, we consider each sub-attribute until all concepts appearing in the initial file
have been instantiated. The advantage of this algorithm is that if we decide to change
the attributes of one of the concepts of the ontology – for example if we delete one
attribute of the concept feature -- the algorithm will not have to be modified because the
number of attributes of a concept is calculated each time the algorithm is executed. In
the current project our mappings were done from native file formats of commercial
systems to a shared ontology. We used this approach for pragmatic reasons, in order to
avoid the tedious process of application program interfaces.

We also implemented a user interface for our prototype. This interface allows us to
visualize the different artifacts that we considered, the Pro/Engineer file, the file
generated by our prototype and containing instances of our ontology, the file in which
the ontology is coded and also a graphical representation of the artifacts that we
considered. Figure 17 shows a typical screen of our prototype, which is implemented at
University Claude Bernard of Lyon, France (hence, the French wording).

We tested our methodology and our prototype with different examples. For our initial
prototype we considered only simple parts (see Figure 18), with great success. Our
plans are to extend this work for complex artifacts (e.g., assemblies). The result of our
approach is shown in the Figure 19.

9. Summary

In this paper we have described an ontological approach to integrating computer-aided
design (CAD) and computer-aided process planning (CAPP). Two commercial software
applications were used to demonstrate our approach. The approach involved the
development of a shared ontology and domain-specific ontologies in the KIF
(Knowledge Interchange Format) language. Domain-specific ontologies--which were
feature-based--were developed after a detailed analysis of the CAD and the CAPP
software. Mapping between the individual applications and the shared ontology was
achieved by several mapping rules. The approach was validated by using a variety of
parts.

 11

10. Acknowledgments and Disclaimer
Partial funding was provided by NIST’s SIMA (Systems Integration for Manufacturing
Applications) program. Sharon Kemmerer’s comments helped improve the text. The
commercial software described in this paper is either trademarked or registered. No
approval or endorsement of any commercial product by the National Institute of
Standards and Technology or by University Claude Bernard of Lyon is intended or
implied. Certain commercial equipments, instruments, or materials are identified in this
report in order to facilitate better understanding. Such identification does not imply
recommendations or endorsement by the National Institute of Standards and
Technology or by University Bernard of Lyon, nor does it imply the materials or
equipment identified are necessarily the best available for the purpose.

Bibliography

1. Sriram R.D., Distributed and Integrated Collaborative Engineering Design. 2002.

Sarven Publishers.
2. Baker B.A., Fish R.D., Cohen E. Using a Multiple Concurrent Design Views Interface

to Enhance Design Complexity Management. 2000. In ASME Design Engineering
Technical Conferences (DETC). Baltimore, Maryland, USA.

3. Feng, S.C., Song E.Y. Preliminary Design and Manufacturing Planning Integration
Using Intelligent Agents. 2002. In Proceedings of the Seventh International Conference
on CSCW in Design. Rio de Janeiro, Brazil.

4. Jan de Kraker, K. Feature Conversion for Concurrent Engineering. 1998. PhD Thesis
in Computer Science. Delft University of Technology, Delft, The Netherlands.

5. Dym, C. Engineering Design: A Synthesis of Views. 1994. Cambridge University Press.
New York, USA.

6. Fenves, S.J. A Core Product Model for Representing Design Information. 2001.
NISTIR 6736. National Institute of Standards and Technologies (NIST). Gaithersburg,
Marylang, USA.

7. Algeo, M.E.A. Feng, S.C., Ray, S.R. A State-of-the-Art Survey on Product Design and
Process Planning Integration Mechanisms. 1994. NISTIR 5548. National Institute of
Standards and Technologies (NIST). Gaithersburg, Marylang, USA.

8. Ball M., Baras, J. Lin E., Minis, I, Nau, D., Karne, R. Integrated Product and Process
Design Tool for Microwave Market. 1998. in NSF Design and Manufacturing Grantees
Conference, pp. 655-656, Jan. 5-8, Monterrey, Mexico.

9. Han, J.H., Requicha, A.A.G. Integration of Feature Based Design and Feature
Recognition. 1995. in Proceedings of ASME 15th International Conference I
Engineering. Boston, MA, USA.

