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Abstract:  
In a collaborative computer-supported engineering environment, the interoperation of 
various applications will need a representation that goes beyond the current geometry-
based representation, which is inadequate for capturing semantic information. The 
primary purpose of this paper is to discuss a semantically-based information exchange 
protocol that will facilitate seamless interoperability among current and next generation 
computer-aided design systems (CAD) and between CAD and other systems that use 
product data.    We describe an ontological approach to integrating computer-aided 
design (CAD) and computer-aided process planning (CAPP). Two commercial software 
applications are used to demonstrate our approach. The approach involves the 
development of a shared ontology and domain-specific ontologies in the KIF 
(Knowledge Interchange Format) language. Domain-specific ontologies--which are 
feature-based—are developed after a detailed analysis of the CAD and the CAPP 
software. A shared ontology is generated from the domain ontologies.  This shared 
ontology is used as a basis for mapping to and from native files of CAD/CAPP systems.  
The approach is  validated by using a variety of parts. 
 
Keywords: CAD; CAPP; Interoperability; Ontologies; Design; Process Planning; 
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1. Introduction 

The early part of this millennium has witnessed the emergence of an Internet-based 
engineering marketplace, where engineers, designers, and manufacturers from small and 
large companies are collaborating through the Internet to participate in various product 
development and marketing activities. This will be further enhanced by the next 
generation manufacturing environment, which will consist of a network of engineering 
applications, where state of the art multi-media tools and techniques will enhance closer 
collaboration between geographically distributed applications, virtual reality tools will 
allow visualization and simulation in a synthetic environment, and information 
exchange standards will facilitate seamless interoperation of heterogeneous 
applications. The interoperation of various applications will need a representation that 
goes beyond the current geometry-based representation, which is inadequate for 
capturing semantic information. The primary purpose of this paper is to discuss a 
semantically-based information exchange protocol that will facilitate seamless 
interoperability among current and next generation computer-aided design systems 
(CAD) and between CAD and other systems that use product data. Our focus will be on 



design/process planning integration during the later design stages. In this paper, we 
present an approach using a neutral format based on a feature ontology.  
 
Our approach involves a three stage process, as outlined below and described in detail 
in later sections (see Figure 1): 

• Stage 1: An analysis of traditional CAD (computer-aided design) and CAPP 
(computer-aided process planning) is performed. Based on this analysis, we 
identify various features used in these systems. Next, we generate formal 
ontologies for each of the domain. 

• Stage2: A shared or a common ontology for the two stated domains is 
developed. This shared ontology is based on the individual domain 
ontologies. 

• Stage 3: Mapping rules from the native files of the CAD and CAPP systems 
to and from the shared ontology are developed. These rules lead to a 
pragmatic implementation.  

 
In the next section we provide a brief overview of design/process planning integration. 
This will be followed by a discussion of representative standards for interoperating 
design and process planning. The need for ontological approaches is presented followed 
by descriptions of ontologies in the design and process planning domains. A shared 
ontology generated from the domain ontologies is described next. This shared ontology 
is used as a basis for mapping to and from native files of CAD/CAPP systems. Rules for 
such mappings are presented. Finally, we illustrate our approach with an example.  

2. Design/Process Planning Integration: An Overview 

Engineering a product involves several stages with considerable iterations, starting with 
planning products, generating product specifications, performing preliminary and 
detailed design, developing process plans, building product facilities, manufacturing 
product, managing workflow, and finally marketing and maintaining products [1]. In 
this paper we focus on an important aspect of the above cycle: design and process-
planning integration. We believe that it is important to integrate design and process 
planning at various levels of abstraction, as errors made during early design stages 
could have a significant impact on the overall product quality and costs [1-4]. 
 
Engineering design involves mapping a specified function (or functional specifications) 
onto a (description of a) realizable physical structure – the design artifact. Over the past 
several decades considerable research has been done in developing various design 
product and process models [5]. We will not delve into a detailed description of the 
design process, much as we feel a need for the adequate representations for process 
knowledge. The reader is referred to [1] for a formal description of a design process 
model. At this stage our primary concern is on the product or artifact representation. For 
this we use the NIST Core Product Model (CPM) presented in [6]. 
 
Process planning is an intermediate phase between design and manufacture [7, 8]. More 
precisely, it links these two decisive phases of product development [9]. It depends on 
choices made in design and determines precisely actions that will be achieved during 
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manufacture (Figure 2). Different definitions have been given for process planning [3, 
10-12]. We use the following definition in this paper: process planning is the phase that, 
from information generated during design (product geometry for instance), determines:  
the necessary operations and actions to transform a raw part into a finished or semi-
finished part, the necessary human and material resources to manufacture the product, 
and the product development cost.  
 
A wide variety of manufacturing processes are available for the actual artifact 
production. In the current work we focus on the machining processes for part 
production, in particular material cutting processes. Figure 3 provides a representation 
of this process: the cutting tool comes against the surface, creating a chip that will be 
removed from the part. 
 
