
AN ARCHITECTURE AND INTERFACES FOR DISTRIBUTED MANUFACTURING SIMULATION

Charles McLean
Frank Riddick
Y. Tina Lee

National Institute of Standards and Technology (NIST)

Gaithersburg, MD (USA)

ABSTRACT

This paper presents an overview of a neutral reference architecture and data model for integrating distributed manufacturing
simulation systems with each other, with other manufacturing software applications, and with manufacturing data
repositories. Other manufacturing software applications include, but are not limited to systems used to: 1) design products, 2)
specify processes, 3) engineer manufacturing systems, and 4) manage production. The architecture identifies the software
building blocks and interfaces that will facilitate the integration of distributed simulation systems and enable the integration
of those systems with other manufacturing software applications. The architecture builds on the High Level Architecture
(HLA) standard for simulation (IEEE 2001). NIST and its collaborators have created several implementations of portions of
the architecture using commercial off-the-shelf (COTS) simulators. These implementations demonstrated the feasibility of
the architecture, and highlighted the need for a neutral data model for exchanging manufacturing data between simulations.
Subsequent projects have focused on the development of a neutral information model for integrating machine shop software
applications with simulation. The information model provides mechanisms for describing data about organizations, calendars,
work, resources, schedules, parts, process plans, and layouts within a machine shop environment. The model has been
developed using the Unified Modeling Language (UML) and the Extensible Markup Language (XML). The initial work on
the architecture was undertaken as a part of the international Intelligent Manufacturing Systems (IMS) MISSION project.
The neutral information model and interface specification activity was initiated under the Technology Insertion
Demonstration and Evaluation (TIDE) project and is continuing as a collaboration activity under the Simulation Standards
Consortium.

1 INTRODUCTION

Scientists and engineers within the NIST Manufacturing Systems Integration Division of the Manufacturing Engineering
Laboratory have developed an architecture for distributed manufacturing simulation in collaboration with representatives
from a number of outside organizations. The organizations were principally participants in the IMS MISSION Project
(MISSION Consortium 1998). MISSION is just one of many international, collaborative projects that have been conducted
as part of the IMS Program.

“The goal of MISSION was to integrate and utilize new, knowledge-aware technologies of distributed persistent
data management, as well as conventional methods and tools, in various enterprise domains, to meet the needs of
globally distributed enterprise modelling and simulation. This will make available methodologies and tools to support
the definition of appropriate manufacturing strategies and the design of appropriate organizations and business
processes. This goal will be achieved by establishing a modelling platform incorporating engineering knowledge and
project information that supports space-wise and control-wise design, evaluation and implementation over the complete
enterprise life cycle. This will be the foundation stone for an architecture to support engineering co-operation across the
value chain of the entire extended enterprise.” (MISSION Consortium 1998)

NIST served as the U.S. Regional Coordinator for the IMS MISSION project. Participants on the U.S. MISSION team
included NIST, the Defense Department’s Modeling and Simulation Office, a number of U.S. simulation software vendors,
universities, and Black and Decker. For further information on the overall IMS Program, see the IMS Web page at
<http://www.ims.org/>. For information on research conducted by IMS MISSION collaborators from the European and
Japanese regions see (Rabe et al. 2001), (Rabe and Jäkel 2001), (Hibino and Fukuda 2002), and (Hibino et al. 2001).
Collaborators on the U.S. team jointly decided to focus on investigating two major research issues: 1) the feasibility of using
the U.S. Department of Defense’s (DoD) High Level Architecture (HLA) for distributed manufacturing simulation, and 2)
the development of manufacturing supply chain simulations.

Prototype simulations were developed under the IMS MISSION project that demonstrated that various combinations of
the commercial simulators of the project team could be interconnected under the architecture to construct distributed
simulations. The interconnection process was simplified through the use of the NIST Distributed Manufacturing Simulation
Adapter (DMS Adapter) software (Riddick 2004). With the DMS Adapter, the feasibility demonstrations were implemented
with no changes to the internals of the commercial simulation engines. Time synchronization and data exchange were
successfully demonstrated in several distributed supply chains simulation prototypes. Of the six different COTS simulation
products used, each product was used in at least one implementation. A key reason for developing the DMS Adapter was to
reduce the complexity in dealing with the HLA, which should foster greater use of distributed simulation technology in the
manufacturing arena.

In the HLA, data interfaces are specified in a Federation Object Model (FOM). Early in this work, it was recognized that
the traditional approach to developing a FOM would need to be changed if the HLA technology were to be adopted by the
manufacturing industry. NIST staff recommended that the Extensible Markup Language (XML) standards be used to encode
data that would be exchanged between simulations in the future (Sall 2002). MISSION project participants recognized the
need for information models for this data, but due to limited time and resources this aspect of the problem was not addressed.
In a project initiated shortly after the completion of MISSION, NIST began working with collaborators on the development
of neutral interfaces for exchanging manufacturing data between simulations and other applications.

NIST staff believes that standard interfaces could help reduce the costs associated with simulation model construction
and data exchange between simulation and other software applications -- and thus make simulation technology more
affordable and accessible to a wide range of potential industrial users. Currently, small machine shops do not typically use
simulation technology because of various difficulties and obstacles associated with model development and data translation.
Small shops typically do not have staff with the appropriate technical qualifications required to develop custom simulations
of their operations or custom translators to import their data from other software applications.

NIST worked with a number of industrial partners and researchers to develop neutral formats for machine shop data to
facilitate simulation and modeling activities. A machine shop data model, as a neutral interface format, has been under
development to support both NIST’s System Integration of Manufacturing Application (SIMA) program and the Software
Engineering Institute’s (SEI) Technology Insertion Demonstration and Evaluation (TIDE) Program. SIMA supports NIST
projects in applying information technologies and standards-based approaches to manufacturing software integration
problems (Carlisle and Fowler 2001). The TIDE Program is sponsored by the Department of Defense and SEI; it is currently
engaged in a number of other projects with various small manufacturers in the Pittsburgh, Pennsylvania area. The technical
work is being carried out as a collaboration between NIST, SEI, Carnegie Mellon University, Duquesne University, the iTAC
Corporation, and the Kurt J. Lesker Company (KJLC).

KJLC is an international manufacturer and distributor of vacuum products and systems to the research and industrial
vacuum markets. KJLC manufactures complete, automatically controlled vacuum systems with special emphasis on custom-
designed, thin film deposition systems for research in alloys, semiconductors, superconductors, optical and opto-electronics.
A small machine shop is contained within the KJLC manufacturing facility. KJLC’s machine shop operation has been used to
help define the requirements for simulation modeling and data interface specification activities described in this paper. Their
facility will also be used as a pilot site for testing and evaluation of the simulation models, neutral data interfaces, and other
software developed under this TIDE project. For more information on KJLC, see <http://www.lesker.com/>.

The machine shop information model was developed with two goals in mind: a) support for the integration of software
applications at a pilot facility -- KJLC’s machine shop, and b) promotion as a standard data interface for manufacturing
simulators and possibly for other software applications. The information model is continuing to evolve based on experience
and feedback from the KJLC’s implementation and from others involved in this effort. The information model provides a
core set of data specifications that have applicability beyond the machine shop environment. Work on information modeling
and the interface specification continues today.

The objective of the information modeling effort is to develop a standardized, computer-interpretable representation that
allows for exchange of information in a machine shop environment. The information model, when completed, must satisfy
the following needs: support data requirements for the entire manufacturing life cycle, enable data exchange between
simulation and other manufacturing software for machine shops, provide for the construction of machine shop simulators,

and support testing and evaluation of machine shops’ manufacturing software. Data structures contained within the
information model include organizations, calendars, resources, parts, process plans, schedules, and work orders for machine
shops.

The remainder of the paper is organized as follows. Section 2 provides a summary of the architectural work completed
as a part of MISSION. Issues concerning the distributed simulation architecture, the DMS adapter, and how HLA is related
to this work are discussed. Section 3 provides an overview of the information modelling and interface specification activities
that were undertaken after MISSION as a part of the NIST SIMA and SEI TIDE programs. In this section issues relating to
the modelling tools and methodologies used are also discussed. In section 4, a synopsis of the information described in this
paper is presented, along with a discussion of possible future research activities related to this work.

