
1. Abstract

Automated methods for integrating systems (AMIS) have
been presented as a new approach to solving the dilemmas
of multiple and uncoordinated standards, ontologies, leg-
acy systems and the ever-growing cost of traditional inte-
gration. This paper explores the challenges of automated
methods. By identifying the challenges, we can focus our
effort on the areas that are most promising as well as those
most likely to fail. We may also contribute to clearing
away the hype that distracts, misleads, and ultimately
wastes money and labor that is better spent elsewhere.

Keywords: automated integration; ontology integration
challenges; legacy integration.

2. Introduction

Integration is traditionally a manual effort. People take
existing software and modify or augment it so that it works
with other software. In reality, this kind of integration is a
very expensive task. By its very nature, manual integration
is slow, tedious and error-prone. Manual integration is
sometimes non-repeatable as well as hard to document and
trace. Such integration can benefit from special purpose
tools but they in turn are hard to write and not easily reus-
able. And once used, they are put aside and suffer “bit rot,”
meaning that it is unlikely they will work years later
should the need arise again.

Manual integration is so expensive that alternatives are
frequently chosen. For example, a popular alternative to
traditional integration is to throw the existing software
away and start over. Starting over has obvious advantages
and disadvantages but is outside the scope of this paper
[38].

The opposite extreme to manual integration is self-integra-
tion. Self-integration would be entirely automated, thereby
reducing labor costs. Ideally, self-integration could even
achieve integration better than a human by performing
computational tasks that are too onerous for any person.
Clearly, self-integration is a valuable goal. However, there
are several significant unsolved problems that currently
prevent self-integration and it is not clear if they are likely

to ever become solvable or if they can become solvable at
a lower cost than their alternatives.

Although the idea of self-integration as defined in this
paper may remain impossibly out of reach, by trying to
reach it, we may learn valuable lessons along the way. A
significant subgoal is the ability to improve current inte-
gration techniques and to achieve partial automation,
applying automation wherever appropriate. That is the
motivation behind this paper.

Certain companies, standards, or software systems are
mentioned in this paper. Such identification does not imply
recommendation or endorsement by the National Institute
of Standards and Technologies nor is it intended to imply
that the materials or equipment identified are necessarily
the best available for the purpose.

3. Key Elements to Automated Methods for
Integration

Easy integration is stymied by several major issues.

3.1 Standards

Information technology standards are a key factor in auto-
mated integration. We assume the reader is familiar with
the merits of standards. For examples, software that com-
plies with a standard gets the benefit of commitments such
as application program interfaces (APIs), run-time behav-
ior, etc. Thus, components that adhere to common stan-
dards (CORBA [23], SOAP [1], etc.) avoid a large class of
problems. For a variety of reasons, however, standards do
not solve all problems. Specifically:

• Standards are not perfect; and often have multiple ver-
sions.

• Standards often specifically avoid addressing certain
issues.

• There is sometimes a choice of conflicting standards.
• There is always a new standard waiting in the wings.
• Technology is faster than any standards-setting body.
• Standards sometimes inhibit innovation.
• Companies sometimes see standards as preventing a

competitive advantage.

THE CHALLENGES OF AUTOMATED METHODS
FOR INTEGRATING SYSTEMS

Don Libes, David Flater, Evan Wallace, Micky Steves, Allison Barnard Feeney, and Ed Barkmeyer
National Institute of Standards and Technology

Gaithersburg, Maryland 20899 USA



Standards are a mixed blessing. For rapidly advancing
technology, standards can only reflect a snapshot, often
one that is blurry in areas. Indeed, standards come about
because there are differences that cannot be resolved in
any other way. So people work together to create a stan-
dard; the standard, if timely, serves its purpose for a short
time; then as the standard fails to address new extensions,
work starts all over on a new standard.

An example of the relentless and frequent superseding in
standards can be seen in the progression of SGML (Stan-
dard Generalized Markup Language) to HTML (Hyper-
Text Markup Language) to XML (Extensible Markup
Language). In a relatively short time span, each has built
on the previous, representing a recognition of inadequacy
and/or incompleteness in prior standards. Along the way,
there have been numerous branches resulting in detours
and deadends, many that became real standards and even
more that did not. Both types becoming obsolete, in most
cases before the paper they were printed on was dry.

There are many other reasons that standards have not
solved the integration problem and for some cases, stan-
dards simply cause more problems. Suffice to say that
standards are no silver bullet. Indeed, inadequate deploy-
ment of truly useful standards is one of the driving forces
for automated integration.