The interactions between design and process planning occur at various stages, from 
conceptual to detailed design/process planning as shown in Figure 4 [13]. However, it 
must be noted that most of the commercial tools for process planning operate on 
detailed geometry, although the approach presented here can be used for integrating 
process planning with early design stages. In other words, current interfaces between 
design and process planning are defined during the detailed design stage. This is 
primarily achieved through use of geometric features. However, there is considerable 
difference in the methods and terminology used: features are used to design a product 
(design by feature) [4, 9, 14, 15] while in process planning features are extracted from 
the product (design recognition or extraction) [9, 14-17], and a consistent feature 
terminology does not exist for the two domains. These differences are illustrated in the 
software used by designers and process planners: 

• CAD software, such as Pro/Engineer and SolidWorks, offer a limited number 
of features to users. The objective here is to have a compact set of parametric 
features, which can help designers to intuitively find more suitable features. 

• CAPP software, such as PART, utilizes a feature extraction algorithm and 
contains a large number of features. The objective here is not to have a 
limited set of significant features but to have a very large number of features, 
which can improve the efficiency of the feature extraction algorithm. 

 
These different viewpoints of designers and process planners on features makes data 
exchange a tedious task. Although features are considered differently in design and 
process planning, they represent a natural link between these two domains. Hence, 
features provide a valuable mechanism for information exchange. Next we review the 
current standards in design and process planning interoperability and discuss extensions 
needed for feature-based interoperability. 

3. Standards for Interoperability 

We illustrate the interoperability issue between CAD systems by considering a potential 
information exchange scenario during the design of the Boeing 777. For Boeing to 
incorporate Rolls Royce engines into the design, the data format has to be converted 
from Computer Vision’s CADDS (used by Rolls Royce) to Dassault’s CATIA. 
Similarly, for Rolls Royce to understand changes made by Boeing engineers, the data 
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need to be converted from CATIA to CADDS. Hence, we need at least 2 translators. 
For three systems this grows to 6 translators and for n systems we need n(n-1) 
translators. Hence, there is a need to design, build, and maintain n(n-1) translators. A 
solution to this problem is to use a neutral format and make all the CAD applications 
output this format. Doing so will reduce the number of translators to 2*n, i.e., for each 
CAD system we will need two translators –- one from the CAD system to the neutral 
format and the other from the neutral format to the CAD. 
 
A standard of primary interest to design is ISO 10303, also known informally as STEP 
(Standard for the Exchange of Product model data) and developed by the International 
Organization for Standardization Technical Committee 184/ Subcommittee SC4 (ISO 
TC 184/SC4). Its intention is to enable the exchange of product model data between 
different modules of a product realization system, or the sharing of that data by different 
modules through the use of a common database. The first parts of STEP to achieve 
International Standard status were published in 1994, but many other parts have since 
been published or are under development and will eventually be added to the standard. 
Recent updates (and other relevant details) can be found at the following websites: 
www.tc-184-sc4.org, and http://www.iso.ch/iso/en/ISOOnline.frontpage. 
 
ISO 10303 (STEP) consists of many parts and can be viewed as consisting of several 
layers. The top layer consists of a set of application protocols or APs, which address 
specific product classes and life-cycle stages (e.g., mechanical, electronic, ships, 
automotive, design, process planning). These APs specify the actual data exchange, and 
are constructed from a lower layer set of modules called integrated resources, which are 
common for all disciplines. The language for modeling various STEP entities and their 
relationships is called EXPRESS. Other parts specify standard mechanisms for the 
actual transfer of data, the conformance testing methodology, and various test suites.  
 
The primary emphasis of STEP AP 203 (STEP Application Protocol 203) is on shape 
description plus product configuration data. Facilities are provided for capturing, in 
standard format, the following representations: 3D wireframes, surface models and solid 
models.  This reflects the state of CAD technology as it was when the STEP 
development effort began in the mid-1980s.  However, CAD technology has progressed 
since that time, and most major CAD systems now provide facilities for parametric, 
variational design (including constraints) and/or feature-based design.  In addition, 
many of these systems have facilities to record design histories. These systems generate 
additional information, beyond the pure shape descriptions created by older systems. 
STEP AP 203 Edition 1 did not provide any means for capturing and transmitting this 
additional information.  The short term parametrics effort under Working Group 12 
(WG 12) of ISO TC 184/SC4 is addressing this problem. WG 12’s efforts include Part 
108 for parametric information and Part 111 for construction history encoding. 
Attempts are being made to incorporate these parts into STEP AP 203 Edition 2, which 
extends STEP AP 203 to the support of GD&T (geometric dimensioning and 
tolerancing), colors, layers, construction history, material data, etc.  The technical 
specification document for STEP AP 203 Edition 2 was released in 2004.  It is assumed 
that this technical specification document will reach the DIS (draft international 
standard) and FIS (final international standard) stages, after additional balloting.  
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Considerable research has been performed on mapping CAD data onto process planning 
systems. However, this work has met with limited success, such as the one reported by 
[18]. One problem with the current standards is the lack of integration between CAD 
data output and process planning input. For example, the primary focus of STEP AP 
203 is the interoperability between geometry-centered CAD systems, while the focus of 
STEP AP 224 (Mechanical product definition for process plans using machining 
features) has been on input to process planning systems with a primary focus on 
representation of machine features. The idea of features has been in vogue for some 
time and the literature is abound with definitions of features [11, 15, 19-25]. For 
example, Shah et al. suggest that features “are primitive or low level designs with their 
attributes, qualifiers and restrictions which affect functionality and/or manufacturability. 
Features can describe form (size and shape), precision (tolerances and finishing), or 
materials (type, grade, properties and treatment), and vary with product and 
manufacturing process.” 
 