2 DISTRIBUTED MANUFACTURING SIMULATION ARCHITECTURE

This document takes a broad view of distributed manufacturing simulation (DMS). Normally a DMS may be thought of as a
manufacturing simulation that is comprised of multiple software processes that are independently executing and interacting
with each other. Together, these simulation software processes may model something as large as a manufacturing supply
chain down to something as small as an individual piece of industrial machinery. Different software vendors may have
developed the basic underlying simulation software. The modules may run on different computer systems in geographically
dispersed locations. The simulation may be distributed to take advantage of the functionality of specific vendor’s products,
protect proprietary information associated with individual system models, and/or improve the overall execution speed of the
simulation through the use of distributed computer processing.

DMS may also refer to a distributed computing environment where non-simulation manufacturing software applications
are running and interacting with one or more simulation systems. Engineering systems may interact with simulation systems
through service requests. That is, they submit data to a simulator for evaluation. For example, a computer-aided
manufacturing application that has generated a control program for a machine tool may submit that program to a simulator to
verify that it is correct.

Another view of DMS is a computer environment comprised of multiple, functional modules that together form what
today is commonly a single simulation system. Such an environment may include model building tools, simulation engines,
display systems, and output analysis software.

2.1 Why build distributed manufacturing simulation systems?

A distributed approach increases the functionality of simulation. For example, it could be used to
• model supply chains across multiple businesses where some of the information about the inner workings of each

organization may be hidden from other supply chain members
• simulate multiple levels of manufacturing systems at different degrees of resolution such that lower level

simulations generate information that feeds into higher levels
• model multiple systems in a single factory with different simulation requirements such that an individual simulation-

vendor’s product does not provide the capabilities to model all areas of interest
• allow a vendor to hide the internal workings of a simulation system through the creation of run-time simulators with

limited functionality
• create an array of low-cost, run-time, simulation models that can be integrated into larger models
• take advantage of additional computing power, specific operating systems, or peripheral devices (e.g., virtual reality

interfaces) afforded by distributing across multiple computer processors
• provide simultaneous access to executing simulation models for users in different locations (collaborative work

environments)
• offer different types and numbers of software licenses for different functions supporting simulation activities (model

building, visualization, execution, analysis).
The next section outlines the role that software architectures will play in enabling the development of distributed

manufacturing simulations.

2.2 Software Architecture

In their book, Software Architecture: Perspectives on an Emerging Discipline, Mary Shaw and David Garlan, explain the
significance of software architectures:

“As the size and complexity of software systems increase, the design and specification of overall system structure
become more significant issues than the choice of algorithms and data structures of computation. Structural issues include
the organization of a system as a composition of components; global control structures; the protocols for communication,
synchronization, and data access; the assignment of functionality to design elements; the composition of design elements;
physical distribution; scaling and performance; dimensions of evolution; and selection among design alternatives. This is the
software architecture level of design.”(Shaw and Garlan 1996)

A distributed manufacturing simulation architecture is needed to address the integration problems that are currently faced
by software vendors and industrial users of simulation technology. Neutral simulation interfaces would help reduce the cost
of data importation and model sharing, and thus would make simulation technology more affordable to users. The definition
of a neutral architecture for distributed manufacturing simulation is the first step towards identifying the information models,
interfaces, and protocols for integrating these systems.

This step can be achieved by decomposing the distributed manufacturing simulation architecture into three major
functional views: Distributed Computing Systems, Simulation Systems, and Manufacturing Systems. Each architectural view
defines a set of system elements, data models, and interface specifications for integrating distributed manufacturing
simulations. Aspects of each view are interrelated to and interconnected with aspects of the other views. The views can be
thought of as three sides of a cube.

2.3 Distributed Computing Systems View

This architectural view is concerned primarily with simulation as a set of computers and software processes that are
simultaneously executing and communicating with each other across a computer network. This view also addresses issues
pertaining to the general management and integration of the software applications that are used to generate models and data
for the simulations. The fact that the software processes are simulations or simulation-related is not particularly critical in this
view. This view is not concerned with simulation or manufacturing data content.

This view provides the infrastructure that allows us to implement simulation development and execution environments as
distributed systems. Elements of this view include: hardware computing platforms, operating systems, distributed computer
processes, integration infrastructures, process initialization and synchronization, software development environments
(including but not limited to editors, compilers, system build utilities, debuggers, source code, general subroutine and header
libraries, run-time modules, and system test data), communications systems, information models and data dictionaries, work
flow management systems, database management systems and databases, product data management systems, version control
and configuration management, computer file systems and files, system installation and maintenance utilities, computer
security and data protection services, license verification systems, and World Wide Web access mechanisms. It also includes
various input and output peripheral devices such as digital cameras, scanners, monitors, projection displays, printers, and
virtual reality interfaces.

There are five major clusters of information systems that are relevant to the distributed manufacturing simulation
problem: 1) software development systems; 2) design, engineering, production planning, and simulation model development
systems; 3) distributed manufacturing simulation execution systems; 4) manufacturing management, control, production,
support systems, and 5) distributed manufacturing data repository systems.

Figure 1 groups these systems into four computing environments and a shared, common data repository. The figure
presents a logical grouping of system elements. Undoubtedly each implementation of this architecture will be based on

Distributed Manufacturing
Data Repository

Software Development
Environment

Design, Engineering,
Production Planning and

Simulation Model
Development Environment

Distributed Manufacturing
Simulation Execution

Environment

Manufacturing
Management, Control,

Production and Support
Systems Environment

Communications Network

Figure 1: Relationships Between The Major Elements Of The DMS Architecture

different information systems and physical configurations. The major elements of the figure are described briefly below.
The Software Development Environment is used to develop simulation engines, visualization systems, integrating

infrastructures, and other software applications. It is not the central focus of the architecture and will not be addressed in this
paper. The Design, Engineering, Production Planning, and Simulation Model Development Environment contains the
systems that generate models and data used by simulation and manufacturing itself. It is described in further detail below.
The Distributed Manufacturing Simulation Execution Environment contains simulation engines executing models,
visualization systems, and infrastructure systems to manage and integrate those simulations. The Manufacturing
Management, Control, Production and Support Systems Environment is made up of the “real” systems that are used to run
and perform the manufacturing operations.

There are five component elements of the Design, Engineering, Production Planning, and Simulation Model
Development Environment: 1) product design applications and tool kits; 2) manufacturing engineering applications and tool
kits; 3) production management applications and tool kits; 4) simulation model development applications and tool kits, and 5)
work flow management systems. In this environment, the work flow management system provides the integrating
infrastructure. It manages and sequences activities within the applications and tool kits that generate manufacturing models
and data. Tool kits are tightly coupled suites of applications that work together to perform a related set of functions. Tool kits
may be manually driven or more automated expert systems.

Product design applications may include conceptual and detailed design, solid modeling, bill of materials generation,
design handbooks, parts catalogs, and various analysis tools. Some manufacturing engineering applications may include
process planning and process specification, plant layout, machine tool programming, time standards development, line
balancing, and tool and fixture design. Production management applications may include manufacturing resource planning,
batch and lot sizing, and scheduling applications. Simulation model development tools include functions such as
flowcharting, diagramming, model definition, and user level programming.

A communications network connects environments with each other and the Manufacturing Data Repository. The
Repository is a consolidation of the various data stores and management systems that are used by the various information
systems environments. It logically integrates the file systems, Web pages, data bases, and libraries used for the storage of
data by design, engineering, production planning, real manufacturing systems, simulation model development, and executing
distributed manufacturing simulations. In different implementations of the architecture, the repository may reside on a single
computer system, a file server, or be geographically distributed across a network.