3.2 Ontologies

Ontologies commit to a particular conceptual model and in
a sense, effectively behave as a standard. Because ontolo-
gies are effectively one type of standard, ontologies share
some of the same problems as standards noted above.
Ontologies have additional problems:

• Conflicting ontologies, well, conflict. Conceptualiza-
tions can be incompatible.

• Ontological coverage is incomplete. There is no uni-
versal ontology; rather there are islands of ontologies.

• New ontologies are being developed incessantly. In
existing ontologies, there is “conceptual drift” over
time.

• Few true ontology experts exist and even such experts
disagree over the same ontology.

• There is a lack of maturity of ontologies and ontologi-
cal tools.

• Different ontologic systems capture different interests
and have different inferencing biases: causality, time,
actions, negation, etc.

• Translations between ontologies can be very hard,
potentially requiring expertise in two entirely differ-
ent ontological systems.

This last bullet weighs significantly on the future of inte-
gration automation. Specifically, what is the justification
for the belief that ontological translation can be auto-

mated? There is a handful of such research projects [39]
[26] and positive results are limited to very small or toy
examples.

For example, consider the concept of color. Color can be
represented as red, green, and blue components. Or cyan,
magenta, and yellow. Or hue, saturation, and brightness.
An automated translator might assume “color” equals
“color” in two different ontological systems. The words
match, the semantics match (to a degree), and even the
number of components is the same. Of course, the seman-
tics of the components are not precisely the same and any
attempt to automatically match them would be wrong for
some (but not all) applications.

Indeed, maps between color models are not necessarily
complete and the field of “gamut mismatch” addresses this
area but choosing the algorithm or solution still requires
manual consideration of the context [12]. The problem is
that even the semantics of color as a whole are not equiva-
lent from one model to another. For example, what a
human considers as color is just a subset of what some ani-
mals see or hardware sensors see.

Contrariwise, a semantic analysis of two concepts that
truly are in agreement can (and generally will) still fail
because some aspect of the representations are different.
For example, time periods are represented as from/to in
CIDX (Chemical Industry Data Exchange) while in the
same OAGIS (Open Applications Group Integration Spec-
ification) concept is represented as from/duration. It is
unlikely that such conceptual mismatches could be auto-
matically discovered and mapped [8][25].

By comparison, forced single standards may have a better
financial return. For example, during the 2002 merger of
Comcast and AT&T Broadband, the newly merged com-
pany faced integration of multiple billing systems but
opted for a one-time conversion despite the significant
financial expense due to contractual obligations [15].

3.3 Legacy Systems

We are interested in integrating both modern systems as
well as legacy systems. It is impossible to rigorously
define the difference between modern and legacy systems
but some generalizations are possible. Modern systems
have models, use modern standards, and have working
development environments. Although integration of mod-
ern systems present certain challenges, integration of leg-
acy systems provide additional difficulties:

• Semantics and models are typically lacking and unre-
coverable from legacy systems.

• Source code or original development environments
may be unavailable for integration.



• Legacy systems by their very nature are poorly sup-
ported if at all.

• Modern systems may be altered. In contrast, legacy
systems must generally be wrapped.

By their very nature, legacy systems have stepped out of
the mainstream of development. Development personnel
may have long since disappeared with the knowledge that
was only in their mental models. Integration projects
involving legacy systems may require reverse engineering
efforts at large expense.

In efforts to construct models for legacy systems, it is not
surprising to find that they are self-contradictory, in part
because they were built without models and thus, in
essence, incorporate a variety of conflicting models with
conflicting conceptualizations. Some of these conceptual-
izations may be due to conflicting system requirements,
often due to incompatibilities introduced over the life of a
system.

For example, the Expect package [17] originally had its
own I/O subsystem because the underlying I/O subsystem
did not support the null character, a restriction in the C
library itself. It was thus impossible to carry out certain
operations that required the services of both subsystems,
such as having Expect pattern-match across a regular file
[18]. This was fixed at great expense much later by back-
porting Expect’s I/O subsystem but could have been
avoided in the first place by having a single model to
expose and unify the multiple sets of restrictions.

4. State of the Art of Automated Methods

Automated methods have been proposed as possible solu-
tions to solving the dilemmas of multiple and uncoordi-
nated standards, ontologies, legacy systems, and the ever-
growing cost of traditional manual integration. Automated
methods would save any effort that has already been
expended while allowing the use of newer software and
standards. Automated methods would reduce labor costs.
Ideally, automated methods could even achieve integration
better than a human by performing computational tasks
that are too onerous for any person.

