
J Intell Manuf (2006) 17:681–688
DOI 10.1007/s10845-006-0037-x

Manufacturing interoperability

S. R. Ray · A. T. Jones

Received February 2005: /Accepted: January 2006
© Springer Science+Business Media, LLC 2006

Abstract As manufacturing and commerce become
ever more global, companies are dependent increasingly
upon the efficient and effective sharing of information
with their partners, wherever they may be. Leading man-
ufacturers perform this sharing with computers, which
must therefore have the required software to encode and
decode the associated electronic transmissions. Because
no single company can dictate that all its partners use the
same software, standards for how the information is rep-
resented become critical for error-free transmission and
translation. The terms interoperability and integration
are frequently used to refer to this error-free transmis-
sion and translation. This paper summarizes two pro-
jects underway at the National Institute of Standards
and Technology in the areas of interoperability testing
and integration automation. These projects lay the foun-
dation for at tomorrow’s standards, which we believe will
rely heavily upon the use of formal logic representations,
commonly called ontologies.

Keywords Interoperability · Standards · Ontology ·
Formal logic

Introduction

Supply chains are the dominant organizational structure
in manufacturing today. That structure can be viewed as
a global network of suppliers, manufacturers, transport-
ers, retailers, and customers who must share technical

S. R. Ray (B) · A. T. Jones
National Institute of Standards and Technology,
100 Bureau Drive, MS 8260
Gaithersburg, MD 20899-8260, USA
e-mail: ray@nist.gov

and business information seamlessly. This information,
previously shared in a variety of ways including paper
and telephone conversations, must now be passed elec-
tronically and correctly among all the partners in the
supply chain. The term “interoperability” is commonly
used for this capability.

Disparate corporate and national cultures, a plethora
of international and regional standards, and numerous
commercial products make this task of sharing informa-
tion all the more difficult. These facts further underscore
the need for a clear and unambiguous, standardsbased,
interoperability infrastructure. Such an infrastructure
does not exist. The resultant penalty paid by industry has
been quantified in a number of studies including a 1999
study commissioned by NIST (1999). This study reported
that the U.S. automotive sector alone expends one billion
dollars per year to resolve interoperability problems.

There are three principal approaches used to reduce
these exorbitant costs. In the first approach, a point-
to-point customized solution is developed for each pair
of partners. This approach is expensive in the long run
because each pair of software systems needs a dedicated
solution. When there are, for example, ten partners in
the chain, this would require up to 90(10 × 9) inter-
faces. Moreover, should any system provider release a
software upgrade, many of the translators would likely
need modification.

In the second approach each original equipment man-
ufacture (OEM) mandates that all partners conform
to a particular, usually proprietary solution. This has
been the practice, for example, in the automotive sector.
While this is a cost-effective solution for the OEM, it
causes nightmares for the partners because they are
forced to purchase and maintain multiple, redundant
systems if they want to do business with several major

682 J Intell Manuf (2006) 17:681–688

OEMs. The current trend of global outsourcing has made
this approach practically impossible to implement.

In the third approach neutral, open, published stan-
dards form the foundation of the infrastructure. By
adopting open standards the combinatorial problems
associated with the first approach go away—it is now
of order N rather than order N2. The nightmares asso-
ciated with the second approach because partners can
buy any software they want, provided the vendors imple-
ment the standards. Furthermore, standards also offer
stability in the representation of information, an essen-
tial property for long-term data retention. Increasingly,
this retention issue is recognized as a costly and critical
problem for industries with long product life cycles, such
as aerospace.

Early efforts to develop interoperability standards
focused on system architectures. One such effort cul-
minated in the Open Systems Architecture for CIM
(CIMOSA) (AMICE, 1993).

Later efforts focused on content standards such as
ISO 10303 (ISO, 1994), a set of standards for the
exchange of product model data. The most widely
adopted component, ISO 10303–203 (ISO, 1994b), is
already conservatively estimated to be saving the trans-
portationequipment- manufacturing community over
$150 million per year in mitigation and avoidance costs.
This figure is expected to rise to $700 million by 2010
(NIST, 2002).