The Distributed Manufacturing Data Repository may include the following types of data stores and management
systems: computer file systems, Web pages and files, object-oriented database management systems, relational database
management systems, special-purpose library management systems, and source-code control systems for software. A
common data access interface mechanism will be used to simplify access to the data repository by all software environments
and applications within those environments. References to documents in the data repository may be specified as Uniform
Resource Locators (URLs) see (Berners-Lee et al. 1998). This will allow the identification of documents, both remotely and
locally stored using the well-established, standard, World Wide Web access mechanism.

Figure 2 shows a decomposition of the Distributed Manufacturing Data Repository into its component elements. All of

Figure 2: Decomposition of the Distributed Manufacturing Data Repository

Common Data

Access
Mechanism

Computer File
System

PDMS
Databases

Product Data
Management

System

Web Files

Web Server

Object-Oriented
Databases

Object-Oriented
Database

Management
System

Relational
Databases

Special Purpose
Libraries

Special Purpose
Library

Management
System

Software File
System

Software Source
Code Control

System

Communications Network

Relational
Database

Management
System

the types of data stores indicated in the figure do not necessarily have to be included in an implementation of the architecture.
In the future, additional data management schemes and data stores may be added to the repository structure. From this point
forward in this document, the Distributed Manufacturing Data Repository and Common Data Access Mechanism will be
treated and represented as a single module.

2.4 Simulation Systems View

This architectural view is concerned with the specifics of building, initializing, running, observing, interacting with, and
analyzing simulations. In this view, simulation systems, tools, and supporting applications should be viewed generically; i.e.,
independent of the manufacturing domain. The same system elements could be used for simulating other problem domains.
Major elements of this view include: simulation coordination and management, visualization systems, manufacturing data
preparation and model development tools, simulation models, discrete event and process simulation engines, component
module and template libraries, mathematical and analytical models, input distributions, timing and event calendars, and
output analysis tools.

Figure 3 illustrates the relationship between the various elements of the distributed manufacturing simulation execution
environment. The integration infrastructure for this environment, the Run Time Infrastructure (RTI), is based on the U.S.
Department of Defense High Level Architecture (HLA) developed by the Defense Modeling and Simulation Office (DMSO)
(Kuhl et al. 1999). The HLA was developed by DMSO to provide a consistent approach for integrating distributed, defense
simulations. Several implementations of the HLA RTI software are currently available from different sources. There is,
however, no interoperability across RTI implementations. A distributed simulation running on different computer systems
across a network must use the same RTI software as an integration infrastructure.

An HLA-based distributed simulation is called a federation. Each simulator, visualization system, real production
system, or output analysis system that is integrated by the HLA RTI is called a federate. One common data definition is
created for domain data that is shared across the entire federation. It is called the federation object model (FOM). Each
federate has a simulation object model that defines the elements of the FOM that it implements.

A DMS Adapter Module is incorporated into each DMS federate. The DMS Adapter will handle the transmission,
receipt, and internal updates to all FOM objects used by a federate. The DMS Adapter Module will contain a subroutine
interface and data definition file that will facilitate its use as an integration mechanism by software developers. The goal of
the DMS adapter is to ease the development of distributed manufacturing simulations by reusing implementations for some
of the necessary housekeeping and administrative work. The DMS adapter provides a simplified time management interface,
automatic storage for local object instances, management of lists of remote object instances of interest, management and

Manufacturing Simulation
Federation Manager

Distributed
Manufacturing Data

Repository

HLA Run-Time
Infrastructure and
Communications

Network

Simulation
Visualization

Federate

DMS Adapter

Manufacturing
Simulation
Federate

DMS Adapter

Real
Manufacturing

System
Federate

DMS Adapter

Simulation Output
Data Analysis

Federate

DMS Adapter

Figure 3: Distributed Manufacturing Simulation Environment Elements Integrated By The HLA
Run Time Infrastructure

logging for interactions of interest, and simplified object and interaction filtering.
Several functions may be needed for the proper operation of a distributed simulation that are logically outside of any one

simulation federate. In the distributed manufacturing simulation environment, the Manufacturing Simulation Federation
Manager is the architectural element that provides these functions. Its may implement functionality to execute initialization
scripts that launch federates, to provide initialization data to federates, to assist in federation time management, and to
provide a user interface so that users can monitor and manipulate the federation and invoke federation services.

2.5 Manufacturing Systems View

This architectural view is concerned with modeling the behavior and data of specific manufacturing organizations and
systems, from the supply chain down to individual machines on the factory floor. Major elements of this view include, but
are not limited to

• manufacturing organizational templates and structures, business process and organizational models
• supply chain systems - refineries, mills, factories, warehouses, distributors, transportation systems, wholesalers,

retailers, customers
• manufacturing facility departments, areas, and subsystems - design, engineering, procurement, finance, production

shops, work cells, production lines, workstations, inventory storage areas, shipping and receiving
• production resources and support equipment - machine tools, inspection equipment, material handling systems,

storage buffers, robots, workers
• tools and materials - cutting tools, hand tools, jigs and fixtures, consumables, components, part blanks, sheet and bar

stock, work-in-process inventory
• manufacturing information systems - design, engineering, production planning and scheduling, tool management,

shop floor data collection systems
• manufacturing documents and data - work flow patterns, orders, jobs, product data, part designs, process plans,

production calendars, schedules, layouts, and other reference data (machinability data, statistical distributions)
Different manufacturers will create different supply chain organizations and arrangements of systems within each

organization. The DMS architecture must be flexible enough to allow these different system configurations, but still enable
increased integration. As such, the architecture does not mandate a particular manufacturing organization. It does require the
development and specification of one DMS FOM.

Many objects in the FOM may reference documents containing more detailed information that are stored in a file system,
PDM system, or database. An example of such a document might be a part design file or a process plan. The Extensible
Markup Language (XML) can be used to define new document types (Goldfarb and Prescod 2000). XML allows for the
definition of data that has semantic information in addition to the data values. A variety of schema languages can be used to
to define new document formats. Advantages of this approach include:

• the set of supported document types can be easily extended
• each individual document format can be easily modified
• COTS tools are available to implement creation, parsing, interpreting, and displaying the documents
• XML documents from other sources can easily be supported
• different instances of file structures may be created to convey the same semantic information
• XML-enabled browsers can intelligently display the data
• semantic validation of the files is possible.
There are potentially many document types that will be stored as distributed manufacturing simulation data. Some of

these document types have widely-accepted or standardized formats. Examples of these include the many kinds of CAD
files (DXF, IGES, etc.), image files (GIF, TIFF, BMP, etc), and executables (EXE, com, bat, dll, etc.). However, many
manufacturing documents do not have standardized format. Schedules, BOMs, and process plans are examples of such
documents. While it is easy to come up with acceptable representations for such data that are appropriate for short-term use,
it is highly likely that these representations will need modifications, possibly major modifications, over time. A mechanism
is needed to allow the definition of extensible formats for new document types without adversely affecting the rest of the
DMS architecture or interfaces. XML can be that mechanism. Schemas for the different document formats must be stored in
and uniquely accessible from the DMS data repository. An initial set of document formats should be developed and allowed
to expand over time as the need arises.

2.6 Integration via DMS Adapter and the HLA/RTI

In the discussion and diagrams below, the changes necessary for integrating a legacy simulation into a distributed simulation
using the HLA and the DMS Adapter will be discussed. The term legacy simulation is used to indicate a manufacturing-
oriented or general-purpose discrete-event simulation tool that does not have native support for the HLA or DMS Adapter
technologies. Such systems are typically created using COTS simulation software packages. They may also be created from
scratch using a combination of general-purpose and special-purpose computer programming languages.

2.6.1 Simplified Simulation Execution Architecture

In Figure 4, a simplified view of a non-distributed legacy simulation application is shown. It consists of a simulation
execution system executing a simulation model. The simulation model is a behavior-oriented description of the logical
system that is to be simulated. Simulation execution systems often support the visualization of the executing model and
statistical reporting of the simulated events that are generated during execution. Data that are needed as input to or that are
generated by the executing simulation are maintained in the persistent data store.