To achieve truly collaborative design and engineering, exchange representations of both 
design and process information must support multiple levels of abstraction. To 
adequately achieve this we will need a more formal method for representing features, 
such as the ontological approach described in the next section. Our approach has some 
similarities to the one presented in [26], but our overall methodology is different. 

4. Ontological Approach to Interoperability 

In all types of communication, the ability to share information is often hindered because 
the meaning of information can be drastically affected by the context in which it is 
viewed and interpreted. This is especially true in manufacturing, because of the growing 
complexity of manufacturing information and the increasing need to exchange this 
information among various software applications. Different representations of the same 
information may be based on different assumptions about the world, and use differing 
concepts and terminology -- and conversely, the same terms may be used in different 
contexts to mean different things. Often, the loosely defined natural-language 
definitions associated with the terms will be too ambiguous to make the differences 
evident, or will not provide enough information to resolve the differences. 
 
To address these challenges, various groups within industry, academia, and government 
have been developing sharable and reusable models known as ontologies. All ontologies 
consist of a vocabulary along with some specification of the meaning or semantics of 
the terminology within the vocabulary. In doing so, ontologies support interoperability 
by providing a common vocabulary with a shared semantics. Rather than develop point-
to-point translators for every pair of applications, one simply needs to write one 
translator between the application's terminology and the common ontology. Similarly, 
ontologies support reusability by providing a shared understanding of generic concepts 
that span across multiple projects, tasks and environments. 
 
The various ontologies that have been developed can be distinguished by their degree of 
formality in the specification of meaning. With informal ontologies, the definitions are 
expressed loosely in natural language. Semi-formal ontologies, such as taxonomies, 
provide weak constraints for the interpretation of the terminology. Formal ontologies 
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use languages based on mathematical logic. Informal and semi-formal ontologies can 
serve as a framework for shared understanding among people, but they are often 
insufficient to support interoperability, since any ambiguity can lead to inconsistent 
interpretations and hence hinder integration. 
Another source of semantic heterogeneity lies in the languages used to represent the 
ontologies. There have been several efforts within academia and industry to develop 
common languages, such as OWL (Web Ontology Language, 
http://www.w3.org/TR/owl-features/) and KIF (Knowledge Interchange Format, 
http://www-ksl.stanford.edu/knowledge-sharing/kif/), that can be used as the basis for 
encoding ontologies to support semantic integration. The most expressive of these 
efforts  is the Common Logic project, which combines the Knowledge Interchange 
Format [27-29] and Conceptual Graphs (CG) [30] languages. Common Logic includes a 
core language that has the expressiveness of first-order logic; its syntax and semantics 
are those of traditional first-order logic. Most recently, this has been extended to include 
extensions that allow sorted formulae for the specification of class hierarchies, and the 
specification of the meta theory of KIF within the language itself.  
 
Our objective in this paper is to demonstrate an ontological approach for data exchange 
between designers and process planners. To realize this, we developed a shared feature 
ontology, which is based on individual domain feature ontologies. This ontology 
represents all the common knowledge between designers and process planners. We use 
the shared ontology as follows: a designer creates an artifact shape model using a CAD 
software (such as Pro/Engineer); this model is then transformed, using CAD-files-to-
shared-ontology mapping rules (see Section 8), into instances of the shared ontology. 
These instances of the shared ontology are then transformed using shared ontology-to-
CAPP-files mapping rules, into a representation interpretable by CAPP software (such 
as PART). We assume that the CAPP software is capable of appropriate feature 
extraction. All ontologies in this work are expressed in KIF.  In a related project we 
have developed the ontologies in OWL, which is aimed at representing knowledge on 
the Web. In that project the mappings are done between feature ontologies and the 
shared ontologies, rather than between native file formats and the shared ontology  [31]. 
Computational issues associated with such mappings are currently being addressed.  
 
In the following sections, we present various feature ontologies  and a  description of 
the mapping rules used to translate data.  

5. Design Feature Ontology 

Our ultimate goal is to develop a comprehensive feature model that can be used through 
the entire design life cycle. However, for our prototype we restricted the NIST CPM’s 
extensions to the information generated by commercial CAD systems. To identify these 
concepts, we first performed an extensive analysis to understand various designers’ 
needs. This analysis phase involved the following: 

• the extraction of designer know-how--which is implicit--in order to formalize 
designer’s knowledge; and 

• the analysis of different CAD software such as Pro/Engineer and SolidWorks 
(we used these to create various parts in order to better understand the design 
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process). 
 