But the problem is far from solved. Interoperability
standards, like communication standards, come in layers
(see Fig. 1). All the layers in this interoperability stack
must be implemented correctly for interoperability to
be achieved. The greatest challenges remain at the top
of this stack.

Is xml the answer?

XML, (the eXtensible Markup Language (http://www.
w3.org/XML/), or one of its relatives, appears in almost
every layer in this stack. In fact, many standards groups
have adopted XML, which has resulted in a tremen-
dously positive impact on the interoperability software
systems. XML is a markup language that can be used to
tag collections of data with labels.

As part of a standardization activity, communities
can agree on the names for these labels. An interop-
erability problem remains, though, if different people
have differing understandings of the meaning of these
names. Stated more succinctly, XML standardizes syn-
tax; it was never designed to even capture, much less
standardize, semantics. This is not necessarily an obsta-
cle for a tightly knit community that operates within
a common context, such as the automotive sector or
the financial sector. Within a given sector, the meanings
associated with a tag are shared and well understood
by all. Serious problems can arise, however, in mov-
ing data from one sector to another, such as automo-
tive to financial. Without explicit, rigorous definitions
of the meaning of terms, misunderstandings are sure
to arise. Humans can resolve such misunderstandings;
computers cannot. Consequently, the process of achiev-
ing interoperability remains a highly manual process,
with computers executing only the most basic steps in
this process.

Dealing with this limitation of computers is the focus
of two projects at the National Institute of Standards
and technology: the Automated Methods for Integrat-
ing Systems (AMIS) project, and the B2B (Business-to-
business) Interoperability Testbed.

Fig. 1 Interoperability stack

Message Syntax
XML DTD, XML Schema, XDR, SOX

Message Format
OAG, BizTalk, SOAP, OASIS, ebXML, RosettaNet

Security
Digital Certs,

XML Sigs

Naming
URI

Business Information Model
OAG, RosettaNet, cXML, CBL, ebXML, HL7, XML/EDI

Business
Process

UML , BPM L, ebX ML

Business
Rules

BPML, Rul eM L

Horizontal Content
OAG, RosettaNet, cXML, CBL, OMG, eCo, boleroXML,

eBIS-XML, STEPml, HL7, PDX, ebXML, XML/EDI

Vertical Content
Automotive, Healthcare, Aerospace, Electronics

Trading
Partner
Profile

J Intell Manuf (2006) 17:681–688 683

Fig. 2 Generic
interoperability problem

Automated methods for integrating systems

From business perspective, an interoperability problem
is typically stated as a requirement to produce an
improved business result from a set of systems (see
Fig. 2) implemented in software tools. Each system that
contributes information or functionality to the improved
business result exposes interfaces. These interfaces are
the communication endpoints by which the systems can
be considered to be components that will interact with
each other and thereby form a new, integrated
system capable of performing new functions. Functions
accomplished by such interactions are called joint
actions.

As shown in Fig. 2, tool A and tool B each expose
interfaces for communication in a number of possible
forms. A systems engineer reasons from the desired
business result to determine the target feature or behav-
ior the new system must yield—the joint action the
two systems are to perform. From the required system
behavior and the exposed interfaces, the system engi-
neer determines the required communications between
tool A and tool B. To enable these communications,
the engineer generates the specifications to translate
the relevant messages between the two tools using the
interfaces they support and forms that are meaning-
ful. From these specifications, a software developer can
generate integrating code (translators) to produce the
necessary translations and obtain the new system behav-
ior. To be successful, the systems engineer and the soft-
ware developer must understand the meaning of the
information contained in those specifications and
interfaces.

The research question is: can we automate capturing
meaning and building translators directly from the inter-
face specifications? To answer this question, the AMIS
project has embarked on three main areas of work: a
joint action model, semantic mappers, and connector
transformations.