2.6.2 Integration using the HLA/RTI

Figure 5 shows the architecture of a legacy simulation that has been integrated into a distributed simulation using the HLA.
On the right side of the diagram, a simplified view of the HLA architecture is presented (constructs or concepts that are
beyond the scope of this presentation have been left out for brevity). The Federate Object Model (FOM) is a description of
the data that can be exchanged between federates. The FOM is usually different for each distributed simulation that is
developed. The RTI Ambassador implements the interface through which federates send information to the RTI. This
interface contains methods that provide the capability to manage federation creation, manage object class definitions, manage
information exchange using objects and interactions, and manage the advancement of time for the federation.

While the RTI Ambassador provides the mechanism for sending information to the RTI, an implementation of the
Federate Ambassador interface is necessary to be able to receive information from the RTI. The Federate Ambassador is an
interface that contains methods that define how the RTI sends information to a federate asynchronously in response to
changes in the state of the federation. These state changes may be in response to calls to the methods on the RTI Ambassador

Legacy Simulation
Execution System

Legacy
Simulation
Persistant
Storage

Simulation
Model

Figure 4: Simplified View Of A Typical
Legacy Simulation System

Legacy Simulation
Execution System

Legacy
Simulation
Persistant
Storage

Simulation
Model

HLA
Runtime

Infrastructure

Federate
Object
Model

Custom
Adaptation

Code

Federate
Ambassador

Implementation

RTI
Ambassador

Figure 5: Legacy Simulation Integration
Using The HLA/ RTI

interface made by any federate in the federation. An implementation of the Federate Ambassador interface is not provided
with the RTI software. The rules of the HLA require that an implementation of the Federate Ambassador be provided by the
legacy simulation. Furthermore, this implementation must be consistent with the information defined in the FOM that is
being used in this federation.

2.6.3 HLA/RTI Integration Issues

Since legacy simulation systems are not designed to be used with the HLA/RTI, code must be developed to adapt the legacy
simulation system for such purposes. Normally this code is complex. In addition, although some of the code can be reused, a
significant amount of code will need to be added or modified for each distributed simulation that is developed. In the rest of
this section, some of the important issues related to the complexity and reusability of the adaptation code are discussed.

RTI Interface Complexity: There are roughly 120 methods in the RTI Ambassador interface and 40 methods in the
Federate Ambassador interface. Depending on the current state of the RTI, the federation, and the data that is defined in the
FOM, invoking a method can cause vastly different outcomes to occur. While the richness of the RTI's interfaces provide
for an extremely flexible simulation integration approach, a side effect is that the learning curve for understanding these
interfaces is quite high.

The RTI's Implicit Invocation Architecture: The architecture of the RTI is based on what is called an "implicit invocation
architecture." In this approach, a federate can modify the state of the federation by invoking methods of the RTI Ambassador
interface. Information relating to changes in the state of the federation is passed back as asynchronous callbacks to methods
in the Federate Ambassador that was implemented by the federate. While this is an efficient and flexible approach, it makes
adapting legacy simulation difficult because legacy simulations usually provide only procedurally oriented mechanisms for
integration.

Inadequate Integration Mechanisms Are Provided By The Legacy Simulations: To use the interfaces of the RTI, some
adaptation code must be written using a language supported by one of the RTI language mappings. Mappings currently exist
for languages such as C, C++, Java, and CORBA IDL (Ben-Natan 1995). While some simulation systems provide
mechanisms to call functions written in such languages natively, many do not. Integrating those legacy simulations usually
requires a combination of proprietary-language code, file input/output, and socket programming, depending on which
mechanisms are provided. This situation increases the complexity of developing and maintaining the adaptation code.

Cooperative Time Management: In distributed simulations in which federates must cooperatively manage the
advancement of time, the legacy simulation must be modified to cede some of the control over the advancement of time
where previously it had complete control. Because the RTI provides multiple mechanisms for coordinating time
advancement, choosing the appropriate mechanism and properly implementing the adaptation code to support it can require
significant forethought and development.

Storage And Maintenance For Instances Of FOM Objects: Many legacy simulations have internal representations for
entities such as parts or machines, and these simulations can maintain the information about such entities as they are created
during a simulation execution. The definitions of these entities will differ between different legacy simulations. To enable
the exchange of data relating to these entities, neutral representations of these entities are usually defined in the FOM as
object classes and associated attributes. However, the HLA/RTI provides no mechanism for storing object class instances.
It only provides for storage of information related to the owner of a particular object instance, the class of the instance, and
the attributes that are associated with an instance. Therefore, storage for instances of FOM objects must be provided by the
legacy simulation. This is in addition to whatever storage has been set aside to maintain the legacy simulation's internal
representation of an object. Adaptation code to maintain FOM object storage and to coordinate state changes between the
internal representations and the FOM representations of objects must be developed.

2.6.4 Integration using the DMS Adapter

In the previous section, some of the issues that are related to integrating legacy simulations using just the facilities of the
HLA were discussed. It shows that developing the Federate Ambassador and adaptation code can be a significant
undertaking when developing a distributed simulation, and that this effort must be repeated for each legacy simulation that is
to be integrated.

Figure 6 shows the architecture of a legacy simulation that has been integrated into a distributed simulation using the
DMS Adapter. Instead of having legacy simulations integrated directly with the HLA/RTI, those simulations will interact
with the interface of the adapter. The goal of the adapter is to provide a simplified method for integrating legacy simulations
into distributed simulations while also providing as much of the capabilities of the HLA/RTI as possible. The reader should
note that simplified does not imply simple. Adaptation code must still be developed to integrate a legacy simulation system

with the DMS Adapter. However, by reducing the complexity of the interface to which the legacy simulation is being
integrated, the level of effort for performing the integration should be greatly reduced

2.6.5 Architectural goals for the DMS Adapter

What follows is a list of design goals for the architecture of the DMS Adapter. If met, implementing distributed simulations
using the DMS Adapter should be simpler than when using the approach that was depicted in Figure 5.

Reduce interface complexity: The interface of the adapter will have approximately 35 methods instead of the 120
methods with 40 callbacks defined by the RTI and Federate Ambassadors.

Remove Federate Ambassador implementation issues from the legacy simulation: Legacy simulations will not have to
develop Federate Ambassador implementations. The adapter will implement a federate ambassador and use it to receive
information from the RTI.

Define an interface that facilitates integration with procedurally oriented legacy simulations: The results of invoking
most of the methods in the adapter's interface will be returned immediately to the legacy simulation. Information that must
be passed back asynchronously to a federate will be stored in a message queue in the adapter associated with that federate.
This includes information that is generated by the activities of other federates in the federation. The adapter will provide the
storage for this information and provide methods to access this information upon request from the legacy simulation.

Minimize the impact of changes to the information model through the development of generic FOM objects that contain
XML document fragments: To overcome the problem of having to develop different FOM's for each distributed simulation
configuration, the information about the classes and attributes for the objects that are to be exchanged will not be defined in
the FOM. A generic object class will be defined in the FOM and instances of this object will be exchanged between
federates. This generic FOM object class will have an attribute of type string that is ment to hold an XML document
fragment. The information will define the semantic content for the object. The XML document fragment is the information
that will be passed to the legacy simulation. The generic FOM object class will also contain information about the type of
data contained in the XML document fragment. This will facilitate filtering and routing of object updates by the RTI. There
are five major benefits to this approach:

1. Only one FOM needs to be developed for use with the DMS Adapter.
2. Only one implementation of the Federate Ambassador needs to be developed for use with the DMS Adapter.
3. The DMS Adapter does not have to be modified and recompiled for each distributed simulation configuration.
4. The information model (the definition of the entities, attributes and messages that will be exchanged between

Run Time
 Infrastructure

 Internal
Simulation
Object and
Data Space

Simulation Application and
Models

Distributed Manufacturing
Simulation Adapter

Common Data
Access Mechanism

Server

Adapter Interface
HLA Ambassador

Adapter Supervisor

Simulation Engine

User Simulation Models
 and Data

Other
Simulation
Federates

Distributed
Manufacturing

Data Repository

Federate A

Federate B

Federate C

RTI Services,

Common Data
Access Mechanism

Transactions

XML
Parser/Generator

Figure 6: Integrating Simulations Using The DMS Adapter

simulations) can be changed without changing the FOM, Federate Ambassador implementation, or the DMS
Adapter Implementation.