10. Kramer, T.R. Process Plan Expression, Generation and Enhancement for the Vertical
Workstation Milling Machine in the Automated Manufacturing Research Facility at the
National Bureau of Standards. 1987. NBSIR 87 – 3678. National Bureau of Standards.
Gaithersburg, Maryland, USA.

11. Regli, W.C., Pratt, M. What are Feature Interactions ? 1996. in Proceedings the 1996
ASME Design Engineering Technical Conference and Computers in Engineering
Conference. Irvine, California, USA.

12. Houten, F.J.A.M.v., Erve, A.H.v.t., Kals, H.J.J. PART a Feature Based CAPP System.
1989. in 21st CIRP International Seminar on Manufacturing Systems. Stockholm,
Sweden.

13. Feng, S.C., Song, E.Y. Information Modeling on Conceptual Design Integrated with
Process Planning. 2000. in Proceedings of Symposia for Design For Manufacturability.

 12

Orlando, Florida, USA.
14. Han, J.H., Pratt, M., Regli, W.C. Manufacturing Feature Recognition from Solid

Models: A Status Report. 2000. in Transactions on Robotics and Automation. 16(6). p.
782-796.

15. Han, J.H. Survey of Feature Research. 1996. IRIS-96-346. Department of Computer
Science and Institute for Robotics and Intelligent Systems, University of Southern
California, USA.

16. De Martino, T., Falcidieno, B., Hassinger, S. Design and Engineering Process
Integration Through a Multiple View Intermediate Modeler in a Distributed Object-
Oriented System Environment. 1998. in Computer-Aided Design. 30(6). p. 437-452.

17. De Martino, T., Falcidieno, B., Giannini, F., Hassinger, S., Ovtcharova, J. Feature-
Based Modeling by Integrating Design and Recognition Approaches. 1994. in
Computer-Aided Design. 26(8). p. 646-653.

18. Dereli, T., Filiz, H. A Note on the Use of STEP for Interfacing Design to Process
Planning. 2002. in Computer-Aided Design. Vol 34. 1075-1085.

19. Bidarra, R., Bronsvoort, W.F. Semantic Feature modeling. 2000. Computer-Aided
Design. vol 32. p. 201-225.

20. Bronsvoort, W.F., Bidarra, R., Noort, A. Semantic and Multiple-View Feature
Modeling: Towards More Meaningful Product Modeling. 2001. in Geometric
Modelling. Theoretical and Computational Basis towards Advanced CAD Application.
Kluwer Academic Publishers, Boston, USA. 384p.

21. Mäntylä, M., Nau, D., Shah, J.J. Challenges in Feature-Based Manufacturing Research.
1996. Communication of the ACM. 39(2). p. 77-85..

22. Pratt, M., Srinivasan, V. Towards a Neutral Specification of Geometric Features. 2005.
in International Journal of Computer Applications in Technology. Vol 23 No 2/3/4. p.
203-218.

23. Salomons, O.W., Houten, F.J.A.M.v., Kals, H.J.J. Review of Research in Feature
Based Design. 1993. in Journal of Manufacturing Systems. 12(2). p. 113-132.

24. Shah, J.J., Mäntylä, M. Parametric and Feature Based CAD/CAM. 1995. John Wiley &
sons Inc. Edition. New York, USA.

25. Shah, J.J., Rogers, M.T. Feature Based Modeling Shell: Design and Implementation.
1988. in Proceedings of the ASME Conference on Computer in Engineering. p. 73-86.
Austin, Texas, USA.

26. Collet, C., Huhns, M.N., Shen, W. Resource Integration Using a Large Knowledge
Base in Carnot. 1991. in IEEE Computer. p. 55-62.

27. Hayes, E.E., Menzel, C.P. A Semantics for Knowledge Interchange Format. 2001. in
Working Notes of the IJCAI-2001 Workshop on the IEEE Standard Upper Ontology.
Seattle, Washington, USA.

28. Genesereth, M., Fikes, R. Knowledge Interchange Format, Version 3.0 Reference
Manual. 1992. Technical Report Logic-92-1. Computer Science Department, Stanford
University. Stanford, CA, USA.

29. Genesereth, M. Knowledge Interchange Format. 2001. NCITS.T2/98-004. American
National Standard (dpANS).

30. Sowa, J.F. Glossary. 2000. http://users.bestweb.net/~sowa/ontology/gloss.htm
31. Patil, L., Dutta, D., Sriram, R.D. Ontology-Based Exchange of Product Data Semantics.