Based on this analysis we concluded that the NIST CPM had most of the necessary 
classes to represent detailed design data. We added a few classes in order to increase the 
coverage to CAD software, such as: the datum coordinate system in which the artifact is 
defined, the dimensions associated to an artifact, the precision of the dimensions of an 
artifact, the different versions of an artifact and the constraints associated to each 
feature. Figure 5 represents these concepts. 
 
We also defined different types of constraints as shown in Figure 6. The initial 
categories that we considered are position and orientation constraints, which can be 
further classified into attachment and geometric constraints. Attachment constraints 
specify how a feature instance is attached to the global model by coupling some of the 
feature faces with the pre-existing faces. Geometric constraints specify geometric 
relations such as parallelism of two faces or distance between two faces. Validity 
constraints correspond to another constraint category defined in our ontology. These 
validity constraints can be further classified into: 

• dimension constraints, which specify the authorized set of values for each 
feature parameter. e.g., radius parameter of a crossing hole can be limited to 
values between 1 and 10 millimeters; 

• algebraic constraints, which are used when feature shapes are geometrically 
constrained with explicit relations (these relations can be simple equalities 
between two parameters or, in general, algebraic expressions implying two or 
more of two parameters or constants); 

• boundary constraints, which specify if feature faces are on the boundary or 
not on the boundary of the conceived object; and 

• feature interaction constraints, which are used to indicate that a particular 
type of interaction is or is not allowed for a feature instance. 

 
The above extensions suffice to illustrate our approach. Additional classes will be 
needed for a wider coverage. KIF representations of a representative set are shown in 
Figure 7. 

6. Process Planning Ontology 

Our feature ontology is also representative of the process planning viewpoint. We 
followed a similar approach used for design: we asked process planners to describe how 
they work, what kind of information they need, what are the different phases of their 
work, etc. We also studied a CAPP software: PART1. This analysis of process planning 
turned out to be a more difficult task than obtaining the design features. While designers 
have a consistent notion of what design is, process planners seem to be in less 
agreement on the terminology in their domain. Based on our discussions, we decided to 
use the concepts presented in Figure 8. 
 

                                                 
1 http://www.opm.wb.utwente.nl/projects/part/part-doc/ 
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In this figure, an artifact is associated with a manufacturing model. This model is used 
to create a process plan. The input of this process plan is a raw part and the output is a 
semi-finished or finished part. A process plan identifies the machining operations that 
are necessary to manufacture an artifact. Hence, a process plan is composed of 
machining setups, which contains all the machining operations that are realized with the 
same machine and without changing various attachments. For each machining setup, 
there is a set of machining operations. Each machining operation is then realized with 
the same machine and attachments. Every machining operation is composed of a set of 
machining sequences, which corresponds to a transformation of a part that is achieved 
with the help of a material removal tool moving according to a tool path. Finally, a 
machining operation modifies a surface in accordance to a required finish: raw, semi-
finish, finish or super-finish. KIF representations of a representative set are shown in 
Figure 9. 

7. Common Feature Ontology or Shared Ontology 

Our final ontology corresponds to the common concepts between design and process 
planning and is composed of a number of classes and relationships. We base our 
ontology on the NIST Core Product Model (CPM), which was extended to deal with 
features identified here. Figure 10 represents the main classes and relationships 
composing NIST’s CPM and its extensions in this work, where the extensions are 
shown as darkened boxes (ideally, the NIST CPM should be a package in UML 
(Unified Modeling Language) and our extensions should be in a separate package). The 
descriptions of key entities in the NIST CPM are as follows (taken from [6]). 
 
An Artifact represents a distinct entity in a design, whether that entity is a component, 
product, subassembly or assembly. The Artifact’s attributes refer to the Specification 
responsible for the Artifact and the Form, Function, and Behavior comprising the 
Artifact. The Function represents what the Artifact is supposed to do. The Artifact 
satisfies the engineering requirements largely through its Functions. The term function 
is often used synonymously with the term intended behavior. The Form of the Artifact 
can be viewed as the proposed design solution for the design problem specified by the 
Functions. More precisely, the physical characteristics of an Artifact are represented in 
terms of its Geometry and Material properties. 
 
Another important class of the CPM is the Feature. An Artifact is composed of a set of 
features, where a feature is a subset of the form of an object that has some function 
assigned to it. We can have several types of features: analysis features, design features, 
manufacturing features, interface or port features, etc.. Compound features can be 
generated from primitive features. The notion of a feature is further elaborated in the 
work presented here.  
 
We modified the NIST CPM by adding some concepts that are common to design and 
process planning, are both necessary for designers and process planners, and are 
considered in CAD and CAPP software. Examples of these include: 

• the surfaces composing any feature; 
• the tolerances associated to any feature (such as the perpendicularity between 
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two surfaces) (a more complete treatment of tolerances and assemblies is 
provided in [32]); and 

• the units used to represent any artifact. 
 