Joint action model formulation

The JAM (Joint Action Model) is a requirements model
for the intended joint action. The JAM is abstracted
from the relevant concepts in the envisioned business
process. It specifies the required actions of interactions
between the component systems, their conceptual inter-
actions with roles for each, and a shared model of the
business entities pertinent to those interactions. In mod-
eling joint action and communication, two distinct lev-
els of abstraction are significant: the conceptual model
and the engineering model. These views are important
because interoperability solutions are conceived in busi-
ness/conceptual terms and implemented in engineering
terms.

The conceptual model describes concepts, rules, and
relationships of the business. The conceptual model of
the joint action sees the interacting agents as playing
specific roles in the business process, such as buyer and
seller. The model characterizes the interaction as flows
of information and service requests. At this level, the
model is defined using three terms:

• business actions: functions and behaviors that imple-
ment the roles of each agent

• business entities: objects that are discussed in the
communications and used or modified by the joint
action

• transactions: notifications, requests for information,
requests for functions or services, and responses

An engineering model of an existing system includes
models of the interfaces supporting possible interactions
with other systems or agents. The engineering model
of the joint action sees interacting agents as software
components communicating by one or more mech-
anisms - file transfer, database access, operation
invocation, or queued messaging. For each unit of com-
munication there is a mechanism, and each agent plays

684 J Intell Manuf (2006) 17:681–688

a specific role with respect to that mechanism. And
for each unit of communication, there is a message,
which is the set of information objects transferred by
that communication unit. There is a further level of
detail associated with engineering models, which defines
detailed communications protocols and binary repre-
sentations for each data item. Engineering models also
contain terms for message types, operations, informa-
tion objects, and so on. In simple terms, they are the
interfaces and communications provided by the
software applications.

Semantic mapping

Although conceptual views and engineering views serve
different roles, they are not used in isolation. Inter-
model relationships between elements from these views
link the relationships between an activity or entity
expressed in business terms and an engineering means
of implementing that activity or representing the entity.
We refer to an engineering model linked to concepts
in the conceptual model as a local interaction model
(LIM).

After the LIMs and the JAM have been produced,
the relevant notions in the LIMs must be semantically
mapped to their corresponding notions in the JAM (See
Fig. 3). The AMIS approach is to build tools once to
automate the creation of these maps. This is the difficult
research problem—automating the creation, derivation,
or extraction of semantic relationships between models.
We believe that using formal models, such as ontologies,
for the LIMs and JAM is one approach to solving this
problem. We discuss this more in Section “Combining
AMIS, testing, and ontologies”.

Given the links between the JAM and the LIMs, the
engineering model for the joint action can be built. This
model uses the interfaces identified in the engineering
models of the participating tools to achieve the goal
described by the JAM.

Fig. 3 Conceptual view of semantic mapping

Fig. 4 Role of connector transform

Connector transformation

Given a sufficiently detailed semantic mapping, it is the-
oretically possible to build a tool that generates trans-
lations corresponding to the mappings. This is shown
in Fig. 4. To achieve arbitrary transformations of syn-
tax, structure and interactions to the lowest levels of
abstraction requires that all the information be formal-
ized. Generation of message converters is then reduced
to a search problem: find the composition of available
components that can transform the input available into
the desired output. There are two significantly differ-
ent engineering problems here: conversions of messages
and message elements, and dealing with differences in
the actual communications protocols.

B2B interoperability testbed

The B2B Interoperability Testbed complements the
tools and methods emerging from the AMIS project.
It provides on-demand interoperability demonstration
and testing of B2B information exchange for three stake-
holders: software vendors, manufacturing companies,
and standards organizations.