Automated methods are intended to reduce the traditional
costs of manual integration. If sufficiently automated –
essentially self-automated – they would allow systems to
seek out new opportunities on their own.

4.1 Universal Adapters

Various projects have proposed the idea of universal adapt-
ers [14] [21]. At the present time, such adapters are librar-
ies of interfaces in integration development testbeds and

thus function as partially pre-integrated middleware. Such
universal adapters are far from fully automatic but gener-
ally have a clear delineation over what protocols and APIs
they do support. For legacy systems that use no standard
interfaces, universal adapters fall back to manual integra-
tion.

4.2 Model-Driven Architectures

Model-driven architecture (MDA) such as OMG’s MDA
promises technology-independent development [32],
thereby avoiding idiosyncrasies of implementation details
and instead allowing focus purely on the high-level con-
cerns. In theory, MDA tools can generate SOAP imple-
mentations, CORBA implementations, etc., whatever is
appropriate, all from the same models. This holds promise
for integration of future systems but it is unclear what
leverage this can bring to bear against legacy systems that
have no such unified or platform-independent model. And
legacy systems that do have models generally only had
those models referenced during design and not during
implementation so that there are mismatches to the true
model.

4.3 Universal Ontologies

Universal ontologies presume a framework of all ontologi-
cal knowledge or at least a scaffolding against which new
knowledge and other ontologies can be placed in perspec-
tive. Although there are several ongoing projects (SUMO
(Suggested Upper Merged Ontology), OpenCyc, etc.) that
offer themselves as such scaffolding, the effort in their
construction is vast and it is unclear whether it will be pos-
sible to automate maps between them or, for that matter, to
less complete ontologies. In reality, most software systems
are not based against any formally-constructed ontology
and will need human labor to construct manual maps.
Ontology mapping is an area that is far from mature.

Many people question whether it makes sense to have a
truly global ontology in the sense that its own complexity
will prevent it from being useful because there will be too
many relationships that must be dealt with unnecessarily.
A second issue is that there are valid reasons for having
different structures of knowledge. As an example, the ner-
vous system of a mosquito contains approximately 150
neurons with a limited amount of memory. Yet, simulating
the flight of a mosquito is a daunting task for any modern
computer despite having data storage and processing ele-
ments that are thousands of times more powerful than
those of a mosquito. Clearly, the processing structure of a
mosquito and indeed, most biological systems, is radically
different than what is produced by traditional knowledge
engineers for ontologic purposes such as deduction and
reasoning.



4.4 Integration Tools and Research

Below is an assortment of tools and research projects spe-
cifically aimed at integration automation. It is not meant to
be complete – indeed, it is a small fraction of the universe
of works – but merely to whet the appetite of the reader
and to fill in the discussion with some real examples. Fur-
ther discussion on related tools, techniques, and compari-
sons of them can be found elsewhere [24][28][35][36].

4.4.1 AMIS

The AMIS project [5] at the National Institute of Stan-
dards and Technology is studying such automated methods
for integration. AMIS hopes to derive implicit ontologies
from legacy systems which can then be used in the cre-
ation of expert systems that can generate process-specific
wrappers. These wrappers would then transform the phys-
ical message sequences on the basis of equivalent business
notions.

4.4.2 Contextia

Modulant’s Contextia [20] provides a semantic mediation
framework that is middleware for the interoperability of
information among disparate systems through explicit and
formal representation of incompatible, conflicting seman-
tics. The Contextia Interoperability Workbench maps
semantics to an Abstract Conceptual Model (ACM) to per-
form transformations at runtime. Contextia focuses on
PDM (Product Data Management), ERP (Enterprise
Resource Planning), SCM (Supply Chain Management),
CRM (Customer Relationship Management), and related
applications.

4.4.3 Contivo

Contivo [9] automates the design of data transformation
between applications through reuse and collaboration.
Contivo’s Analyst builds and applies transformation com-
mands between business objects. It is partly human-inter-
active, using visual maps, and partly self-learning. The
focus of Contivo is interface models and commercial
frameworks such as BEA, Tibco, and J2EE (Java 2 Plat-
form, Enterprise Edition) [1][37][34].

4.4.4 GKB

The GKB-Editor [20] (Generic Knowledge Base Editor)
from SRI International, is a tool for editing ontologies and
knowlege bases using a graphical user interface across var-
ied frame-representation systems. The GKB interface rep-
resents objects and data items as a graph, with the
relationships as edges.

