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ABSTRACT 

Hierarchical production planning provides a formal bridge 
between long-term plans and short-term schedules.  A 
hybrid, simulation-based, production planning architecture 
consisting of system dynamics (SD) components at the 
higher decision level and discrete event simulation (DES) 
components at the lower decision level is presented.  The 
need for the two types of simulation has been justified.  
The architecture consists of four modules: Enterprise-level 
decision maker, SD model of enterprise, Shop-level 
decision maker and DES model of shop.  The decision 
makers select the optimal set of control parameters based 
on the estimated behavior of the system.  These control 
parameters are used by the SD and DES models to 
determine the best plan based on the actual behavior of the 
system.  HLA/RTI has been employed to interface SD and 
DES simulation models.  Experimental results from a 
single-product manufacturing enterprise demonstrate the 
validity and scope of the proposed approach. 

1 INTRODUCTION 

All decisions in a manufacturing enterprise involve 
interactions between multiple departments or units, which 
are sometimes spread across geographic locations.  There 
are no isolated decisions taken by any single department.  
For effective management of the enterprise, the global 
consequence of local decisions needs to be estimated.  
Global consequence refers to the impact of the policy 
decision of a department on both the policy selection of 
other departments and the future behavior of the entire 
enterprise.  For example, the optimal order-quantity level, 
which is determined by the assembly department,  
influences (and is influenced by) the cycle time, the mode 
of transportation, shipment size, and capacity requirements 
all of which are determined by other departments. 
 Production planning is fundamental to the operation of 
a manufacturing enterprise.  The basic problem is to 

determine the type and quantity of the products to produce, 
to meet uncertain demand in the future time periods.  This 
problem can be formulated analytically, but it often results 
in very large-scale, mathematical programming models.  
The computational requirements to solve such a centralized 
planning problem, which makes both long-term and short-
term optimal decisions, are excessive.  Hence, it becomes 
necessary to develop alternate techniques which are 
computationally tractable and able to develop near optimal 
solutions.  Decomposition techniques are one way to solve 
such large-scale models.  A Hierarchical Production 
Planning (HPP) proposed by Hax and Meal (1975) is one 
such technique that separates the planning problem into 
distinct sub-problems based on the length of planning 
horizon, time and cost.  The sub-problems correspond to 
different hierarchical levels of the manufacturing 
enterprise.  They are solved so that the solution of the 
lower-level problem is constrained by the solution of the 
preceding higher-level problem. 
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 Fundamental advantages of the hierarchical approach 
to production planning are (Vicens et al. 2001)include 
reduction of complexity, gradual absorption of random 
events, increased insight due to the use of aggregated 
figures, and reduced need for detailed information and 
better forecasting. 
 Numerous HPP models have been presented in the 
literature. Typically HPP is modeled as a two-level 
hierarchy – aggregate-planning level and detailed- 
scheduling level.  The aggregate planning level includes 
Master Production Scheduling (MPS) and Material 
Requirements Planning (MRP).  At this level, three types 
of information aggregation are performed: parts to part 
families, time period to aggregate time periods, machine 
production rates (or capacity) to shop production rates (or 
capacity).  The solution techniques depend on the scope 
and the specific manufacturing scenario. They include 
heuristics based on linear programming (LP) (Mehra et al. 
1996, Qiu and Burch 1997), stochastic programming (Sethi 
et al. 2000), Enterprise Resource Planning (ERP) tools 
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(Das et al. 2000, McKay and Wiers 2003), and 
optimization coupled with simulation-based evaluation 
(Byrne and Bakir 1999).  Some of the drawbacks 
associated with such methods are given below.  
 
• The use of deterministic data at the aggregate level 

does not account for the stochastic evolution of the 
actual system.  Usually worst-case performance data 
are used at the aggregate level, leading to feasible but 
not optimal solutions.  In addition, the dynamics of the 
underlying system are absent. 

• Models assume infinite capacity and hence 
performance is assumed to remain constant 
irrespective of workload.  This implies that Little’s 
Law (which states that Work-in-Progress = 
Throughput * Cycle time) may be violated. 

• Major drawback the techniques is that they require 
reruns in case of unexpected external or internal events 
(Vicens et al. 2001).  Any exception (such as machine 
failures, new order arrivals) that endangers the validity 
of the current production plan leads to the regeneration 
of the entire plan.   