Motivation

A number of standards organizations are busy creating
these B2B standards and vendors are busy using the lat-
est technologies to implement these standards in their
products. Before manufacturers buy these products, they
want to be sure that (1) the standards are implemented
correctly and (2) they can use the products to do busi-
ness with their partners around the world. Before ven-
dors can sell their products to manufacturers and their
partners, they must show that these products conform
to existing standards. This requires substantial demon-
strations that involve both users and vendors. Users pro-
vide the manufacturing scenarios and test data; vendors

J Intell Manuf (2006) 17:681–688 685

modify their products to implement the required stan-
dards, the given scenarios, and the chosen data. Such
demonstrations are typically very costly and time con-
suming because the software infrastructure must be
recreated and procedural rules reinvented for each new
demonstration. A number of users and vendors sugges-
ted that NIST create a persistent environment, tools, and
test suites for demonstration and testing. In response,
NIST spawned the B2B Interoperability Testbed.

Approach

The testing approach, and the types of tools being devel-
oped to implement that approach, are shown in Fig. 5.
Currently, the OEM and the supplier represent virtual
trading partners from the automotive industry, exchang-
ing messages using different vendor products. NIST and
it partners including vendors, users, and researchers from
the U.S., Europe and Korea, are developing the tools.
These tools include a reflector, process checkers, content
checkers, syntax checkers, and grammar checkers.

The Reflector supports both disconnected and con-
nected testing scenarios while allowing for the transac-
tions to be routed to the specified end points, reflected to
the originator, and stored in a permanent transaction log.

• The Process Checker performs conformance check-
ing for choreographed transactions between business
partners. It currently supports ebXML BPSS and
CPA standards but it is being expanded to support
Web services. It uses a Web-based, graphical, user
interface to monitor the business interactions in real
time. It takes the ebXML BPSS and CPA instances as
input and produce a graphical presentation of the col-
laboration as an output. It verifies that each message
has the right sender and receiver and that messages
come in the right order. It also verifies that any time
constraint has not been violated. Should a violation
occur, the tool raises a flag indicating that the collab-
oration has failed.

• The Content Checking tool enables specification and
execution of content constraints. It allows standard
developers, users, and implementers to precisely spec-
ify, extend, and test for conformance with, semantics
of a common data dictionary (lexicon). The content
tool allows a user to create a profile and specify test
cases using a Web-based interface. The test cases
are then stored in a customer’s repository. Users
can select and execute test cases associated with a
selected customer by posting an XML document.

• The Syntax Checker is essentially an XML parser that
checks the structure of a message against a standard
such as the W3C XML Schema. It also verifies that

all necessary elements are present and in the right
order as specified in the XML Schema instance for
that business document.

• The Grammar Checker may be thought of as a sup-
erset of the Syntax Checker responsible for enforc-
ing business document structural rules that (1) are
defined in some application domain and business
context, or (2) can be expressed through grammat-
ical rules of composition and structure generation,
but are not ‘general’ and cannot be easily abstracted
from the application context. These rules are not eas-
ily expressible in the form of XML Schema instances
and require additional expressive capability.

Combining AMIS, testing, and ontologies

We have conducted two experiments that combine on-
tologies, the philosophy of AMIS, and the B2B testbed.
The first focuses on the process specification language
and the second focuses on the Web ontology language.

An integration experiment based on PSL

The Process Specification Language (PSL) is a neutral,
standard language for defining a process (Gruninger
& Menzel, 2003). As an interchange language, PSL is
unique due to the formal semantic definitions (the ontol-
ogy) that underlie the language. PSL’s underlying gram-
mar used for PSL is based roughly on the grammar of
KIF (Knowledge Interchange Format) (http://logic.stan-
ford.edu/kif/kif.html). Since KIF is a formal language
based on first-order logic, it provides the level of rigor
necessary to define concepts in the ontology unambig-
uously. Like KIF, PSL uses BNF (Backus–Naur form)
(http://catb.org/∼esr/jargon/html/B/BNF.html), to pro-
vide a rigorous and precise recursive definition of the
class of grammatically correct expressions of the PSL
language. Because of these explicit and unambiguous
definitions, information exchange can be achieved,
sometimes automatically, without relying on hidden
assumptions or subjective mappings.