Our main objective is to find a common feature representation between design and 
process planning. To do so, we extended NIST CPM to address the following: 

• the way each feature is represented, such as a B-Rep representation, a CSG 
representation, a swept representation, etc. (Feature Representation concept); 
and 

• the elements composing each feature, such as a bottom side, an intermediary 
face, etc. (Feature Element concept). 

 
We also characterized a complete feature decomposition which is based on the feature 
categories proposed in part 48 of STEP [33]. Figure 11 illustrates this decomposition. 
Features are classified into: 

• volume features, which are viewed as a volume added to or subtracted from 
pre-existing volume; 

• transition features, which are viewed as separating or blending two or more 
surface elements; and 

• pattern features, which are viewed as consisting of a number of identical sub 
features arranged in a mathematical pattern. 

 
Volume features can be subtractive or additive, and transition features can be corner or 
flat transitions. A more detailed description of this decomposition can be seen at [33, 
34]. The KIF version of representative entities is shown in Figure 12. 

8. Mapping Rules For Case Study 

Once the feature ontologies in various domains are defined, the next step is to define the 
mapping rules that will transform specific files onto instances of our common ontology. 
For our case study, we choose the following software: Pro/Engineer, which is used by 
CAD experts, and PART, which is used by CAPP experts. The methodology that we 
followed is described in Figure 13. 
 
We first analyzed the existing export and import formats of Pro/Engineer and PART. 
Then, we selected one format for each of them: a proprietary format -- Neutral File 
Format (.PRT) -- for Pro/Engineer and the ACIS2 format for PART. Once the formats 
were chosen, we analyzed the representation of different artifacts in the two formats. 
The objective is to extract all the important concepts represented in each file in order to 
correlate them with the domain ontology entities. Once this is done our approach 
utilizes two algorithms: one to translate a file generated by a CAD software into a set of 
instances of the feature ontology and one to translate this generated file into a file that 
can be interpreted and processed by a CAPP software. We would like the reader to note 
that the feature extraction is done by the CAPP software; our system only maps the 
shared ontology into a format that is recognized by the CAPP software.  
                                                 

2 http://www.spatial.com 
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The inputs to the first algorithm are: 

• the file containing the entire description of the ontology, which is expressed 
in KIF, and 

• the file generated by the CAD software (Pro/Engineer in this case), which 
represents the geometry and topology of the part that has to be manufactured. 

 
 

The inputs to the second algorithm are: 
• the file containing the entire description of the ontology, which is the 

common ontology expressed in KIF, and 
• the file generated by the first algorithm. 
 

As we previously stated, the only assumption made during the elaboration of the 
ontology and the mapping rules was that we only considered parts that do not have any 
assembly; solving this problem for simple machining parts containing only features by 
itself is a difficult task. In a future work we will consider more complex parts and 
assemblies by using NIST’s OAM (object assembly model) [32]. If the two algorithms 
that we developed do not provide a “correct mapping” then: 

• the mapping rules implemented in the algorithms are not correct; and/or 
• the ontology is not correct, in which case we have to modify the ontology and 

then modify the mapping rules to take into account these changes. 
 

For a simple artifact such as a box with one hole (Figure 14), the file generated by 
Pro/Engineer is hierarchically structured: it contains the dimensions characterizing the 
artifact, the features used to build it, the surfaces determining the features and the edges 
composing the surfaces. PART files are totally different: information is stored with no 
specific order, and data contained in such files relates to geometric and topologic 
information. This kind of file format doesn’t explicitly provide information about 
features composing an artifact. 
 
Using different instances of Pro/Engineer and PART files, we extracted a list of entities 
or concepts and their attributes in these files. Example concepts are: plane surface, 
cylindrical surface, straight curve, linear curve, edge, point, vertex, etc. Once this 
analysis is done, we generated the mapping rules between a Pro/Engineer file and a file 
containing instances of our ontology, and between this generated file and a PART file. 
The purpose of these rules is to identify in our shared ontology the entities that are 
equivalent to the concepts that we identified in Pro/Engineer and PART native files. 
Initially we expressed these mapping rules graphically. In this graphical representation, 
we display the relationships between the attributes of the entities represented in 
Pro/Engineer or PART file and attributes of the entities of our ontology. Figure 15 
shows the graphical representation of one such mapping rule. This mapping rule shows 
the correspondence between a plane surface expressed in a neutral file generated by 
Pro/Engineer and the equivalent concepts in our ontology. 
 
Once this step is finished, we obtained two sets of mapping rules. The next step consists 
in implementing these rules to be able to translate a CAD file into a CAPP file via our 
ontology. As we have previously stated, our method involves starting from a file 
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generated by Pro/Engineer, applying a first set of mapping rules to generate a neutral 
file, and then applying our second set of mapping rules on this neutral file to obtain a 
file interpretable by PART. A description of our mapping algorithm is shown in Figure 
16. Next, we briefly describe the algorithm. 
 