• The solution of the models are optimal and valid only 
when the assumptions are true.  Since the dynamics of 
the actual system is not accounted for, optimality is 
certainly questionable. 

• The models are suitable only for simple planning 
scenarios.  For more realistic scenarios, the sequential- 
solution approach may lead to sub-optimality, 
inconsistency, or infeasibility (Vicens et al. 2001). 

 
Similar kinds of uncertainties or disturbances can occur at 
both the planning and scheduling levels.  However, since 
they are handled independently at each level, their 
interactions at both levels are rarely considered.  This is 
supported by the previous literature, which can be  
classified into two distinct areas: handling uncertainty in 
aggregate planning models (Sethi et al. 2000, Byrne & 
Bakir 1999) and handling uncertainty in detailed 
scheduling models (Piramuthu et al. 2000, Maione and 
Nayo 2001).  These researchers deal with disturbances 
such as  machine breakdowns, changes in job priority, new 
order arrivals, and process time variations – but at one 
level or the other.  This motivated our research to look at 
the impacts planning level decisions on the scheduling 
function and scheduling level decisions on the planning 
function.   
In this paper, we investigated a manufacturing enterprise 
producing multiple products over multiple time periods, 
where each product is made up of a number of component 
parts.  The focus here is to develop an integrated 
production plan and schedule for the enterprise.  The 
manufacturing enterprise, which has a single fabrication 
facility, is modeled at two levels: an aggregate level and a 
detailed level.  The aggregate model is used to generate the 

optimal assignment of production capacities to products 
over multiple time periods.  These capacities are fed 
forward to the detailed model, which generates a daily 
production schedule. A feedback mechanism is employed 
so that the models are linked in time and space. The 
aggregate-level planning decisions are evaluated using a 
system dynamics (SD) model, in which the production 
activities are aggregated as flow rates over time.  The 
detailed-level planning decisions are evaluated using a 
discrete event simulation (DES) model that captures the 
different uncertainties in production.  
A brief overview of the architecture of the integrated 
simulation environment for HPP along with a feasibility 
study was presented in (Venkateswaran and Son 2004a).  
In this paper we provide more details about the 
architecture, we specify the integration strategies, discuss 
some of our  and the experimental result.  

2 PROPOSED ARCHITECTURE 

We propose a two-level, HPP architecture, which is shown 
in (Figure 1).  The following four modules are identified in 
the architecture: 
 

• Enterprise-level production planner 
− Enterprise-level decision maker 
− System dynamics model of the enterprise 

• Shop-level production scheduler 
− Shop-level decision maker 
− Discrete event simulation model of the shop 

 
The justification for using both an  SD model and a DES 
model is given below. We also give a detailed description 
of the different modules and their interactions. 
The enterprise-level planner uses aggregated information 
that is generated by the shop-level scheduler.  Four types 
of aggregation are performed; component parts into 
products; time period (minutes, hours) into aggregate time 
periods (weeks); machine production rates into shop 
production rate; part inventory into product inventory.  We 
found it necessary to add the last one to the traditional 
approaches described above. The long-term forecasting 
and customer orders arrivals are external to the scope of 
the current system. 
The enterprise-level planner develops the production plan 
for products, and the shop-level scheduler develops the 
component-parts schedule.  The enterprise-level decision 
maker uses an SD model to select the optimal set of control 
parameters based on (1) the forecasted demand over the 
entire time horizon, and (2) the estimated product cycle 
time. The SD model captures the production and inventory 
dynamics of the enterprise, which are dictated by the 
decisions made at the production-scheduler level.  These 
control parameters are used by the SD model to determine 
the planned production order quantity to be released to the 
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shop each period (a week).  Further, the weekly production 
order release quantity of product is 

converted into daily order quantities and sent to the DES 
model of the shop.   
 