NIST researchers conducted an integration experi-
ment using PSL as an Interlingua between two software
applications: process planning and scheduling. Both of
these applications had well-defined interfaces, but nei-
ther had an explicitly axiomatized ontology associated
with those interfaces. They each used a set of terms, but
they didn’t provide any axioms to constrain the interpre-
tation of their terms. NIST used an in-house tool to gen-
erate semantic mappings, which effectively axiomatizes
the terms in KIF, using PSL as the mediating ontology.
These mappings form the basis for the integration. More

686 J Intell Manuf (2006) 17:681–688

Fig. 5 Schematic of testbed approach

details about this experiment can be found in (Schlenoff,
Ciocoiu, Libes, & Gruninger, 1999).

An integration experiment based on OWL

The Web Ontology Language (OWL) is used by appli-
cations that need to process the content of information
instead of just presenting information to humans. OWL
facilitates greater machine interpretability of Web con-
tent by providing additional vocabulary along with a
formal semantics. OWL has three increasingly-expres-
sive sublanguages: OWL Lite, OWL DL, and OWL Full
(http://www.w3.org/2004/OWL/). OWL builds on RDF
and RDF Schema (http://www.w3.org/RDF/) and adds
more vocabulary for describing properties and classes.
Thos properties include relations between classes, car-
dinality, equality, richer typing of properties, character-
istics of properties, and enumerated classes. OWL uses
both URIs for naming and the description framework
for the Web provided by RDF to add four capabilities to
ontologies: the ability to be distributed across many sys-
tems, scalability to Web needs, compatibility with Web
standards for accessibility and internationalization, and
openness and extensibility.

NIST researchers conducted a supply-chain integra-
tion experiment that used OWL as a basis for creating
ontologies that implement the LIM and JAM concepts
described above. Supply chain scenario involved two
industrial consortia, STAR (http://www.starstandard.
org) and AIAG (http://www.aiag.org/), who base their
interface models on the same ‘horizontal’ document
standard—the OAGIS Business Object Documents
(BODs) (http://www.openapplications.org). These BODs
are syntactic formalisms based XML specifications.

Each consortium independently used the inventory-
related BODs to define their own document content
models and usage rules. These models and rules were
encoded interfaces exposed by the software applications
that exchange inventory visibility data. These interfaces
are the engineering models in the AMIS architecture.
Because these models are based on XML schemas, the
integration process, which is shown in Fig. 1, is largely a
manual process. To automate this process, NIST
researchers used the 12-step approach shown in Fig. 6.
We now briefly describe this approach. More details can
be found in (Ivezic, Anicic, Jones, & Marjanovic, 2005).

1. Apply automated transformation from the OAG
XML schema representation into an OAG OWL-
based ontology. The outcome of this step is the gen-
eralized ontology of OAG that contains only concept
descriptions (not definitions).

2. Calculate concept subsumption and check satisfiabil-
ity for the new OAG ontology. The outcome is a
new subsumption hierarchy of the OAG generalized
ontology and an indication from the reasoner that
the new ontology is satisfiable (i.e., not contradic-
tory).

3. Create regular terminology that requires human
designer input. The original STAR or AIAG schema
include free text descriptions of the additional docu-
ment constraints. In this step, for each of the schema,
these constraints are used to specify concept defini-
tions (based on the original concept descriptions).
The outcome of this step is a regular STAR or AIAG
terminology.

4. Similar to Step 2, we check satisfiability of each
individual ontology. The outcome of this step is an

J Intell Manuf (2006) 17:681–688 687

Fig. 6 Interoperability
approach using OWL

indication from the reasoner that the individual ontol-
ogy is satisfiable. In addition, we may choose to check
whether the merged ontologies are satisfiable. This
is a necessary condition for an individual translation
from one to the other ontology. (This step may be
omitted here if it is not desired to have this early
test of necessary conditions.) In this additional case,
the outcome is also an indication from the reasoner
whether the merged ontology is satisfiable.