Using Pro/Engineer we create all the features associated with a part. For each feature, 
we extract from our ontology all the attributes that we have identified for a feature (for 
example the list of surfaces, the list of dimensions, etc.). For each of these attributes we 
retrieve, still in our ontology, the nature of the attribute, which can be either simple (i.e., 
integer, string, boolean) or complex (i.e., the attribute is composed of sub-attributes). If 
the attribute is a simple one, we extract the associated value in the original file (i.e., 
CAD file) and we add a new instance in the neutral file. If the attribute is more 
complex, we consider each sub-attribute until all concepts appearing in the initial file 
have been instantiated. The advantage of this algorithm is that if we decide to change 
the attributes of one of the concepts of the ontology – for example if we delete one 
attribute of the concept feature -- the algorithm will not have to be modified because the 
number of attributes of a concept is calculated each time the algorithm is executed. In 
the current project our mappings were done from native file formats of commercial 
systems to a shared ontology. We used this approach for pragmatic reasons, in order to 
avoid the tedious process of application program interfaces.  
 
We also implemented a user interface for our prototype. This interface allows us to 
visualize the different artifacts that we considered, the Pro/Engineer file, the file 
generated by our prototype and containing instances of our ontology, the file in which 
the ontology is coded and also a graphical representation of the artifacts that we 
considered. Figure 17 shows a typical screen of our prototype, which is implemented at 
University Claude Bernard of Lyon, France (hence, the French wording). 
 
We tested our methodology and our prototype with different examples. For our initial 
prototype we considered only simple parts (see Figure 18), with great success.  Our 
plans are to extend this work for complex artifacts (e.g., assemblies).  The result of our 
approach is shown in the Figure 19.  
 

9. Summary 

In this paper we have described an ontological approach to integrating computer-aided 
design (CAD) and computer-aided process planning (CAPP). Two commercial software 
applications were used to demonstrate our approach. The approach involved the 
development of a shared ontology and domain-specific ontologies in the KIF 
(Knowledge Interchange Format) language. Domain-specific ontologies--which were 
feature-based--were developed after a detailed analysis of the CAD and the CAPP 
software. Mapping between the individual applications and the shared ontology was 
achieved by several mapping rules. The approach was validated by using a variety of 
parts. 
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Detailed 
design expert 

purpose 
analysis 

Process 
planning expert 

purpose 
analysis 

Identification of 
common elements of 
detailed design and 

process planning 

Choice of 
software 

applications of 
the two phases

Scenario 
elaboration 

Elaboration of 
mapping rules from 
Pro/ENGINEER to 

the ontology 

Elaboration of 
mapping rules 

from the ontology
to PART 

File with neutral 
format 

Determination of the 
ontology concepts 

Determination of the 
ontology graphic 

i
Determination of the 

ontology textual 
representation 

Determination of the 
ontology formal 
representation 

Ontology of features 

Ontology of features

#UGC:2 NEUTRAL 972 440 2 0 0 15 
#-VERS 0 0 
#- HOST 
#- … 
0 Neutral_part -> 
1 revnum 231 
1 accuracy .0012 
1 outline [2][3] 
2 outline [0] 3*-20 
2 outline [1] 3*20 
1 accuracy_is_relative 1 
1 mass_props NULL 
1 time_stamp -> 
… File format A 

 

CAD 
system 

700 0 1 0 
24 PART 6.1.000 07-JUN-2002 13 
ACIS 7.0. NT 
-0 body $-1 –1 $-1 $1 $-1 $2 # 
-1 lump $-1 –1 $-1 $-1 $2 $0 # 
-2 shell $-1 –1 $-1 $-1 $-1 $3 $-1 $1 # 
-3 face $-1 –1 $-1 $-4 $-5 $-2 $-1 $6 
reversed single # 
-4 face $-1 –1 $-1 $-7 $-8 $-2 $-1 $9 
forward single # 
-5 loop $-1 –1 $-1 $10 $11 $3 # 
-6 cone-surface $-1 –1 $-1 –52.5 –25 
129.09440602367914 0 0 1 -13 

File format B 

 

CAPP 
system 

(and (produit produit1) 
     (nom_produit nomproduit1) 
     (est_compose_de produit1 nomproduit1) 
     (description_produit descriptionproduit1) 
     (est_compose_de produit1 descriptionproduit1) 
     (liste_d_assemblages listedassemblages1) 
     (est_compose_de produit1 listedassemblages1) 
     (= nil listedassemblages1) 
     (liste_de_pieces listedepieces1) 
     (est_compose_de produit1 listedepieces1) 
     (= (length listedepieces1) 1) 
     (liste_unites listeunites1) 
     (est_compose_de produit1 listeunites1) 

Neutral 
Intermediary File

(1) Translation (2) Translation 

 
Figure 1: Global process for data exchange using ontologies 
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Figure 2: Role of design, process planning and manufacturing 
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Figure 3: Representation of the material cutting process 
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Figure 4: Design and process planning interfaces 
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Figure 5: Design specific classes 
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Figure 6: Constraint classification 
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 ;A constraint is the super type of: technologic constraint,  
;economic constraint, validity constraint and position and  
;orientation constraint. 
(forall (?a) 
        (implies (constraint ?a) 
                 (or (technologic_constraint ?a) 
                     (economic_constraint ?a) 
                     (validity_constraint ?a) 
                     (position_orientation_constraint ?a)))) 
 