 
 
 

Performance measure

Resource 
Model 

Shop Level Decision Maker

Enterprise Decision Maker

ENTERPRISE LEVEL 
PRODUCTION   PLANNER 

SHOP LEVEL  
PRODUCTION  SCHEDULER 

Production 
order 

release 

Current 
WIP 

Current 
Inventory

Average 
cycle time

Sales 

 
Discrete Event Simulation 

model of shop 

Control policy Selection of optimal 
control policy  

(FIFO, EDD, SPT …)

 
System Dynamics            

model of enterprise 

Monitor Performance
Performance measure

Selection of optimal 
control parameters 
(WIP weightage, 

inventory weightage)

Control parameters 

Customer orders Expected customer orders

Monitor Performance

Planning 
control loop

Scheduling 
control loop

KEY 
Periodic flow 

Event triggered flow 
 

Figure 1: Architecture of hybrid simulation-based production planning system 

 
The DES captures the detailed operational procedures of 
the shop.  The production order release quantity for the SD 
model is translated into release quantity of component 
parts whose flow through the shop is governed by queue 
rules or control policies.  A shop-level decision maker   
determines the optimal control policies based on the 
estimated production order release quantities (obtained 
from enterprise-level decision maker).  The daily update of 
work-in-process (WIP) inventory and average cycle time 
of products is fed back to the SD model from the DES 
model. 
Feedback control loops are employed by enterprise-level 
planner and shop-level scheduler to monitor the 
performance of the simulation models.  The enterprise-
level decision maker performs sensitivity analysis 
determine the limits of variables (production completion 
rate of products and demand) for which the control 
parameters are still optimal.  The performance of the SD 
model is monitored continuously; when the limits are 
crossed, the enterprise-level decision maker is invoked 
again to determine the new control parameters.  In a 
similar fashion, the shop-level decision maker monitors 
shop performance from the DES model and selects new 
control policies as required.  The shop performance is 
affected by disturbances such as machine failures and  

process time variations), which can be easily incorporated 
in to the DES model. 

2.1 Why SD for Enterprise-level Simulation Model? 

SD simulation consists of three core factors (Reid and 
Koljonen 1999): (1) the structure of the system, expressed 
in the form of feedback-based causal loop diagrams, (2) the 
frequency and duration of time delay in the feedback loops, 
and (3) the amplification of the information flows through 
the feedback structure.  The behavior of the system is 
modeled as an interrelationship between the core factors.  
Thus, SD provides a framework to understand the 
operations of complex dynamic systems and view the 
impact of decisions on the entire enterprise. 
In this case, the decision whose enterprise-wide impact 
must be assessed is the aggregate production plan.  
Traditional mathematical programming approaches to 
generating this plan  use  production capacity and demand 
forecasts as constraints, with both assumed to be known 
and fixed for each time period.  However, making a 
prediction of the manufacturing-system capacity at the 
beginning of each period is very difficult, often resulting in 
either overly optimistic or overly pessimistic constraints.  



Venkateswaran and Son 
 

)

This can result in plans that are far from optimal and, 
sometimes, infeasible.  
SD presents a natural way to model the dynamics 
associated with the production rates in the system.  The 
interrelationships between the production rates with 
inventory, labor, and capacity utilizations can be explicitly 
modeled.  The identification of the key factors, their 
relationships, and the time delays among those 
relationships can be captured in the causal feedback loops.  
Simulating such  loops can provide insight into important  
causes and effects, which can lead to a better  
understanding of the dynamic and evolutionary behavior of 
the system as a whole.  Hence, SD helps develop a time-
based plan suitable to the actual dynamic system and not a 
predetermined plan based on a ‘virtual’ deterministic 
system analyzed by LP models. 

2.2 Why DES for Shop-level Simulation Model? 

DES is typically used for performance data collection 
where important entities such as parts and resources are 
modeled using state variables that change only at discrete 
points in time, called event times. The simulation model 
advances by executing specific procedures at these event 
times and terminates when all events have passed.  DES is 
a widely used method for studying the design and 
operations of manufacturing systems.   There are two main 
reasons. First, DES can describe the most complex 
manufacturing systems and include stochastic elements, 
which cannot be described easily by mathematical or 
analytical models. Second, DES allows one to track the 
status of individual entities and resources in the facility and 
estimate numerous performance measures associated with 
those entities. These properties are especially important for 
the detailed scheduling level.   
Traditional mathematical programming approaches to 
solving the detailed-level scheduling problem assume 
constant  processing times, while in reality they are a 
function of the tool conditions, depth of cut, feed rate etc.  
The stochastic events such as breakdowns, process time 
variations, deadlock, and new order arrivals cannot be  
considered.  Hence any violation of the aggregate plan by 
the detailed model or the violation of plan upon execution 
means that the entire HPP needs to be rerun. 
As noted above, DES can model the uncertainty and 
unforeseen disturbances typical of manufacturing systems.  
Additionally, with some modifications, DES can even  use 
real-time data collected from the shop floor. Hence, we 
believe that DES is the best choice to model accurately the 
required level of detail to ensure that the developed 
schedule is valid and the predetermined production plan 
can be met. Furthermore, the models can be changed easily 
and run quickly to reflect changes that occur in the real 
shop.   When problems occur, the SD model can be 
informed immediately, as described below. 