5. Implementations of mechanisms for manipulating XML data are widely available and can be used in the
development of both the DMS Adapter and the adaptation code for legacy simulations.

Maintain storage for the objects that are to be exchanged between simulations: As discussed in a previous section, the

definition of an object (class and associated attributes) that is to be exchanged between simulations will differ from the
internal definition that each simulation supports for that object. Since each legacy simulation only provides storage for its
internal objects and the RTI provides no mechanism for the storage of objects, storage and maintenance for the objects that
are to be exchanged must be provided. The DMS adapter will provide this capability.

Each adapter will provide methods that allow a legacy simulation to create, modify, and delete objects that can be shared
with other federates in the federation. Objects will have "owners", and ownership will be granted initially to the adapter (and
associated legacy simulation) that created it. Ownership is required for modification or deletion operations on an object to
succeed. Storage for "owned" objects will be provided by the DMS Adapter that owns the object. In addition, storage for
copies of objects owned by other DMS Adapters will be provided. Each DMS Adapter will use the services of the RTI to
distribute object update information for the objects it owns, and will incorporate object update information it receives about
objects owned by other DMS Adapters. In this way, the DMS Adapters in the federation can work cooperatively to maintain
updated information about all the objects in the federation, without the direct intervention of their associated legacy
simulations.

Simplify time coordination: The RTI provides a multitude of time synchronization methods that are extremely flexible
and powerful but are also quite complicated. The adapter implements a "time- stepped" synchronization approach. DMS
Adapter methods are provided to declare that the associated legacy simulation wishes to advance to a certain simulation time,
and to check if it is ok to advance to this time. When the DMS Adapter indicates to the legacy simulation that it is ok to
advance, the legacy simulation can then "simulate" from its current simulation time to the new simulation time that it
requested. It can then use the other methods in the DMS Adapter interface to get information about what was going in the
rest of the federation while it was executing its "simulation step." When all of the simulations use this method, the
functionality of the RTI's time management services ensures that the collective advancement of all of the simulations
proceeds properly.

While meeting the architectural goals for developing the DMS Adapter will provide a mechanism for exchanging
information between manufacturing simulation applications, for meaningful information exchange to take place, the semantic
content of the information to be exchanged must be defined. In the next section, the development of an information model
that defines the semantics for the meaningful exchange of manufacturing simulation related information is discussed.

3 MANUFACTURING SIMULATION INTERFACE SPECIFICATIONS

An information model provides a sharable, stable, and organized representation of information in a selected domain area. The
Integrated Computer Aided Manufacturing (ICAM) Definition Language 1 Extended (IDEF1X), EXPRESS, Unified
Modeling Language (UML), and XML are most often used by the manufacturing enterprises for information modeling.
IDEF1X is a formal graphical language for relational data modeling, developed by the U. S. Air Force (Appleton 1985).
EXPRESS (ISO 1994b) was designed to meet the needs of the STandard for the Exchange of Product model data, commonly
called STEP (ISO 1994a), and it has been used in a variety of other “large-scale” modeling applications. UML is a graphic
representation for artifacts in software systems, and is also useful for database design (OMG 2003). XML is a format for
structured documents and it helps make possible information exchange in a globally distributed computing environment
(W3C 2000).

Section 3.1 of this document provides an overview of the concept behind the machine shop information model. Section
3.2 explains the constructs used to define the information model, how the model will be used, and gives some detailed
examples of a small portion of the model.

3.1 Concept For The Data Model

In this section, the concept of the shop information model is introduced from the user perspective. The primary objective was
to develop a structure for exchanging shop data between various manufacturing software applications, including simulation.
The idea was to use the same data structures for managing actual production operations and simulating the machine shop.
The rationale was that if one structure can serve both purposes, the need for translation and abstraction of the real data would

be minimized when simulations are constructed. The mapping of real world data into simulation abstractions is not, for the
most part, addressed in the current data model.

Maintaining data integrity and minimizing the duplication of data are important requirements. For this reason, each
unique piece of information appears in only one place in the model. Cross-reference links are used to avoid the creation of
redundant copies of data. The machine shop data model contains twenty major elements. Each of the major data elements are
italicized in the discussion that follows. The data elements are called: organizations, calendars, resources, skill-definitions,
setup-definitions, operation-definitions, maintenance-definitions, layout, parts, bills-of-materials, inventory, procurements,
process-plans, work, schedules, revisions, time-sheets, probability-distributions, references, and units-of-measurement.
Figure 7 illustrates some of the major elements of the conceptual data model and their relationships to each other. Due to
space limitations, the entire model is not shown or discussed in detail. For more detailed information on the model, see
(McLean et al. 2003). The remainder of this section discusses the data elements and their significance.

Perhaps a good place to start the discussion of the data model is with the customer. Machine shops are businesses. They
typically produce machined parts for either internal or external customers. Data elements are needed to maintain information
on customers. The types of organizational information that is needed about customers is very similar to the data needed about
suppliers that provide materials to the shop. The same types of organizational data are also needed about the machine shop
itself. For this reason, an organizations element was created to maintain organizational and contact information on the shop,
its customers, and its suppliers.

Organizations can be thought of as both a phone book and an organization chart. The element provides sub-elements for
identifying departments, their relationships to each other, individuals within departments, and their contact information.
Various other types of information needs to be cross-referenced to organizations and contacts within structure, e.g., customer
orders, parts, and procurements to suppliers.

The operation of the machine shop revolves around the production of parts, i.e., the fabrication of parts from raw
materials such as metal or plastic. The raw materials typically come in the form of blocks, bars, sheets, forgings, or castings.
These materials are themselves parts that are procured from suppliers. The parts data element was created to maintain the
broad range of information that is needed about each part that is handled by the machine shop. Part data includes an
identifying part number, name, description, size, weight, material composition, unit-of-issue, cost, group technology
classification codes, and revision (change) data. Cross-reference links are needed to the customers that buy the parts from the
shop and/or the suppliers that provide them as raw materials. Links are also needed to other data elements, documents, and

Figure 7: Concept For The Machine Shop Data Model

customers
inventory machine

programs

suppliers

procurements

organizations

parts

work

specify
produced

by

bills-of-
materials

routing
sheets

purchase

process
plans

production
process

defined by

operation
sheets

orders

jobs

tasks

consist

consist

high-level
production
processes
defined by

store

schedules

resources

provide
requirements

assemblied
by

supply

assign

identify decompose

machine
control

defined by

defined
by

defined
by

required
by

have

may result
specification
provided by

layout

calendars

stations

machines

employees

setup
definitions

skill
definitions

locate

may
have

operation
definitions

may have

.....

place

receive

defined
by

use

has

may
include

ability
defined by

machine
setups

defined by

employ

maintenance
definitions

maintenance
requirements

defined by

station
operations
defined by

time sheets

maintain

activity
defined

by

files that are related to the production of parts including: part specification documents, geometric models, drawings, bills-of-
materials, and process plans.

The bills-of-materials element is basically a collection of hierarchically-structured parts lists. It is used to define the parts
and subassemblies that make up higher level part assemblies. A bill-of-materials identifies, by a part number reference link,
the component or subassembly required at each level of assembly. The quantity required for each part is also indicated.
Cross-references links are needed between parts that are assemblies and their associated bill-of-materials.

The parts and bills-of-materials elements establish the basic definition of parts produced or used by the shop. Another
element, inventory, is used to identify quantity of part instances at each location within the facility. Inventory data elements
are provided for parts, tools, fixtures, and materials. Materials are defined as various types of stock that may be partially
consumed in production, e.g., sheets, bars, and rolls. Structures are provided within inventory to keep track of various stock
levels (e.g., reorder point level) and the specific instances of parts that are used in assemblies.