;A technologic constraint is the subtype of a constraint. 
(forall (?a) 
        (implies (technologic_constraint ?a) 
                 (constraint ?a))) 
 
;A validity constraint is the subtype of a constraint. 
(forall (?a) 
        (implies (validity_constraint ?a) 
                 (constraint ?a)))  

Figure 7: KIF statements for constraint classification 
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Figure 8: Process planning specific classes 
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 ;A manufacturing model uses a process plan 
(defrelation use (?a ?b):= 

(and  (manufacturing_model ?a) 
(process_plan ?b))) 

 
;Attributes of a process plan are: a set of machining
setup, 
; an associated manufacturing model and
specifications 
(forall (?a) 
(implies (process_plan ?a) 

  (exists (?l ?b ?c) 
   (and
 (associated_manufacturing_mod
el ?b) 

        (specification ?c) 
         (machining_setup ?l) 

   (is_composed_of ?a ?b) 
        (is_composed_of ?a ?c) 
        (is_composed_of ?a ?l))))) 
 
;Attributes of a machining setup are: an
associated machine, an associated attachment, a
list of machining operations, an associated
process plan, the machining time, the cost, the
delay, the quality and the operator name 

(forall (?a) 
        (implies (machining_setup ?a) 
                 (exists (?b ?c ?d ?e ?f ?g ?h ?i ?j) 
                         (and (associated_machine ?b) 
                              (associated_attachment ?c) 
                              (machining_operation_list ?d) 
                              (associated_process_plan ?e) 
                              (manufacturing_time ?f) 
                              (manufacturing_cost ?g) 
                              (manufacturing_delay ?h) 
                              (quality ?i) 
                              (operator_name ?j) 
                              (is_composed_of ?a ?b) 
                              (is_composed_of ?a ?c) 
                              (is_composed_of ?a ?d) 
                              (is_composed_of ?a ?e) 
                              (is_composed_of ?a ?f) 
                              (is_composed_of ?a ?g) 
                              (is_composed_of ?a ?h) 
                              (is_composed_of ?a ?i) 
                              (is_composed_of ?a ?j))))) 

 
Figure 9: KIF statements for feature decomposition 
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Figure 10: Main class diagram of the NIST Core Product Model and extensions 
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Figure 11: Feature decomposition 
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 ;A feature is the super type of: volume feature,
transition 
;feature and feature pattern. 
(forall (?a) 
        (implies (feature ?a) 
                 (or (volume_feature ?a) 
                     (transition_feature ?a) 
                     (feature_pattern ?a)))) 
 
;A volume feature is the subtype of a feature. 
(forall (?a) 
        (implies (volume_feature ?a) 
                 (feature ?a))) 
… 
;Volume feature attributes are: associated volume and
;cutting section type. 
(forall (?a) 
        (implies (volume_feature ?a) 
                 (exists (?b ?c) 
                         (and (associated_volume ?b) 
                              (cutting_section_type ?c) 
                              (optional_attribute ?b ?a) 
                              (optional_attribute ?c ?a) 
                              (is_composed_of ?a ?b) 
                              (is_composed_of ?a ?c))))) 
… 

;A subtractive volume feature is a volume feature 
whose 
;volume is subtracted from a pre-existing volume 
(forall (?a) 
        (implies (subtractive_volume_feature ?a) 
                 (and (volume_feature?a) 
                      (exists (?b ?c) 
                              (and (associated_volume ?b) 
                                   (is_composed_of ?a ?b) 
                                   (pre_existing_volume ?c) 
                                   (subtracted ?b ?c)))))) 
 
… 
;A void is a subtype of a subtractive volume feature 
(forall (?a) 
        (implies (void ?a) 
                 (subtractive_volume_feature ?a))) 
 
… 

 
Figure 12: KIF statements for feature decomposition 
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Figure 13: Methodology for the elaboration of the validation prototype 
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 Pro/Engineer file

#- HOST
#- VERS 0 0
…
1 dimensions [8]
2 dimensions
3 name d0
…
1 features [5]
2 features
…
2 features
# Protrusion
3 id 47
3 user_name NULL
…
1 surfaces [8]
2 surfaces
3 id 50
3 uv_min [2]
…
1 edges [18]
2 edges
3 id 51
…

Pro/Engineer file

#- HOST
#- VERS 0 0
…
1 dimensions [8]
2 dimensions
3 name d0
…
1 features [5]
2 features
…
2 features
# Protrusion
3 id 47
3 user_name NULL
…
1 surfaces [8]
2 surfaces
3 id 50
3 uv_min [2]
…
1 edges [18]
2 edges
3 id 51
…