2005. to Appear in IEEE Transactions on Automation, Science and Engineering.
32. Sudarsan, R., Han, Y.H., Feng, S.C., Roy, U., Wang, F., Sriram, R.D., Lyons, K.W.

Object-Oriented Representation of Electro-Mechanical Assemblies Using UML. 2003.
NISTIR 5057, National Institute of Standards and Technologies (NIST). Gaithersburg,
Maryland, USA.

33. ISO10303-48. STEP Product Data Representation and Exchange. Integrated Generic
Resources: Form Feature. 1992. International Organization for Standardization.
Subcommitee 4, Part 48. NIST, Gaithersburg, Maryland, USA.

 13

34. Dartigues, C. Product Data Exchange in a Collaborative Environment. 2003. PhD
Thesis in Computer Science. LIRIS, University of Lyon, Lyon, France.

 14

D
O

M
A

IN
 S

U
R

V
E

Y

ID
E

N
T

IF
IC

A
T

IO
N

 P
H

A
SE

O

N
T

O
L
O

G
Y

 C
O

N
S
T

R
U

C
T

IO
N

P
H

A
S
E

P R
O

T
O

T
Y

PE
 C

O
N

ST
R

U
C

T
IO

N
 P

H
A

SE

Detailed
design expert

purpose
analysis

Process
planning expert

purpose
analysis

Identification of
common elements of
detailed design and

process planning

Choice of
software

applications of
the two phases

Scenario
elaboration

Elaboration of
mapping rules from
Pro/ENGINEER to

the ontology

Elaboration of
mapping rules

from the ontology
to PART

File with neutral
format

Determination of the
ontology concepts

Determination of the
ontology graphic

i
Determination of the

ontology textual
representation

Determination of the
ontology formal
representation

Ontology of features

Ontology of features

#UGC:2 NEUTRAL 972 440 2 0 0 15
#-VERS 0 0
#- HOST
#- …
0 Neutral_part ->
1 revnum 231
1 accuracy .0012
1 outline [2][3]
2 outline [0] 3*-20
2 outline [1] 3*20
1 accuracy_is_relative 1
1 mass_props NULL
1 time_stamp ->
… File format A

CAD
system

700 0 1 0
24 PART 6.1.000 07-JUN-2002 13
ACIS 7.0. NT
-0 body $-1 –1 $-1 $1 $-1 $2 #
-1 lump $-1 –1 $-1 $-1 $2 $0 #
-2 shell $-1 –1 $-1 $-1 $-1 $3 $-1 $1 #
-3 face $-1 –1 $-1 $-4 $-5 $-2 $-1 $6
reversed single #
-4 face $-1 –1 $-1 $-7 $-8 $-2 $-1 $9
forward single #
-5 loop $-1 –1 $-1 $10 $11 $3 #
-6 cone-surface $-1 –1 $-1 –52.5 –25
129.09440602367914 0 0 1 -13

File format B

CAPP
system

(and (produit produit1)
 (nom_produit nomproduit1)
 (est_compose_de produit1 nomproduit1)
 (description_produit descriptionproduit1)
 (est_compose_de produit1 descriptionproduit1)
 (liste_d_assemblages listedassemblages1)
 (est_compose_de produit1 listedassemblages1)
 (= nil listedassemblages1)
 (liste_de_pieces listedepieces1)
 (est_compose_de produit1 listedepieces1)
 (= (length listedepieces1) 1)
 (liste_unites listeunites1)
 (est_compose_de produit1 listeunites1)