The procurements element identifies the internal and external purchase orders that have been created to satisfy order or
part inventory requirements. Cross-reference links are defined to parts to identify the specific parts that are being procured
and to work to indicate which work items they will be used to satisfy.

The work data element is used to specify a hierarchical collection of work items that define orders, production and
support activities within the shop. Support activities include maintenance, inventory picking, and fixture/tool preparation.
work is broken down hierarchically into orders, jobs, and tasks.

Orders may be either customer orders for products or internally-generated orders to satisfy part requirements within the
company, e.g., maintenance of inventory levels of stock items sold through a catalog. Orders contain both definition and
status information. Definition information specifies who the order is for (i.e., customer cross-references), its relative priority,
critical due dates, what output products are required (a list of order items, i.e., part references and quantities required), special
resource requirements, precedence relationships on the processing of order items, and a summary of estimated and actual
costs. Order items are also cross-referenced to jobs and tasks that decompose the orders into individual process steps
performed at workstations within the shop. Status information includes data about scheduled and actual progress towards
completing the order.

Jobs typically define complex production work items that involve activities at multiple stations and ultimately produce
parts. Tasks are lower level work items that are typically performed at a single workstation or area within the shop.

The process-plans element contains the process specifications that describe how production and support work is to be
performed in the shop. Major elements contained within process-plans include routing sheets, operation sheets, and
equipment programs. Routing and operation sheets are the plans used to define job and task level work items, respectively, in
the work hierarchy. These process plans define the steps, precedence constraints between steps, and resources required to
produce parts and perform support activities. Precedence constraints defined in a process plan are used to establish
precedence relationships between jobs and tasks. Equipment program elements establish cross reference links to files that
contain computer programs that are used to run machine tools and other programmable equipment that process specific parts.
Each part in the parts element contains cross-reference links to the process plans that define how to make that part. Jobs and
tasks contain links back to the process plans that defined them.

The resources element is used to define production and support resources that may be assigned to jobs or tasks in the
shop, their status, and scheduled assignments to specific work items. The resource types available in the machine shop
environment include: stations and machines, cranes, employees, tool and tool sets, fixtures and fixture sets.

The skill-definitions, setup-definitions, operations-definitions, maintenance-definitions, and time-sheets elements provide
additional supporting information associated with resources. Skill-definitions lists the skills that an employee may possess
and the levels of proficiency associated with these skills. Skills are referenced in employee resource requirements contained
in process plans. Setup-definitions typically specifies tool or fixture setups on a machine. Tool setups are typically the tools
that are required in the tool magazine. Fixture setups are work-holding devices mounted on the machine. Setups may also
apply to cranes or stations. Operation-definitions specifies the types of operations that may be performed at a particular
station or group of stations within the shop. Maintenance-definitions specifies preventive or corrective maintenance to be
done on machines or other maintained resources. Time-sheets is used to log individual employee’s work hours, leave hours,
overtime hours, etc.

The layout element defines the physical locations of resource objects and part instances within the shop. It also defines
reference points, area boundaries, paths, etc. It contains references to external files that are used to further define resource and
part objects using appropriate graphics standards. Cross-references links are also provided between layout objects and the
actual resources that they represent.

Schedules and calendars data elements are used to deal with time. Schedules provides two views of the planned
assignment of work and resources. Work items (orders, jobs, and tasks) are mapped to resources, and conversely, resources
are mapped to work items. The planned time events associated with those mappings are also identified, e.g., scheduled start

times and end times. Calendars identifies scheduled work days for the shop, the shift schedules that are in effect for periods
of time, planned breaks, and holiday periods.

The four remaining major data elements are revisions, references, probability-distributions, and units-of-measurement.
The revisions element is used repeatedly throughout many levels of the data model. It provides a mechanism for identifying
versions of subsets of the data, revision dates, and the creator of the data. The references element identifies external digital
files and paper documents that support and further define the data elements contained within the shop data structure. It
provides a mechanism for linking to outside files that conform to various other format specifications or standards, e.g., STEP
part design files. The probability-distributions element defines probability distributions that are used to vary processing
times, breakdown and repair times, availability of resources, etc. Distributions may be cross-referenced from elsewhere in the
model, e.g., equipment resources maintenance data. Units-of-measurement specifies the units used in the file for various
quantities such as length, weight, currency, and speed.

The next section provides a detailed illustration of a small portion of the overall data model, and UML and XML file
structures.

3.2 Specification Of The Information Model

An information model is a representation of concepts, relationships, constraints, rules, and operations to specify data
semantics for a chosen domain of discourse. The advantage of using an information model is that it can provide shareable,
stable, and organized structure of information requirements for the domain context. An information model serves as a
medium for transferring data among computer systems that have some degree of compliance with this information model. For
proprietary data, implementation-specific arrangements can be made when transferring those data (Lee 1999).

In general, the contents of an information model include a scope, a set of information requirements, and a specification.
Information requirements serve as the foundation of the specification of the information model. A thorough requirements
analysis is a necessity. The initial goal for the machine shop information model is to support data transferring needed for
KJLC’s machine shop operations. This information model, ultimately, will be promoted as a standard data interface to be
used by other machine shops. Thus, the completeness and correctness of the information requirements and a consensus on the
data requirements from the industry are also important issues.

The specification of the information model defines elements, attributes, constraints, and relationship between elements
for the domain context. The specification should be laid out using some formal information modeling language. An
information modeling language provides a formal syntax that allows users to unambiguously capture data semantics and
constraints. Three types of methods that implement information models are currently used by the manufacturing community:

• Data transfer via a working form, which is a structured, in-memory representation of data. The method uses a
mechanism that accesses and changes data sequentially without actually moving the data around. All shared data are
stored in memory.

• Data transfer via an exchange file, which is a file with a predefined structure or format. This method requires a
neutral file format for storing the data. The application systems read and write from files.

• Data transfer using a database management system. This method uses a database management system where
information is mapped onto and retrieved from databases.

These implementation methods can be accomplished through translators that are developed using programming
languages and database management systems. The selection of an implementation method is heavily dependent on the target
environment where the application system resides. While the relational database is generally desirable for data transfer, the
traditional file-oriented systems are being used continually by many manufacturing applications.

A specification for the machine shop information model has been developed based on the data model concept described
in Section 3.1. The shop-data element, the top-level element in the model, is represented by an identifier and a number.
Optional elements include: type, name, description, reference-keys, revisions, units-of-measurement, organizations,
calendars, resources, skill-definitions, setup-definitions, operation-definitions, maintenance-definitions, layout, parts, bills-
of-materials, inventory, procurements, process-plans, work, schedules, time-sheets, references, and probability-distributions.

Type is an attribute of shop-data and is an enumeration to describe types about shop-data. Identifier is a key to uniquely
identify the object internally within the system, and it is generated automatically by the system when the object is created.
Number is also a unique key for identifying the object either when taken alone or possibly together with the object type, and
the uniqueness is to the user or the user’s organization. Identifier and number are required attributes. Name is used to identify
the object by the user or user’s organization. It is provided for readability sake. Description is used to describe the nature of
the subject. Reference-keys refers to reference documents or files that are stored external to the model. When a data element’s
name suffixes with “-key” or “-keys”, these data elements serve as pointers to the model to avoid redefining the same set of
information. All other attributes, such as organizations, calendars, resources, etc., are major elements of the model that were
introduced in Section 3.1.

The machine shop data model specification is documented using both UML and XML structures. XML is chosen to
support web users while UML’s standard graphical notations provide visual communications. UML is a graphical
representation; the language is for specifying, visualizing, constructing, and documenting, rather than processing. XML is a
format for structured documents, thus XML documents are decodable.

The current version of the specification includes XML documents that are well-formed, but may or may not be validated.
Data should be validated before being imported to a legacy system. An XML schema is a specification of the elements,
attributes, and structures; it is not only useful for documentation, but also for validation or processing automation (van der
Vlist 2002). To facilitate automated validation, the format of the XML documents that make up the specification will be
defined using the World Wide Web Consortium (W3C) XML Schema, an XML Schema language.