4.4.5 MIST

The Carnot [39] project tackled the problem of logically
unifying physically distributed, enterprise-wide, heteroge-
neous information. Part of Carnot was the Model Integra-
tion Software Tool (MIST), which provides a graphical
user-interface to aid a user in the integration of different
databases via a unified enterprise ontology.

4.4.6 InfoSleuth

The InfoSleuth project [4], based on MCC’s Carnot tech-
nology, provides tools to find information in related and
unrelated networks. InfoSleuth uses agents to represent
users, ontologies, and information sources such as query
engines. InfoSleuth uses interaction templates for mapping
interactions.

4.4.7 Ontobroker

Ontobroker [26] is an outgrowth of work done at the Uni-
versity of Kalrsruhe. Ontobroker is an inferencing engine
and query system. The engine manipulates statements
using a subset of first-order logic. It is middleware
intended to integrate heterogeneous data sources (with
focus on e-commerce). Available is a limited number of
drivers to standard exchange formats (e.g., RDF (Resource
Description Framework)) and data sources (e.g., MS SQL
(Microsoft Structured Query Language), Sybase). A
related tool, OntoEdit, is a graphical “ontology neutral”
editing tool which does translation to/from DAML+OIL
[7], and RDFS [16] and call also read from several SQL-
based databases (e.g., MS SQL, Sybase).

4.4.8 Ontolingua

Ontolingua [13] is a set of tools for translating ontologies,
written at Stanford University. KIF [19] (Knowledge Inter-
change Format) provides an exchange language, portable
over a variety of representation systems. Translators from
KIF into various representation systems are available.

4.4.9 OntoMap

The Ontomap [27] project is an approach for ontology
translation that use human-guidance to aid the semi-auto-
mated process. Ontomap starts with an informal process
and then becomes successively more refined through a
series of formal verification steps such as consulting the
WordNet database. Ontomap is implemented using Jess,
the Java Expert System Shell and uses XML and NIST’s
PSL [22] as a ontology interchange format.

4.4.10 OntoMorph

Ontomorph [6] is a project/environment aimed at solving
the ontology translation problem. It performs syntactic



translation based on pattern matching of syntax trees and
ontologic-based semantic rewriting. Ontomorph is based
on PowerLoom for knowledge representation and PLisp
(“Pattern Lisp”) for concise specification and destructur-
ing of translations.

4.4.11 TSIMMIS

The TSIMMIS Project [27] was created to develop tools
that integrate heterogeneous information sources. TSIM-
MIS modules obtain properties from unstructured objects
and are able to map information and constraints across
heterogenous sites into a uniform data model.

5. What Needs To / Might Be Done in the
Future

More global ontologies and maps between ontologies are
certain to be constructed in the future. We can also look
forward to more complete logical relationships so that rea-
soning can be done both inter-model and intra-model.
Rather than filling holes in models, the integration process
will then be reduced to making maps between ontologies.
Rahm and Bernstein provide a good survey to schema
matching [29].

Map making may be partially automated with the creation
of smarter modeling tools. Such tools could derive seman-
tic meanings from context or other implementation infor-
mation that is currently ignored. It may be possible to
automate parts of model recreation from legacy software.
This would substantially reduce the cost of legacy soft-
ware integration.

If MDA comes to fruition, this would greatly simplify later
integration projects as such projects would essentially
throw away brittle implementations and start integration
work directly from the models.

Further work needs to occur in the area of interaction
ontologies [10]. Traditionally, maps have related static
concepts between ontologies. The maps between the static
concepts and the APIs are as significant and necessary as
the static maps.

6. What Will Not Be Done ... For a Very Long
Time

For a variety of reasons, it is difficult to envision total
automation of software integration in the general sense.

It is human nature that system creation, whether legacy or
anew, inevitably incorporates unmodelled constraints and
that these constraints will be inaccessible by any auto-
mated reasoning engine. In such systems, the issue is not
how to automate the ontology mapping but how to dis-
cover that the ontologies themselves are incomplete or

incorrect with respect to the implementation. An auto-
mated solution to this problem would require the equiva-
lent of a human who occasionally makes mistakes,
guesses, asks questions, and expends painfully costly
resources exploring dead ends.