Neutral
Intermediary File

(1) Translation (2) Translation

Figure 1: Global process for data exchange using ontologies

 15

Design Process Planning Manufacture

Elaboration
of the shape

of the product

Elaboration
of the machining

operation
necessary to
manufacture
the product

Execution of
the operations
to manufacture

the product

Design Process Planning Manufacture

Elaboration
of the shape

of the product

Elaboration
of the machining

operation
necessary to
manufacture
the product

Execution of
the operations
to manufacture

the product

Design Process Planning Manufacture

Elaboration
of the shape

of the product

Elaboration
of the machining

operation
necessary to
manufacture
the product

Execution of
the operations
to manufacture

the product

Figure 2: Role of design, process planning and manufacturing

 16

 Thickness
of the chip

Cutting tool

Manufactured
surface

Part

Width of
the chip

Vc: Cutting speed

Figure 3: Representation of the material cutting process

 17

Conceptual Design Preliminary

Process Planning

Requirement

Function

Behavior

Form/Structure

Process

- Fabrication

- Assembly

- Inspection

Equipment/Skill

Time & Cost

Functional

Design

Behavioral

Specification

Embodiment

Design

Detailed

Design

Process

Selection

Ressource

Selection

Time & Cost

Estimation

Detailed

Process Planning

Form/Structure

& Property

Estimated

Time & Cost

- Geometry

- Topology

- Tolerances

- Dimensions

- Surface Conditions

- Materials

- Operation sequences

- Process parameters

- Setup/Fixture

- Accurate time & cost

- Manufacturing resource

Figure 4: Design and process planning interfaces

 18

Legend

Association
Class Hierarchy

Aggregation

Design specific
classes

Legend

Association
Class Hierarchy

Aggregation

Design specific
classes

Legend

Association
Class Hierarchy

Aggregation

Design specific
classesFeature

Artifact

Units

Surface

Tolerance

Feature
Element

Feature
Representation

Constraint

Datum Coordinate
System

Artifact Version

Dimension

Precision

Legend

Association
Class Hierarchy

Aggregation

Design specific
classes

Legend

Association
Class Hierarchy

Aggregation

Design specific
classes

Legend

Association
Class Hierarchy

Aggregation

Design specific
classesFeature

Artifact

Units

Surface

Tolerance

Feature
Element

Feature
Representation

Constraint

Datum Coordinate
System

Artifact Version

Dimension

Precision

Feature

Artifact

Units

Surface

Tolerance

Feature
Element

Feature
Representation

Constraint

Datum Coordinate
System

Artifact Version

Dimension

Precision

Figure 5: Design specific classes

 19

Constraint

Position and
Orientation
Constraint

Validity
Constraint

Attach
Constraint

Geometric
Constraint

Dimension
Constraint

Algebraic
Constraint

Boundary
Constraint

Feature
Interaction

Splitting

Disconnection

Boundary
Clearance

Volume
Clearance

Closure

Absorption

Geometric

Transmutation

Topologic

Technologic
Constraint

Economic
Constraint

Operation
Constraint

Fin
Constraint

ConstraintConstraint

Position and
Orientation
Constraint

Position and
Orientation
Constraint

Validity
Constraint
Validity

Constraint

Attach
Constraint

Attach
Constraint

Geometric
Constraint
Geometric
Constraint

Dimension
Constraint
Dimension
Constraint

Algebraic
Constraint
Algebraic
Constraint

Boundary
Constraint
Boundary
Constraint

Feature
Interaction

Feature
Interaction

SplittingSplitting

DisconnectionDisconnection

Boundary
Clearance
Boundary
Clearance

Volume
Clearance
Volume

Clearance

ClosureClosure

AbsorptionAbsorption

GeometricGeometric

TransmutationTransmutation

TopologicTopologic

Technologic
Constraint

Technologic
Constraint

Economic
Constraint
Economic
Constraint

Operation
Constraint
Operation
Constraint

Fin
Constraint

Fin
Constraint

Figure 6: Constraint classification

 20

 ;A constraint is the super type of: technologic constraint,
;economic constraint, validity constraint and position and
;orientation constraint.
(forall (?a)
 (implies (constraint ?a)
 (or (technologic_constraint ?a)
 (economic_constraint ?a)
 (validity_constraint ?a)
 (position_orientation_constraint ?a))))

;A technologic constraint is the subtype of a constraint.
(forall (?a)
 (implies (technologic_constraint ?a)
 (constraint ?a)))

;A validity constraint is the subtype of a constraint.
(forall (?a)
 (implies (validity_constraint ?a)
 (constraint ?a)))