UML provides several modeling types, from functional requirements and activity analysis to class structures and
component description. The modeling type used to map to the XML documents is the UML class diagram. A UML class
diagram can be constructed to visually represent the structural and behavioural features. Since the behavioural feature is not
relevant to the XML specification, that feature is omitted here (Carlson 2001).

The complete specification is not given here due to its size. Instead a sample data element specification is described. The
data element of orders is chosen for illustration in this section, see Figure 8. Orders is a subgroup of work and consists of a
set of individual order data elements. It specifies a collection of production work orders to be processed within the shop.
Each order contains the order definition and/or order status section. The order definition contains attributes of the order
including a list of order items, i.e., a listing of individual parts that make up a particular order. The order status describes
information about scheduled and actual progress toward completing the order. The same part may be listed in the order
multiple times in different order items if each instance has unique attributes, e.g., different due dates.

-type[0..1]
-identifier[1]
-number[1]
-name[0..1]
-description[0..1]
-REFERENCE-KEYS[0..1]
-REVISIONS[0..1]
-UNITS-OF-MEASUREMENT[0..1]

shop-data

1
0..1

-type[0..1]
-identifier[1]
-number [1]
-name[0..1]
-description[0..1]
-REFERENCE-KEYS[0..1]
-REVISIONS[0..1]

work

1
0..1

-type[0..1] : String
-identifier[1] : int
-number[1] : String
-name[0..1] : String
-description[0..1] : String
-REFERENCE-KEYS[0..1]
-REVISIONS[0..1]

order

-CUSTOMERS[1]
-priority-rating[0..1] : String
-DUE-DATES[1]
-ORDER-ITEMS[0..1]
-PRECEDENT-CONSTRAINTS[0..1]
-RESOURCES-REQUIRED[0..1]
-COST-SUMMARY[0..1]

order-definition

0..1

-type[0..1] : String
-identifier[1] : int
-number[1] : String
-name[0..1] : String
-description[0..1] : String
-REFERENCE-KEYS[0..1]
-REVISIONS[0..1]

orders

1

1..*

-WORK-SCHEDULED-PROGRESS[0..1]
-WORK-ACTUAL-PROGRESS[0..1]

order-status

1

0..1

contains
defined by

has

specifies

performs

Figure 8: UML Model Of The Orders Object

3.2.1 UML Modeling

As mentioned before, the UML class diagram is one representation for the specification of the information model. A number
of software tools are available for generating UML diagrams. The UML class diagrams introduced here have been generated
using Microsoft Visio 2000. A UML class diagram can be constructed to graphically represent the classes, attributes, and
relationships. A UML class is the abstraction of a concept in the domain of discourse; it is defined by a set of attributes. An
attribute is an additional piece of information associated with a UML class. Each attribute defines its type (such as string,
integer, date, or user defined data type), relationships, and optionally specifies its default value. A special type of class,
named DataType, is used to specify enumeration items.

Relationships between classes are shown with the connecting line; the role and cardinality relationship may be presented
along the relationship line. The role describes how the related class is used. There exist cardinality relationships between a
class and its attributes, and between classes. The cardinality relationship specifies how many specific instances of an element
could be related to another element. The cardinality relationship may be “one” to “zero or one”, “one” to “zero or more”,
“one” to “one or more”, or exactly “n” occurrences, and is presented in the Figure 8 as 0..1, 0..*, 1..*, n, respectively. The
cardinality relationship used for attributes is enclosed by [].

The UML information model for the orders element is shown in Figure 8. The orders element is a sub-element of the
work element, which is a sub-element of the shop-data element, which is the top element of the model. The orders element
has the attributes of type (which is an optional string), an identifier (which is an “int” or integer value), a number (which is a
string), an optional name (which is a string), an optional description (which is a string), and an optional reference-keys and
revisions (they are user defined data types). Figure 8 illustrates the role and cardinality relationships among orders, order,
order-definition, and order-status. An orders element contains order elements. Each order is defined by order-definition and
has an order-status. Orders and order have a “one” to “one or more” relationship, i.e., there may exist one or many order
instances for an orders instance. Similarly, there may exist zero or one order-definition instance and zero or one order-status
instance for an order instance. Each order-definition instance is defined by one customers instance, one due-dates instance,
and zero or one of priority-rating, order-items, precedent-constraints, resources-required, and cost-summary instances.

3.2.2 XML Specification

XML supports the development of structured, hierarchical data entities that may contain a high level of semantic content, that
is both human and machine interpretable. There are several supporting standards from W3C that make working with XML
easier. These include Document Object Management (DOM) for manipulating XML documents, XML Schema for defining
the format of XML documents, and Extensible Style-sheet Language (XSL) for translating XML documents to other formats,
see <www.w3.org>. There also exist a wide variety of software applications to implement creation, parsing, interpreting, and
displaying of XML documents.

An XML document is a collection of parsed and unparsed pieces. An element is one of the basic type of nodes in the tree
represented by an XML document. A well-formed document has one unique root element that contains all other elements.
Elements follow one another, or appear inside one another, but may not overlap. All elements must have a start-tag and an
end-tag that surround their contents. An element begins with <name-of-element> (that is a start-tag) and ends with </name-
of-element> (that is an end-tag). XML is case-sensitive. The contents of each element may include other elements. An XML
element may be defined by a set of attributes and child-elements. Attributes and child-elements are additional information
associated with the element. Attributes are presented in the start-tag, in the form:

 <name-of-element name-of-attribute=”value”>.

The same attribute can appear inside the start-tag once only. However, the same child-element may appear in the element
more than once if it carries different instances. Attributes are unordered while child-elements are presented in order. When an
element has no content between the start-tag and end-tag or omits the end-tag and terminates the start-tag with “/>”, the
element is an empty element. An empty element may contain attributes, however.

The XML structure for the orders element is shown below:

<orders type="…" identifier="…" number="…">

<name />
<description />
<reference-keys />
<revisions />
<order type="…" identifier="…" number="…">

<name />
<description />
<reference-keys />
<revisions />
<order-definition>

<customers />
<priority-rating />
<due-dates />
<order-items/>
<precedent-constraints />
<resources-required />
<cost-summary />

</order-definition>
<order-status>

<work-scheduled-progress />
<work-actual-progress />

</order-status>
</order>

</orders>

In the above structure, the element of orders is defined by the attributes of type, identifier, and number, and the child-
elements of name, description, reference-keys, revisions, and order. Order is further defined by the attributes of type,
identifier, and number, and the child-elements of name, description, reference-keys, revisions, order-definition, and order-
status. All attribute values are undefined in this case. Child elements are empty elements. Data types, cardinality
relationships, constraints, default values, and enumerations are not included in this sample XML document. They will be
defined in the XML schema that is currently under development.

4 CONCLUSIONS & NEXT STEPS

This document has provided a brief overview of the distributed manufacturing simulation architecture that was developed to
enable the integration of COTS manufacturing simulators using the DOD High Level Architecture. The architecture
facilitates integration of existing commercial systems with minimal new development work or modification to the
commercial software. The architecture also should enable experimentation with research systems that are based on evolving
technology. The architecture describes the major system modules, data elements or objects, and interfaces between those
modules. It uses HLA and the Run Time Infrastructure as an integration mechanism. Several prototype implementations were
developed, tested, and integrated with commercial simulation systems, modeling tools, and other related manufacturing
software applications as part of the IMS MISSION Project. After demonstrating the feasibility of integration using HLA and
the NIST Adapter, a neutral data model was needed to enable the sharing of information content between simulations.

Under the TIDE Program and SIMA program, NIST worked with external collaborators to develop a neutral model and
data exchange format for machine shop data. The objective of the information modeling effort was to develop a standardized,
computer-interpretable representation that allows for the efficient storage and exchange of manufacturing life cycle data in a
machine shop environment. The information model will continue to evolve based on the experience and feedback from others
involved in this effort. The model is now being transformed into a schema using an XML Schema language. The information
model and associated schema definitions will be proposed as a candidate standard to be considered by a formal standards
body. A preliminary plan is in process for standardization through the Institute of Electrical and Electronics Engineers
Standards Association (IEEE SA) 1516 Committee that was responsible for the Department of Defense High Level
Architecture.