In a formal sense, the act of integration imposes new, pos-
sibly un-modelled constraints that may not be met by the
existing systems [11]. For any given abstraction, it is pos-
sible to construct an integration scenario in which a failure
will occur because of some property that was not explicitly
modeled. For example, a reasonable abstraction of time-
of-day constrains seconds to a range of 0 to 59. A system
with such a model may integrate properly with many other
systems or, at least, give the appearance of successful inte-
gration – even for many years. However, a formal repre-
sentation of seconds in the Coordinated Universal Time
Scale allows for the insertion of additional seconds to
account for the physical changes in how time is synchro-
nized to movement of the solar system. Representation of
such ‘leap seconds’ requires an expanded range. So an
integration may apparently succeed only to fail come a
New Years many years distant from the integration itself.

The need for the abstractions to take an explicit stance
with respect to otherwise-irrelevant properties only arises
when integration is attempted. Yet by virtue of numerous
undocumented and/or un-thought-of implementation
details, any realizations of these abstractions in engineered
artifacts such as software implicitly take stances with
respect to all properties. It should not be surprising that
when confronted with such properties, integrations fail.

Even in the best modelled of worlds, the continuing
growth and change of ontologies will remain a problem.
Indeed, as ontologic systems become better at incorporat-
ing relationship information, it is likely that the different
ontological ‘standards’ will become ever more ‘different’
as they incorporate subtle new meanings. This type of
change happens frequently and we live in an age when the
rate of change is ever increasing. This fear of the inability
to handle change in ontologies is captured by Sowa [33]:

“I expect the evolution of ontologies to recapitu-
late our experiences with subroutine libraries.
There will inevitably be libraries of them with
version numbers that are periodically updated.
Any attempt to avoid having multiple versions of
the “same” ontology on the same system at the
same time will undoubtedly create a new Hell,
not unlike DLL Hell.”

7. Conclusion

Automated methods for integrating systems have been
presented as a new approach to solving the dilemmas of
multiple and uncoordinated standards, ontologies, legacy



systems and the ever-growing cost of traditional integra-
tion. Existing approaches for automated methods are inter-
esting but are strongly suggestive that automated
integration is not possible for large-scale software. For
the foreseeable future, it is likely that there will always be
a human component and that humans and semi-automated
translators will work together. Methods for semi-auto-
mated integration are more promising although they have
their own disadvantages. It is worth continuing research
and experimentation with automated and semi-automated
integration to solve pieces of the general problem of auto-
mated integration.

8. References

[1] BEA Systems, http://www.bea.com, 2003.

[2] Box, Don, et al. Simple Object Access Protocol (SOAP)
1.1, http://www.w3.org/TR/SOAP/, W3C Note 08 May
2000.

[3] Chaudhri, Vinay and Lowrance, John, Generic Knowl-
edge-Base Editor, http://www.ai.sri.com/~gkb

[4] The InfoSleuth Agent System, http://www.argreen-
house.com/InfoSleuth

[5] Barkmeyer, Edward , Barnard Feeney, Allison , Denno,
Peter , Flater, David , Libes, Don , Steves, Michelle Potts,
and Wallace, Evan, Concepts for Automating Systems Inte-
gration, NIST IR 6928, (2003).

[6] Chalupsky, Hans, OntoMorph: A Translation System
for Symbolic Knowledge, USC Information Sciences Insti-
tute, http://www.isi.edu/~hans/ontomorph/presentation/
siframes.html

[7] Connolly, Dan, et al., DAML+OIL (March 2001 Refer-
ence Description, http://www.w3.org/TR/daml+oil-refer-
ence, W3C Note 18 December 2001.

[8] Chemical Industry Data Exchange, CIDX, http://
www.cidx.org, 2002.

[9] Contivo – Enterprise Integration Modeling, http://
www.contivo.com, 2001.

[10] Denno, Peter, Steves, Michelle, Libes, Don, and
Barkmeyer, Ed, Model Driven Integration Using Existing
Models, to appear in IEEE Software, 2003.

[11] Flater, David, A Logical Model of Conceptual Integ-
rity in Data Integration, submitted to The NIST Journal of
Research.

[12] Gentile, R. S., Allebach, J. P. and Walowit, E., A
comparison of techniques for color gamut mismatch com-
pensation, Proc. SPIE Human Vision, Visual Processing,

and Digital Display, B. E. Rogowitz, Ed., 1989, vol. 1077,
pp. 342-354.

[13] Gruber, T. R., A Translation Approach to Portable
Ontology Specifications, Knowledge Aquisition, 5(2), 199-
220, http://www.ksl-web.stanford.edu/KSL_Abstracts/
KSL-92-71.html, 1993.