Figure 7: KIF statements for constraint classification

 21

Legend

Association

Class Hierarchy

Aggregation

Process planning
specific classes

Legend

Association

Class Hierarchy

Aggregation

Process planning
specific classes

Legend

Association

Class Hierarchy

Aggregation

Process planning
specific classes

Process
plan

Semi-finished part

Finished part
ArtifactManufacturing

Model

Sequence Sub-sequence

Machining
Setup

Machining
Operation

Sequence of
Machining

Finishing

Rough

Semi-finishing

Finishing

Super-finishing

Raw part

Machine Attachment Tool Tool path

Legend

Association

Class Hierarchy

Aggregation

Process planning
specific classes

Legend

Association

Class Hierarchy

Aggregation

Process planning
specific classes

Legend

Association

Class Hierarchy

Aggregation

Process planning
specific classes

Process
plan

Semi-finished part

Finished part
ArtifactManufacturing

Model

Sequence Sub-sequence

Machining
Setup

Machining
Operation

Sequence of
Machining

Finishing

Rough

Semi-finishing

Finishing

Super-finishing

Raw part

Machine Attachment Tool Tool path

Legend

Association

Class Hierarchy

Aggregation

Process planning
specific classes

Legend

Association

Class Hierarchy

Aggregation

Process planning
specific classes

Legend

Association

Class Hierarchy

Aggregation

Process planning
specific classes

Process
plan

Semi-finished part

Finished part
ArtifactArtifactManufacturing

Model

Sequence Sub-sequence

Machining
Setup

Machining
Operation

Sequence of
Machining

Finishing

Rough

Semi-finishing

Finishing

Super-finishing

Raw part

Machine Attachment Tool Tool path

Figure 8: Process planning specific classes

 22

 ;A manufacturing model uses a process plan
(defrelation use (?a ?b):=

(and (manufacturing_model ?a)
(process_plan ?b)))

;Attributes of a process plan are: a set of machining
setup,
; an associated manufacturing model and
specifications
(forall (?a)
(implies (process_plan ?a)

 (exists (?l ?b ?c)
 (and
 (associated_manufacturing_mod
el ?b)

 (specification ?c)
 (machining_setup ?l)

 (is_composed_of ?a ?b)
 (is_composed_of ?a ?c)
 (is_composed_of ?a ?l)))))

;Attributes of a machining setup are: an
associated machine, an associated attachment, a
list of machining operations, an associated
process plan, the machining time, the cost, the
delay, the quality and the operator name

(forall (?a)
 (implies (machining_setup ?a)
 (exists (?b ?c ?d ?e ?f ?g ?h ?i ?j)
 (and (associated_machine ?b)
 (associated_attachment ?c)
 (machining_operation_list ?d)
 (associated_process_plan ?e)
 (manufacturing_time ?f)
 (manufacturing_cost ?g)
 (manufacturing_delay ?h)
 (quality ?i)
 (operator_name ?j)
 (is_composed_of ?a ?b)
 (is_composed_of ?a ?c)
 (is_composed_of ?a ?d)
 (is_composed_of ?a ?e)
 (is_composed_of ?a ?f)
 (is_composed_of ?a ?g)
 (is_composed_of ?a ?h)
 (is_composed_of ?a ?i)
 (is_composed_of ?a ?j)))))