3 FUNCTIONALITY OF THE MODULES 

Four types of modules are identified in the architecture 
(see Figure 1). The functionalities of the modules are 
presented in the following subsections. 

3.1 Enterprise-level Decision Maker 

This module determines the optimal control parameters for 
use in the SD model.  The control parameters or decision 
variables are weights for the WIP factor and for the 
inventory factor; these weights are  explained below.  We 
give a sample formulation where the objective function (1) 
strives to achieve the minimum cost assignment of the 
production quantities of multiple products over the time 
horizon. 
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The planned production quantity (POit) is represented as a 
function of the work-in-process adjustment (AWIPit), 
inventory adjustment (AIit) and demand (Dit) (Equation 2).  
Equation (3) represents the WIP adjustment, with α as the 
weightage for WIP factor.  Equation (6) represents the 
inventory adjustment, with β as the weightage for 
inventory factor.  Equations (4)-(5) are the WIP balance 
equations and (7)-(9) are inventory balance equations.  
Production quantity (Xit) is further constrained by the 
expected performance (10) and the available capacity (11)-
(12).  The projected demand (Dit) over the time horizon 
will be the ‘driving constraint’ of the model.   

Jai
Can you see the multiplier now? I have rewritten the equation. Else let me know.
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 In the above formulation, i is the index of products 
{1…N}; t is the index of time periods {1…T} in weeks; cit, 
hit, sit are the production, holding & shortage costs of 
product i in period t; Xit is the production quantity of 
product i in period t; POit is the production order release of 
product i in period t; AWIPit is the WIP adjustment of 
product i in period t; DWIPit is the desired WIP of product 
i in period t; WIPit is the actual WIP of product i in period 
t; AIit is the inventory adjustment of product i in period t; 
DIit is the desired inventory of product i in period t; Iit is 
the inventory of product i at the end of period t with Iit

+ and 
Iit

- indicating positive and negative inventory; Ki is the 
estimated cycle time of product i; TCt the total available 
capacity at period t; pit the percent capacity allocated for 
product i in period t; and Dit is the projected demand of 
product i in period t. 
 The output of the decision maker are two weights: , 
the weight for the WIP factor (α) and the weight for the 
inventory factory (β).  They are supplied to the SD model 
for use in calculating the weekly production order 
quantities.  Sensitivity analysis on the values of of α and β 
can be performed with respect to changes in the demand 
and the manufacturing cycle time.  Limiting values of the 
demand and the cycle time, for which α and β values are 
optimal is determined.  The performance of the SD model 
is continuously monitored and when the performance 
crosses the some predefined limits, the enterprise-level 
decision maker is invoked to determine the new optimal 
values of α and β. 

3.2 SD Model 

The SD model simulates the production dynamics involved 
in the execution of the production plan.  The dynamics are 
the result of the interrelationships between the different 
variables illustrated by the causal loop diagram in Figure 2.  
The enterprise decision maker supplies the inputs α and β, 
which are used in the calculations of normalized WIP 
(NWIP) and normalized inventory (NINV), respectively 
(Figure 2).  Under conditions when the demand and 
production rates of the SD model are same as those 
estimated in the enterprise decision maker, then the 
production order release rate will match the values 
calculated in Equation (2).  To accommodate variations in 
the demand and production rates, the production order 
release quantity is determined by the SD model based on 
the current dynamics of the system.   