[14] Hendrick, Stephen, and Hendrick, Kathleen, iWay
Software: A Pragmatic Solution to Application Integration
Needs, http://www.iwaysoftware.com/pdf/
idc_analyst.com, November 2002.

[15] Joyce, Erin, CSG, Comcast Billing Snafu Grows,
http://boston.internet.com/news/article.php/1558351.

[16] Lassilla, Ora, and Swick, Ralph, eds., Resource
Description Framework (RDF(S)) Model and Syntax Spec-
ification, W3c Recomendation, 22 February 1999.

[17] Libes, Don, Exploring Expect, O’Reilly, Sebastopol,
CA, January 1995.

[18] Libes, Don, Writing a Tcl Extension In Only ... 7
Years, Proceedings of the Fifth Annual Tcl/Tk Workshop
‘97, Boston, MA, July, 1997.

[19] http://logic.stanford.edu/kif/dpans.html

[20] http://www.modulant.com

[21] NexPrise, Inc., http://www.nexprise.com, 2003.

[22] NIST, Process Specification Language (PSL), http://
ats.nist.gov/psl, 2002.

[23] Object Management Group, OMG’s CORBA (Com-
mon Object REquest Broker Architecture) Website, http://
www.corba.org, 1997-2003.

[24] Noy, Natalya, and Musen, Mark, Evaluating Ontol-
ogy Mapping Tools: Requirements and Experience, SMI-
2002-0936, http://www.smi.stanford.edu/pubs/
SMI_Reports/SMI-2002-0936.pdf, Workshop on Evalua-
tion of Ontology Tools at EKAW'02 (EON2002), 2002.

[25] Open Applications Group, http://www.openapplica-
tions.org, 2003.

[26] http://ontobroker.aifb.uni-karlsruhe.de/index_ob.html

[27] http://www.ontomap.org

[28] Perez, Asuncion Gomez, ed., A survey on ontology
tools, http://www.aifb.uni-karlsruhe.de/WBS/ysu/publica-
tions/OntoWeb_Del_1-3.pdf, Ontology-based informa-
tion exchange for knowledge management and electronic
commerce, IST-2000-29243, Deliverable 1.3, 2002.



[29] Rahm, Erhard and Bernstein, Philip A., A Survey of
Approaches to Automatic Schema Matching, The VLDB
Journal 10:334-350 (2001), ftp://
ftp.research.microsoft.com/pub/tr/tr-2001-17.pdf, 2001.

[30] http://www.smi.stanford.edu/pubs/SMI_Reports/
SMI-2002-0936.pdf

[31] Rys, Michael, TSIMMIS (The Stanford IBM Manager
of Multiple Information Sources), http://www-db.stan-
ford.edu/tsimmis, April 4, 1998.

[32] Siegel, Jon, Making the Case: OMG’s Model Driven
Architecture, SD Times, http://www.sdtimes.com/news/
064/special1.htm, October 15, 2002.

[33] Sowa, John, F., Re: SUO: Enlightened Semantic Web,
http://suo.ieee.org/email/msg09078.html, March 20, 2003.

[34] Sun Microsystems Inc, Java 2 Platform, Enterprise
Edition (J2EE), http://java.sun.com/j2ee, 2003.

[35] Sure, Y., Corcho, O. and Angele, J. (eds.). Evaluation
of Ontology based Tools (EON2003), Proceedings of the
2nd International Workshop EON2003, Workshop at the

2nd International Semantic Web Conference (ISWC 2003),
20-23 October 2003, Sundial Resort, Sanibel Island, Flor-
ida, USA.

[36] Sure, Y. and Iosif, V. First Results of a Semantic Web
Technologies Evaluation, Proceedings of the Common
Industry Program at the federated event co-locating the
three international conferences: DOA'02: Distributed
Objects and Applications; ODBASE'02: Ontologies, Data-
bases and Applied Semantics; CoopIS'02: Cooperative
Information Systems DOA/ODBASE/CoopIS'02, October
28 - November 1, 2002, University of California, Irvine,
USA, pages 69-78.

[37] Tibco Software Inc., http://www.tibco.com, 2003.

[38] Weinberg, Gerald, The Psychology of Computer Pro-
gramming, Van Nostrand Reinhold Company, 1971.

[39] Woelk, D., Cannata, P., Huhns, M., Shen, W., and
Tomlinson, C., Using Carnot for Enterprise Information
Integration, Second International Conference on Parallel
and Distributed Information Systems, http://
www.mcc.com/projects/carnot, January, 1993.