Figure 9: KIF statements for feature decomposition

 23

Specification Behavior

Transfer
Function

Common Core
Object

Core
entity

Geometry

Material

Function

Flow

Form

Artifact

Feature

Core
Property

Surface

Legend

Association
Class Hierarchy

Aggregation

Concept added
to the Core
Product Model

Feature
Representation

Feature
Element

Tolerance

Units

SpecificationSpecification BehaviorBehavior

Transfer
Function
Transfer
Function

Common Core
Object

Common Core
Object

Core
entity
Core
entity
Core
entity

GeometryGeometryGeometry

MaterialMaterialMaterial

FunctionFunctionFunction

FlowFlowFlow

FormFormFormForm

ArtifactArtifactArtifactArtifact

FeatureFeatureFeature

Core
Property

Core
Property

Core
Property

SurfaceSurface

Legend

Association
Class Hierarchy

Aggregation

Concept added
to the Core
Product Model

Legend

Association
Class Hierarchy

Aggregation

Concept added
to the Core
Product Model

Feature
Representation

Feature
Representation

Feature
Representation

Feature
Element
Feature
Element
Feature
Element

ToleranceTolerance

UnitsUnits

Figure 10: Main class diagram of the NIST Core Product Model and extensions

 24

 Feature

Volume
feature

Transition
feature

Pattern

feature

Edge

transition

Corner

transition

Flat

edge

transition

Circular

edge

transition

Flat

corner

transition

Spherical

corner

transition

Array

Feature

pattern

Circular

Feature

pattern

Other

Feature

pattern

1 dimensional

array pattern

2 dimensional

array pattern

3 dimensional

array pattern

Subtractive

volume

feature

Additive

volume

feature

Depression

Passage

Void

Protrusion

Connector

Standalone

volume

Feature

Volume
feature

Transition
feature

Pattern

feature

Edge

transition

Corner

transition

Flat

edge

transition

Circular

edge

transition

Flat

corner

transition

Spherical

corner

transition

Array

Feature

pattern

Circular

Feature

pattern

Other

Feature

pattern

1 dimensional

array pattern

2 dimensional

array pattern

3 dimensional

array pattern

Subtractive

volume

feature

Additive

volume

feature

Depression

Passage

Void

Protrusion

Connector

Standalone

volume

Feature

Volume
feature

Transition
feature

Pattern

feature

Edge

transition

Corner

transition

Flat

edge

transition

Circular

edge

transition

Flat

corner

transition

Spherical

corner

transition

Array

Feature

pattern

Circular

Feature

pattern

Other

Feature

pattern

1 dimensional

array pattern

2 dimensional

array pattern

3 dimensional

array pattern

Subtractive

volume

feature

Additive

volume

feature

Depression

Passage

Void

Protrusion

Connector

Standalone

volume

FeatureFeature

Volume
feature
Volume
feature

Transition
feature

Transition
feature

Pattern

feature

Pattern

feature

Edge

transition

Edge

transition

Corner

transition

Corner

transition

Flat

edge

transition

Flat

edge

transition

Circular

edge

transition

Circular

edge

transition

Flat

corner

transition

Flat

corner

transition

Spherical

corner

transition

Spherical

corner

transition

Array

Feature

pattern

Array

Feature

pattern

Circular

Feature

pattern

Circular

Feature

pattern

Other

Feature

pattern

Other

Feature

pattern

1 dimensional

array pattern

1 dimensional

array pattern

2 dimensional

array pattern

2 dimensional

array pattern

3 dimensional

array pattern

3 dimensional

array pattern

Subtractive

volume

feature

Subtractive

volume

feature

Additive

volume

feature

Additive

volume

feature

DepressionDepression

PassagePassage

VoidVoid

ProtrusionProtrusion

ConnectorConnector

Standalone

volume

Standalone

volume

Figure 11: Feature decomposition

 25

 ;A feature is the super type of: volume feature,
transition
;feature and feature pattern.
(forall (?a)
 (implies (feature ?a)
 (or (volume_feature ?a)
 (transition_feature ?a)
 (feature_pattern ?a))))

;A volume feature is the subtype of a feature.
(forall (?a)
 (implies (volume_feature ?a)
 (feature ?a)))
…
;Volume feature attributes are: associated volume and
;cutting section type.
(forall (?a)
 (implies (volume_feature ?a)
 (exists (?b ?c)
 (and (associated_volume ?b)
 (cutting_section_type ?c)
 (optional_attribute ?b ?a)
 (optional_attribute ?c ?a)
 (is_composed_of ?a ?b)
 (is_composed_of ?a ?c)))))
…

;A subtractive volume feature is a volume feature
whose
;volume is subtracted from a pre-existing volume
(forall (?a)
 (implies (subtractive_volume_feature ?a)
 (and (volume_feature?a)
 (exists (?b ?c)
 (and (associated_volume ?b)
 (is_composed_of ?a ?b)
 (pre_existing_volume ?c)
 (subtracted ?b ?c))))))

…
;A void is a subtype of a subtractive volume feature
(forall (?a)
 (implies (void ?a)
 (subtractive_volume_feature ?a)))

…

Figure 12: KIF statements for feature decomposition

 26

Choosing of file
formats

Representing mapping
rules graphically

Format Neutre Format Ontologie

Surface (plane)

id
uv_min [2]
uv_max [2]

xyz_min [3]
xyz_max [3]

surface
plane

surface

point_min
point_max
orientation

liste_de_boucles

normale

identificateur
système_de_coord_associé

orient

système de
coordonnées

loops [nb]
edges_ids[nb]

loops [2]
edges_ids

[nb]...