There are also experimental development activities underway to test the viability of the model with real world
applications. A generic manufacturing simulator is being developed at NIST for the TIDE Program (McLean et al. 2002).
The model is also being used in the TIDE Program to integrate a manufacturing execution system with a real-time adaptive
scheduler, and the manufacturing simulator. An aerospace manufacturer is also working on a prototype simulation based on
the specification. An initial database implementation is currently underway.

There are also plans to expand the model to include assembly line, supply chain, and other domain areas. The current
model addresses the exchange of real world data between simulation and other manufacturing software applications. Another
information model and exchange file format is needed to support the simulation abstraction process. This model would be
used to maintain data regarding the mapping of real world objects into their simulated representation. For example, as part of

the abstraction process data values may be approximated, different colors may be substituted for real objects, shapes and
sizes may be changed, and probabilistic distributions may be substituted for actual arrivals and other time-dependent events.

ACKNOWLEDGMENTS AND DISCLAIMER

NIST’s SIMA Program, the SEI TIDE Program, and the United States Air Force Wright Patterson Air Force Base sponsored
the work described in this paper. SIMA supports NIST projects that apply information technologies and standards-based
approaches to manufacturing software integration problems. No approval or endorsement of any commercial product by the
National Institute of Standards and Technology is intended or implied. The work described here was funded by the United
States Government and is not subject to copyright.

REFERENCES

Appleton Company, Inc. 1985. Integrated Information Support System: Information Modeling Manual, IDEF1-Extended
(IDEF1X). Ohio: Wright-Patterson Air Force Base.

Ben-Natan, R., 1995. CORBA: A Guide To The Common Object Request Broker Architecture. New York: McGraw-Hill.
Berners-Lee, T., R. Fielding, and L. Masinter. 1998. Uniform Resource Identifiers (URI): Generic Syntax (RFC 2396).

Internet Engineering Task Force.
Carlisle, M., and J. Fowler. 2001. Systems Integration for Manufacturing Applications Biennial Report. Fiscal Years 1999-

2000, NISTIR 6721. National Institute of Standards and Technology, Gaithersburg, Maryland.
Carlson, D. 2001. Modeling XML Applications with UML: Practical e-Business Applications. Boston, MA: Addison-Wesley.
Goldfarb, C., and P. Prescod. 2000. The XML Handbook, Upper Saddle River, NJ: Prentice Hall.
Hibino, H., and Y., Fukuda. 2002. A Study on Support System for Distributed Simulation System of Manufacturing Systems

Using HLA. In proceedings of the 5th International Conference on Design of Information Infrastructure Systems for
Manufacturing. Osaka, Japan

Hibino, H., F., Y., Fukuda, Y., Yura, M., Nakano, and S., Fujii. 2002. A Study on Distributed Simulation Systems to
Evaluate Manufacturing Systems Using HLA. In proceedings of the 2002 Japan-USA Flexible Automation Conference.
Hiroshima, Japan

IEEE. 2001. IEEE Std 1516-2000: IEEE standard for modeling and simulation (M&S) high level architecture (HLA) -
framework and rules. New York: Institute of Electrical and Electronics Engineers.

ISO. 1994. ISO IS 10303-1: Product Data Representation and Exchange – Part 1: Overview and Fundamental Principles.
Geneva, Switzerland: International Organization for Standardization.

ISO. 1994. ISO IS 10303-11: Product Data Representation and Exchange – Part 11: The EXPRESS Language Reference
Manual. Geneva, Switzerland: International Organization for Standardization.

Kuhl, F., R. Weatherly, and J. Dahmann. 1999. Creating Computer Simulations: An Introduction to the High Level
Architecture. Upper Saddle River, New Jersey: Prentice Hall.

Lee, Y. T. 1999. Information Modeling: From Design To Implementation. In Proceedings of the Second World
Manufacturing Congress, ed. S. Nahavandi and M. Saadat, 315-321. Canada/Switzerland: International Computer Science
Conventions.

McLean, C., A. Jones, T. Lee, and F. Riddick. 2002. An Architecture for a Generic Data-Driven Machine Shop Simulator. In
Proceedings of the 2002 Winter Simulation Conference, ed. E. Yucesan, C. Chen, J. L. Snowdon, and J. M. Charnes,
1108-1116. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.

McLean, C., T. Lee, G. Shao, F. Riddick, and S. Leong. 2003. Shop Data Model And Interface Specification. Draft NISTIR.
National Institute of Standards and Technology, Gaithersburg, Maryland.

MISSION Consortium. 1998. Intelligent Manufacturing System (IMS) Project Proposal: Modelling and Simulation
Environments for Design, Planning and Operation of Globally Distributed Enterprises (MISSION). Version 3.3. Shimuzu
Corporation,Tokyo, Japan.

Object Management Group (OMG). 2003. Unified Modeling Language [online]. Available online via
<http://www.omg.org/uml/> [accessed February 26, 2004].

Rabe, M., G., Garcia de Gurtubai, and F., Jäkel. 2001. Modelling and Simulation for Globally Distributed Enterprises. In
proceedings of the 2001 EUROSIM conference. Delft, Germany.

Rabe, M., and F., Jäkel. 2001. Non Military use of HLA within Distributed Manufacturing Scenarios. In Proceedings of the
2001 Simulation und Visualization Conference. Magdeburg, Germany.

Riddick, F. 2004. The Distributed Manufacturing Simulation Adapter Reference Guide. Draft NISTIR. National Institute of
Standards and Technology, Gaithersburg, Maryland.

Sall, K. 2002. XML Family of Specifications: A Practical Guide. Boston, Massachusetts: Pearson Education, Inc.
Shaw, M., and D. Garlan. 1996. Software Architecture: Perspectives on an Emerging Discipline. Saddle River, New Jersey:

Prentice-Hall.
World Wide Web Consortium (W3C). 2000. Extensible Markup Language (XML) 1.0. 2nd ed. [online]. Available online via
<http://www.w3.org/TR/REC-xml.html> [accessed February 26, 2004].

van der Vlist, E. 2002. XML Schema. Sebastopol, California: O’Reilly& Associates.

AUTHOR BIOGRAPHIES

CHARLES MCLEAN is a computer scientist and leads the Manufacturing Simulation and Modeling Group. He has
managed research programs in manufacturing simulation, engineering tool integration, product data standards, manufacturing
automation, and manufacturing simulation & visualization at NIST since 1982. He has authored more than 50 technical
papers on topics in these areas. He is on the Executive Board of the Winter Simulation Conference and the Editorial Board of
the International Journal of Production, Planning, and Control. He is formerly the Vice Chairman of the International
Federation for Information Processing (IFIP) Working Group on Production Management Systems (WG 5.7). He is also the
NIST representative to the Department of Defense’s Advanced Manufacturing Enterprise Subpanel. He holds an MS in
Information Engineering from the University of Illinois at Chicago and a BA from Cornell University. His e-mail address is
<charles.mclean@nist.gov>.

FRANK RIDDICK is a computer scientist in the Manufacturing Simulation and Modeling Group in the U.S. National
Institute of Standards and Technology (NIST) Manufacturing Systems Integration Division. He has participated in research
and authored several papers relating to manufacturing simulation integration and product data modeling. He holds a
Master's Degree in Mathematics from Purdue University. His e-mail address is <frank.riddick@.nist.gov>.

Y. TINA LEE is a computer scientist in the Manufacturing Simulation and Modeling Group at NIST. She joined NIST in
1986. Most recently, she has been working on the design and development of interface information models to support the
Software Engineering Institute (SEI) Technology Insertion Demonstration and Evaluation (TIDE) project. Previously she
worked at the Contel Federal Systems and at the Sperry Corporation. She received her BS in Mathematics from Providence
College and MS in Applied Science from the College of William and Mary. Her e-mail address is <leet@nist.gov>.