The production rate (PD) can be more accurately 
represented as follows: 
 

PR = f(scheduling rules, resource status, WIP, CT) 
 
Hence, at each integral time step of one day, the production 
order release to shop is sent to the shop-level DES model, 

and the current WIP, current inventory and average cycle 
time is received as input from the DES model.   
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Figure 2: Causal loop diagram of the SD model 

3.3 Shop-level Decision Maker 

The shop-level decision maker determines the optimal 
scheduling rules to be used within the shop based on 
estimated production release quantities of products.  In 
general, the schedule generated using optimization 
techniques, though provides optimal solution cannot be 
directly executed in the shop floor.  This prompted the use 
of dispatching rules and dispatching rule based heuristic to 
decide as to which job is to be loaded next on a machine.  
The use of such rules has been shown, using simulation 
studies, to provide near optimal solutions.  Adaptive 
scheduling technique is used in which the scheduling rules 
are tailored to the current state of the system.  Techniques 
that incorporate a learning methodology for relating the 
various system parameters in determining the appropriate 
schedule are used for construction of the state-dependent 
schedule.  The functions of the shop-level decision maker 
includes: 
 
• Selection of a complete set of scheduling rules 
• Appropriate mapping of states to the scheduling rules 
• Ability to learn from the past decisions 
 
The queue rules thus selected is supplied to the DES model 
for use in determining the flow of the component parts. 
 Disturbances within the shop, such as machine 
breakdown or process time variations, cause deviations 
from the planned schedule.  The performance of the DES 
model is monitored by the shop-level decision maker and 
when it crosses the predetermined threshold, new control 
policies are determined by the shop-level decision maker. 
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3.4 DES Model 

The DES model represents the detailed operations 
including material processing, transfer and storage 
activities.  It receives as inputs the production order release 
quantity of the product and the actual sales quantity of the 
product from the SD model.  The production order release 
quantity of product is translated into release quantity of 
component parts.  The flow of parts through the shop is 
governed by the control policies obtained from the shop-
level decision maker.  The current levels of inventory, WIP 
and cycle times are given as feedback to the SD model.  

4 EXPERIMENT AND RESULTS 

A manufacturing enterprise producing a single product 
consisting of three part components, A, B and C is 
considered.  The product is assembled from one unit each 
of components A and C and two units of component B.  
Infinite supply of components is assumed available.  The 
manufacturing shop, operating 24 hours a day, consists of 
6 machines of unit capacity each.  To account for real time 
variations in production, the processing time on each 
machine is represented as arbitrarily selected random 
distributions.  Inter-machine part routing times are ignored. 

4.1 Implementation Infrastructure 

The enterprise-level SD model, as shown in Figure 3 is 
modeled using PowerSim®.  The time units of simulation 
are in weeks.  The time step of integration is chosen to be 
one day, which is small enough to capture the time frame 
of interest in the enterprise-level planner.  The shop level 
DES model is built using Arena®.  At each time step of the 
SD model, the production order release quantity and sales 
quantity are to be sent to the DES model and the current 
values of WIP, inventory and cycle time are to be obtained 
from the DES model. 
 The interfacing between the SD (PowerSim®) and 
DES (Arena®) models has been enabled using High Level 
Architecture’s (HLA) RunTime Infrastructure (RTI).  
Distributed Manufacturing Simulation (DMS) adapter 
developed by NIST has been employed to interface the 
simulation models with the HLA/RTI (McLean and 
Riddick, 2000).  Previous work in using HLA/RTI to 
integrate multiple DES models has been successfully 
carried out by Venkateswaran and Son (2004b).  To the 
best of our knowledge, this is the first time to successfully 
interface SD and DES models.   
 The sequence of interaction between the SD and DES 
models is illustrated in Figure 4.  The DES model 
computes and sends the WIP, Inventory and average 
Manufacturing_Cycle_Time to the SD model (Figure 3).  
Upon receiving the data, the SD model integrates a time 
step and the rate of change of the variables 

Production_Release_Rate and Sales_Rate (Figure 3) is 
sent to the DES model.  The product production release 
quantity received by the DES model is converted into 
component parts production quantities and released to the 
shop.  The DES model is then simulated for a time period 
of 1 day, after which the feedback it sent to SD model.  
The exchange of data between the models is achieved by 
transmitting XML-based messages via the HLA/RTI. 
 

 
Figure 3: System dynamics model of the enterprise 
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Figure 4: Sequence of interaction between the SD and DES 
models via HLA/RTI platform 

4.2 Selection of Decision Variables 

The enterprise-level decision maker formulates and solves 
the non-linear program for a single product as specified by 
Equations (1)-(12) using LINGO®.  The demand for 
product is estimated to be 100 units/ week.  The cycle time 
is estimated to be 1.8 hours based on preliminary runs of 
the DES model of the shop.  Upon solving the optimization 
program, the optimal values of control parameters α and β 
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were found to be 1.  These values of α and β are used in the 
SD model.   
 Since only a single product is handled by the shop, the 
queue rule First-In-First-Out was found to be the optimal 
control policy for all the machines.   