e1 [3]
e2 [3]
e3 [3]

origin [3]

axe1
axe2
axe3
origine

Implementing
mapping rules

For (int i=0; i<j, i++)
creatingSurface(

…)
…
creatingEdges (…)

Analyzing
concepts

Pro/Engineer

Features
Surface
Edges

PART

body
face
edge

Choosing of file
formats

Choosing of file
formats

Representing mapping
rules graphically

Format Neutre Format Ontologie

Surface (plane)

id
uv_min [2]
uv_max [2]

xyz_min [3]
xyz_max [3]

surface
plane

surface

point_min
point_max
orientation

liste_de_boucles

normale

identificateur
système_de_coord_associé

orient

système de
coordonnées

loops [nb]
edges_ids[nb]

loops [2]
edges_ids

[nb]...

e1 [3]
e2 [3]
e3 [3]

origin [3]

axe1
axe2
axe3
origine

Format Neutre Format Ontologie

Surface (plane)

id
uv_min [2]
uv_max [2]

xyz_min [3]
xyz_max [3]

surface
plane

surface

point_min
point_max
orientation

liste_de_boucles

normale

identificateur
système_de_coord_associé

orient

système de
coordonnées

loops [nb]
edges_ids[nb]

loops [2]
edges_ids

[nb]...

e1 [3]
e2 [3]
e3 [3]

origin [3]

axe1
axe2
axe3
origine

Implementing
mapping rules

For (int i=0; i<j, i++)
creatingSurface(

…)
…
creatingEdges (…)

Implementing
mapping rules

For (int i=0; i<j, i++)
creatingSurface(

…)
…
creatingEdges (…)

Analyzing
concepts

Pro/Engineer

Features
Surface
Edges

PART

body
face
edge

Analyzing
concepts

Pro/Engineer

Features
Surface
Edges

PART

body
face
edge

Figure 13: Methodology for the elaboration of the validation prototype

 27

 Pro/Engineer file

#- HOST
#- VERS 0 0
…
1 dimensions [8]
2 dimensions
3 name d0
…
1 features [5]
2 features
…
2 features
Protrusion
3 id 47
3 user_name NULL
…
1 surfaces [8]
2 surfaces
3 id 50
3 uv_min [2]
…
1 edges [18]
2 edges
3 id 51
…

Pro/Engineer file

#- HOST
#- VERS 0 0
…
1 dimensions [8]
2 dimensions
3 name d0
…
1 features [5]
2 features
…
2 features
Protrusion
3 id 47
3 user_name NULL
…
1 surfaces [8]
2 surfaces
3 id 50
3 uv_min [2]
…
1 edges [18]
2 edges
3 id 51
…

700 0 1 0
24 PART 6.1.000 07-JUN-2002 13 …
-0 body $-1 -1 $-1 $1 $-1 $2 #
-1 lump $-1 -1 $-1 $-1 $2 $0 #
-2 shell $-1 -1 $-1 $-1 $-1 $3 $-1 $1 #
-3 face $-1 -1 $-1 $4 $5 $2 $-1 $6 reversed single #
-4 face $-1 -1 $-1 $7 $8 $2 $-1 $9 forward single #
-5 loop $-1 -1 $-1 $10 $11 $3 #
-6 cone-surface $-1 -1 $-1 -52.5 -25 129 0 0 1 -13 011 0 1 I I 0 1 13 forward I I I I #
-7 face $-1 -1 $-1 $12 $13 $2 $-1 $14 reversed single #
-8 loop $-1 -1 $-1 $15 $16 $4 #

700 0 1 0
24 PART 6.1.000 07-JUN-2002 13 …
-0 body $-1 -1 $-1 $1 $-1 $2 #
-1 lump $-1 -1 $-1 $-1 $2 $0 #
-2 shell $-1 -1 $-1 $-1 $-1 $3 $-1 $1 #
-3 face $-1 -1 $-1 $4 $5 $2 $-1 $6 reversed single #
-4 face $-1 -1 $-1 $7 $8 $2 $-1 $9 forward single #
-5 loop $-1 -1 $-1 $10 $11 $3 #
-6 cone-surface $-1 -1 $-1 -52.5 -25 129 0 0 1 -13 011 0 1 I I 0 1 13 forward I I I I #
-7 face $-1 -1 $-1 $12 $13 $2 $-1 $14 reversed single #
-8 loop $-1 -1 $-1 $15 $16 $4 #