5. Apply automated transformation from STAR XML
data to STAR OWL data. This transformation is
dependent on the transformation defined in Step 1.
The outcome of this step is transformed STAR OWL
data that corresponds to the initial XML data.

6. Validation of STAR OWL data includes ‘closing the
world’ for the purposes of checking the consistency
of the STAR OWL data. Reasoning about individ-
uals in OWL-DL assumes ‘Open World’. We need
to ‘close the world’ and then to check consistency.
The outcome of this step, if successful, is an indica-
tion from the reasoner that the STAR OWL data are
consistent with respect to the STAR ontology.

7. In order to translate from STAR to AIAG OWL
data, we need to create a merged ontology from the
two individual ones and calculate a new concept sub-
sumption hierarchy. The outcome of this step is the
new merged ontology and the new concept hierar-
chy.

8. Check satisfiability of the merged ontology and con-
sistency of the STAR data with the new ontology.
The outcome of this step is an indication from the

reasoner that the merged ontology is satisfiable and,
similarly, that all STAR OWL data are consistent
with the merged ontology.

9. Compute classification of the STAR OWL data in
the AIAG ontology. The outcome of this step is
assignment of the STAR OWL data to the specific
AIAG class(es). At this point we have a result that
the specific STAR XML data (instance) may be suc-
cessfully translated into target AIAG XML data.
This, however, doesn’t mean that all data may be
successfully translated.

10. Apply serialization of OWL data into AIAG OWL
data or transformation into AIAG XML data.

11. Apply validation of new AIAG OWL data. The out-
come of this step, if successful, is an indication from
the reasoner that the AIAG OWL data are consis-
tent with respect to the AIAG ontology.

Summary

In this paper, we discussed the emerging criticality of
interoperability in the arena global supply chains. We
argued that the current syntax-based approaches cannot
keep pace with industrial need in the long term. We pro-
posed a new semantics-based approach that promises to
reduce the costs and difficulties involved in achieving
interoperability dramatically. We then briefly described
efforts at the National Institute of Standards and Tech-
nology that will provide the foundation for realizing that
approach.

688 J Intell Manuf (2006) 17:681–688

Product disclaimer

Certain commercial software products are identified in
this paper. This use does not imply approval or endorse-
ment by NIST, nor does it imply that these products are
necessarily the best available for the purpose.

References

AMICE (1993). CIMOSA: Ope3n Systems Architecture for CIM,
2nd revised and extended version. Berlin: Springer Verlag.

Gruninger, M., & Menzel, C. (2003). Process specification lan-
guage: Principles and applications. AI Magazine, 24, 63–74.

ISO (1994). ISO 10303-1:1994, Industrial automation systems and
integration—Product data representation and exchange—
Part 1: Overview. International Organization for Standard-
ization, Geneva, Switzerland.

ISO (1994b). ISO 10303-1:1994, Industrial automation sys-
tems and integration—Product data representation and

exchange—Part 203: Application Protocol: Configuration
controlled design.

Ivezic, N., Anicic, N., Jones, A., & Marjanovic, Z. (2005). Toward
Semantics-based Supply Chain Integration. Proceedings of
the IFIP 5.7 Advances in Production Management Confer-
ence, Rockville, Maryland, USA.

NIST (1999). Interoperability Cost Analysis of the U.S. Auto-
motive Supply Chain, (Planning Report #99-1), available at
http://www.nist.gov/director/prog-ofc/report99-1.pdf.

NIST (2002). Economic Impact Assessment of the International
Standard for the Exchange of Product Model Data (STEP)
in Transportation Equipment Industries, (Planning Report
#02- 5), 2002, available at http://www.nist.gov/director/prog-
ofc/report02-5.pdf.

Schlenoff, C., Ciocoiu, M., Libes, D., & Gruninger, M. (1999).
Process Specification Language: Results of the First Pilot
Implementation. Proceedings of the International Mechani-
cal Engineering Congress and Exposition, Nashville, Tennes-
see, USA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