700 0 1 0           
24 PART 6.1.000 07-JUN-2002 13 …
-0 body $-1 -1 $-1 $1 $-1 $2 #
-1 lump $-1 -1 $-1 $-1 $2 $0 #
-2 shell $-1 -1 $-1 $-1 $-1 $3 $-1 $1 #
-3 face $-1 -1 $-1 $4 $5 $2 $-1 $6 reversed single #
-4 face $-1 -1 $-1 $7 $8 $2 $-1 $9 forward single #
-5 loop $-1 -1 $-1 $10 $11 $3 #
-6 cone-surface $-1 -1 $-1 -52.5 -25 129 0 0 1 -13 011 0 1 I I 0 1 13 forward I I I I #
-7 face $-1 -1 $-1 $12 $13 $2 $-1 $14 reversed single #
-8 loop $-1 -1 $-1 $15 $16 $4 #

700 0 1 0           
24 PART 6.1.000 07-JUN-2002 13 …
-0 body $-1 -1 $-1 $1 $-1 $2 #
-1 lump $-1 -1 $-1 $-1 $2 $0 #
-2 shell $-1 -1 $-1 $-1 $-1 $3 $-1 $1 #
-3 face $-1 -1 $-1 $4 $5 $2 $-1 $6 reversed single #
-4 face $-1 -1 $-1 $7 $8 $2 $-1 $9 forward single #
-5 loop $-1 -1 $-1 $10 $11 $3 #
-6 cone-surface $-1 -1 $-1 -52.5 -25 129 0 0 1 -13 011 0 1 I I 0 1 13 forward I I I I #
-7 face $-1 -1 $-1 $12 $13 $2 $-1 $14 reversed single #
-8 loop $-1 -1 $-1 $15 $16 $4 #

PART filePART file

 
Figure 14: Data declaration in Pro/Engineer and PART files for a simple artifact 
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 Neutral format Ontology format 

Surface (plane) 

id
uv_min [2]
uv_max [2]

xyz_min [3]
xyz_max [3]

plane surface surface 

point_min
point_max
orientation

loop_list 

normal 

identificateur
associated_coordinate
system 

orient

coordinate system 

loops [nb]
edges_ids[nb]

surface_type 34
surface (plane)

loops [2]
edges_ids [nb]

...

e1 [3]
e2 [3]
e3 [3]

origin [3]

axis1 
axis2 
axis3 
origin  

Figure 15: Correspondence for a plane surface between a Pro/Engineer neutral file and 
our ontology 
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 Create a feature instance 

For each feature attribute do 

Create an instance of the attribute

For each sub- attribute do 

… 

If the attribute is a simple one (integer, string, etc.)

Else find its sub-attributes 

Find all feature attributes 

Feature 
ontology 

Find the type of the attribute 

Find its value in the initial file (Pro-Engineer or PART file)

Pro-
Engineer or 
PART file 

 
Figure 16: General algorithm for data exchange 
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Figure 17: Screen of the prototype to visualize a file 
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Figure 18: Some part examples 
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 Pro/Engineer file 
 
#- HOST 
#- VERS 0 0 
… 
1 dimensions [8] 
2 dimensions 
3 name d0 
… 
1 features [5] 
2 features 
… 
2 features 
# Protrusion 
3 id 47 
3 user_name NULL 
… 
1 surfaces [8] 
2 surfaces 
3 id 50 
3 uv_min [2] 
… 
1 edges [18] 
2 edges 
3 id 51 
… 

File containing ontology instances 
 
(and (string nameproduct1) 
 (= nameproduct1 "Cube_With_One_Hole")) 
 
(and (protrusion protrusion1) 
 (feature protrusion1) 
 (associated_constraint_list CubeConstraints1) 
 (associated_tolerances_list CubeTolerances1) 
  … 
 (surfaces_list Surfaces1) 
 (dimensions_list Dimensions1) 
 (is_composed_of protuberance1 CubeConstraints1) 
 (is_composed_of protuberance1 CubeTolerances 1) 
 … 
 (is_composed_of protuberance1 Surfaces1) 
 (is_composed_of protuberance1 Dimensions1)) 

File used in PART 
 
700 0 1 0            
24 PART 6.1.000 07-JUN-2002 13 … 
-0 body $-1 -1 $-1 $1 $-1 $2 # 
-1 lump $-1 -1 $-1 $-1 $2 $0 # 
-2 shell $-1 -1 $-1 $-1 $-1 $3 $-1 $1 # 
-3 face $-1 -1 $-1 $4 $5 $2 $  -1 $6 reversed single # 
-4 face $-1 -1 $-1 $7 $8 $2 $-1 $9 forward single # 
-5 loop $-1 -1 $-1 $10 $11 $3 # 
-6 cone-surface $-1 -1 $-1 -52.5 -25 129 0 0 1 -13 011 0 1 I I 0 1 13 forward I I I I # 
-7 face $-1 -1 $-1 $12 $13 $2 $-1 $14 reversed single # 
-8 loop $-1 -1 $-1 $15 $16 $4 # 

Mapping rules

Mapping rules

 
Figure 19: Examples of the different generated files 
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