PART filePART file

Figure 14: Data declaration in Pro/Engineer and PART files for a simple artifact

 28

 Neutral format Ontology format

Surface (plane)

id
uv_min [2]
uv_max [2]

xyz_min [3]
xyz_max [3]

plane surface surface

point_min
point_max
orientation

loop_list

normal

identificateur
associated_coordinate
system

orient

coordinate system

loops [nb]
edges_ids[nb]

surface_type 34
surface (plane)

loops [2]
edges_ids [nb]

...

e1 [3]
e2 [3]
e3 [3]

origin [3]

axis1
axis2
axis3
origin

Figure 15: Correspondence for a plane surface between a Pro/Engineer neutral file and
our ontology

 29

 Create a feature instance

For each feature attribute do

Create an instance of the attribute

For each sub- attribute do

…

If the attribute is a simple one (integer, string, etc.)

Else find its sub-attributes

Find all feature attributes

Feature
ontology

Find the type of the attribute

Find its value in the initial file (Pro-Engineer or PART file)

Pro-
Engineer or
PART file

Figure 16: General algorithm for data exchange

 30

Figure 17: Screen of the prototype to visualize a file

 31

Figure 18: Some part examples

 32

 Pro/Engineer file

#- HOST
#- VERS 0 0
…
1 dimensions [8]
2 dimensions
3 name d0
…
1 features [5]
2 features
…
2 features
Protrusion
3 id 47
3 user_name NULL
…
1 surfaces [8]
2 surfaces
3 id 50
3 uv_min [2]
…
1 edges [18]
2 edges
3 id 51
…

File containing ontology instances

(and (string nameproduct1)
 (= nameproduct1 "Cube_With_One_Hole"))

(and (protrusion protrusion1)
 (feature protrusion1)
 (associated_constraint_list CubeConstraints1)
 (associated_tolerances_list CubeTolerances1)
 …
 (surfaces_list Surfaces1)
 (dimensions_list Dimensions1)
 (is_composed_of protuberance1 CubeConstraints1)
 (is_composed_of protuberance1 CubeTolerances 1)
 …
 (is_composed_of protuberance1 Surfaces1)
 (is_composed_of protuberance1 Dimensions1))

File used in PART

700 0 1 0
24 PART 6.1.000 07-JUN-2002 13 …
-0 body $-1 -1 $-1 $1 $-1 $2 #
-1 lump $-1 -1 $-1 $-1 $2 $0 #
-2 shell $-1 -1 $-1 $-1 $-1 $3 $-1 $1 #
-3 face $-1 -1 $-1 $4 $5 $2 $ -1 $6 reversed single #
-4 face $-1 -1 $-1 $7 $8 $2 $-1 $9 forward single #
-5 loop $-1 -1 $-1 $10 $11 $3 #
-6 cone-surface $-1 -1 $-1 -52.5 -25 129 0 0 1 -13 011 0 1 I I 0 1 13 forward I I I I #
-7 face $-1 -1 $-1 $12 $13 $2 $-1 $14 reversed single #
-8 loop $-1 -1 $-1 $15 $16 $4 #

Mapping rules

Mapping rules

Figure 19: Examples of the different generated files

 33

	CAD/CAPP Integration using Feature Ontology
	1. Introduction
	2. Design/Process Planning Integration: An Overview
	3. Standards for Interoperability
	4. Ontological Approach to Interoperability
	5. Design Feature Ontology
	6. Process Planning Ontology
	7. Common Feature Ontology or Shared Ontology
	8. Mapping Rules For Case Study
	9. Summary
	In this paper we have described an ontological approach to integrating computer-aided design (CAD) and computer-aided process planning (CAPP). Two commercial software applications were used to demonstrate our approach. The approach involved the development of a shared ontology and domain-specific ontologies in the KIF (Knowledge Interchange Format) language. Domain-specific ontologies--which were feature-based--were developed after a detailed analysis of the CAD and the CAPP software. Mapping between the individual applications and the shared ontology was achieved by several mapping rules. The approach was validated by using a variety of parts.
	10. Acknowledgments and Disclaimer
	Bibliography