4.3 Results 

An integrated hybrid simulation model of the enterprise 
consisting of SD and DES models has been analyzed.  
Monitoring of the performance and the selection of new 
optimal control parameters at the enterprise and shop levels 
by the corresponding decision makers is on going work.  In 
this paper, the interaction between the SD and DES models 
and the hybrid simulation infrastructure is validated. 
 The behavior of the hybrid simulation system in 
response to different demand trends has been analyzed.  
Under constant demand of 100 units/week, it is found that 

the simulation models reach steady state at week 8, as 
shown in Figure 5.  Under steady state, minor deviations of 
less than 5% from the Customer_Order_Rate are observed 
in the Production_Release_Rate and Production_Rate.  
This is attributed to the process time variations within the 
shop, modeled by DES. 
 The stability of the system is studied under different 
demand patterns.  A step increase of 10% in demand 
applied at week 18, resulted in the 
Production_Release_Rate to reach a maximum of 24% and 
the Production_Rate to reach a maximum of 18% (Figure 
6).  A rectangular blip in demand applied between weeks 
18 to 23 resulted in the Production_Release_Rate to reach 
a maximum of 24% and minimum of -1% and the 
Production_Rate to reach a maximum of 18% and 
minimum of -8% (Figure 7).

 

 

 

NOTE 
 

The Customer_Order_Rate, 
Production_Release_Rate, 

Desired_WIP and 
Desired_Inventory are obtained 

from SD model 
 

The Production_Rate, 
Inventory and WIP are obtained 

from the DES model. 
  

Figure 5: Behavior of system in response to constant demand 

  
Figure 6: Behavior of system in response to step increase in demand 
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Figure 7: Behavior of system in response to rectangular blip in demand 

 
The above observations (Figures 5-7) indicate that  

 
• The DES model behaves appropriately in 

response to the decisions taken by the higher level 
SD model. 

• The SD model accurately accounts for the 
behavior of the lower level model.  This is evident 
from the slight perturbations in the 
production_release_rate which is influenced 
indirectly by the production_rate from the DES 
model. 

• The hybrid simulation framework provides a 
seamless integration between SD and DES 
models.  Hence, this framework can be used to 
analyze the impact of higher level decision on the 
lower level and vice versa.  Also, simultaneous 
study of local and global behavior of system is 
enabled. 

5 CONCLUSION AND FUTURE RESEARCH 

A novel approach in solving the hierarchical production 
planning problem has been presented.  The manufacturing 
enterprise is represented by an enterprise-level planning 
model (decision maker + SD model) and a shop-level 
scheduling model (decision maker + DES model).  The 
enterprise-level decision maker selects the optimal set of 
control parameters, viz. weightage for WIP and weightage 
for inventory.  These control parameters are used by the 
SD model.  The production order release quantity of 
product and the period customer demand, calculated by the 
SD model is sent to the shop-level DES model, and the 
current WIP, current inventory and average cycle time is 
received as feedback from the DES model.  A shop-level 
decision maker is employed to determine the queue rules 
or control policies to govern the flow of parts within the 
shop.  Feedback control loops are employed at the 
enterprise-level and the shop-level to monitor system 
performance and update the control parameters. 

 First stage of experiments have been conducted using 
a single facility single product manufacturing enterprise.  
The interaction between the different modules of the 
hybrid simulation based architecture have been described.  
The SD and DES models have been integrated using 
HLA/RTI and DMS adapter.  To the best of our 
knowledge, this work is the first to successfully interface 
SD and DES models.  The validity of the hybrid simulation 
approach has been analyzed (Figures 5-7).   
   Work is currently begin carried out to enhance and 
refine the interactions between the modules.  Specifically, 
the selection of appropriate measure of performance for 
use in the feedback control loops; interface of the decision 
makers with the corresponding models; extensions to 
include multiple products.  The performance of the 
proposed hybrid simulation model is to be benchmarked 
against existing HPP systems. 
 
PRODUCT DISCLAIMER 
Certain commercial software products are identified in this 
paper.  This use does not imply approval or endorsement 
by NIST, nor does it imply that these products are 
necessarily the best available for the purpose. 
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