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Abstract

This paper describes reference algorithms developed at the National Institute of Standards and Technology
that fit geometric shapes to data sets according to Chebyshev, maximum-inscribed, and minimum-
circumscribed criteria. Using an improved approach, we have developed more reliable reference algorithms
for Chebyshev fitting for lines, planes, circles, spheres, cylinders, and cones. In the cases of circles, spheres,
and cylinders, we also include maximum-inscribed and minimum-circumscribed fitting. In every case, we
obtain the fit through an iteration that begins by using a (relatively easy) least-squares fit and then refine to
the desired Chebyshev, maximum-inscribed, or minimum-circumscribed fit. We discuss why computing these
fits is substantially more difficult than computing a least-squares fit, as the topography of the objective
function prevents certain naive algorithms from working. We describe our choice of simulated annealing as a
method that is general enough to be used for all the geometric shapes considered, requiring minimal
customization for each shape. We outline steps taken for each geometric shape to reduce the number of fit
parameters, thus improving the performance of the algorithms. We describe a suitable temperature reduction
schedule that allows these algorithms to converge. We note cases of nonuniqueness related to maximum-
inscribed fits. Finally we document test results showing the effectiveness of these algorithms against a
battery of data sets with known solutions, against a limited number of exhaustive search results, against
intercomparisons with other algorithms that provide for some of these fits, and against themselves by means
of a repeatability study. We note that during intercomparisons, we found significant differences between our
well-researched reference results and results obtained from algorithms that can be found in industrial use

today.
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1 INTRODUCTION

Coordinate Measuring Machines (CMMs) critically rely on
mathematical software, particularly for curve and surface
fitting. Over the last 15 years, serious problems with the
performance of such least-squares fitting software have
been identified [1,2]. In response, the National Institute of
Standards and Technology (NIST) developed a software
package, the NIST Algorithm Testing System (ATS), which
can help in assessing the performance of least-squares
fitting routines of various geometric shapes.

As helpful as that work has been, its scope extends to
include only least-squares algorithms. While these are
common, there are other fit objectives also used in
industry, specifically one-sided fits (here restricted to
maximum-inscribed and minimum-circumscribed) and
minimum-zone (i.e., Chebyshev) fits. These criteria
naturally match some of the language used in
internationally utilized standards such as Y14.5 [3].

We sought to extend the original work at NIST that
provided reference algorithms for least-squares fitting to
now include these other fit objectives. Table 1 indicates
which fit objectives are applicable to which geometric
shapes that are considered in this paper.

This paper, then, documents the reference algorithms
developed at NIST for these fits and is organized as
follows: We begin with observing the maximum-inscribed
circle problem as an example case to see the
requirements for the solution strategy and then show how
simulated annealing meets these requirements. We then
describe the manner by which the single simulated
annealing algorithm-can be used to solve every fit type

considered in this paper, by means of appropriate
parameter and objective function selections. We then go
on to describe a fourfold testing method that was applied
to the reference algorithms and the summarized results.
The testing includes results from an intercomparison that
shows how these reference algorithms were used to
uncover significant deviations in the fit results of some
algorithms.

Least- Min- Max- Min-
squares | zone | inscribed | circumscribed

Line X X
Plane X X

Circle X X X X

Sphere X X X X

Cylinder X X X X
Cone X X

Table 1: Applicability of fit objectives to geometric shapes.
Reference algorithms for the least-squares fit objective
were completed in previous research {4] and are not
developed in this paper.

2 CHOICE OF OPTIMIZATION STRATEGY

In seeking an appropriate algorithm to compute fits
according to these objectives, we begin by understanding
the nature of these problems, using the example case of a
maximum-inscribed circle.



2.1 Definition — maximum-inscribed circle

The following definition will suit our needs for the purposes
of this paper: Given a set of data points, we define a
maximum inscribed circle as a circle satisfying the
following three conditions:

1. No data points lie inside the circle.

2. The circle touches three data points which form
an acute or right triangle. (The circle may touch
other data points.)

3. No circle of greater radius satisfies conditions (1)
and (2).

Note: This definition implies that not every set of data
points has a maximum inscribed circle associated with it.
For instance, a set of data points that sweep 90° of arc on
a circle do not, according to the definition of this paper,
have a maximum-inscribed circle. We will not be
considering partially sampled geometries in this paper.

Now one might extend the definition above to be
meaningful for this type situation, but for the purposes of
this paper, we will not be considering such data sets.

Also, the definition reads a maximum inscribed circle
instead of the maximum inscribed circle, since a data set
might have more than one maximum inscribed circle as
the following illustration shows:

Figure 1: Points selected around the left hand figure
might have more than one maximum inscribed circle.
The figure on the right shows two inscribed circles,
one slightly farger than the other.

When such a case arises, we are content (in this paper) to
find one maximum inscribed circle. For this paper we do
not consider partially sampled geometries, like points that
sweep only an arc of a circle.

2.2 Choice of optimization algorithm

Since a data set might have more than one maximum
inscribed circle, we can slightly perturb this situation to
see that there can be an inscribed circle centered at p
(figure 1) which is almost as good (i.e., having nearly the
same radius) as one centered at q.

In other words, the inscribed circle having the greatest
radius (globally) may be hidden among other candidates
having locally maximum radii. Many iterative optimization
algorithms simply start with an initial guess and search
naively (in a strictly downhill fashion) to find a local
minimum. if the circle initially guessed in such an
algorithm were centered near p in the above illustration,
the method’s search would likely move to find the circle
centered at p and report that local solution as the optimal.
To avoid this, we must require that the algorithm we
choose will search out a global minimum among several
local candidates. This requirement alone significantly
reduces the number of algorithms we have to choose
from.

We also note that the objective function is difficult to
manipulate mathematically. Some optimization algorithms
require that the objective function’s first derivatives be
provided, and some need the second derivatives as well.
We would prefer a method that didn’t require these,
though appropriate measures could be taken if there were

no other choices (e.g., solving numerically for needed
derivative values.)

One algorithm noted for solving optimization problems
when the global minimum is hidden among several local
minima is called simulated annealing [5].

Annealing is the process by which a substance cools
slowly enough that the molecules position themselves into
a frozen crystalline form. That the crystalline form is their
lowest energy state means the molecules have found this
global minimum for their arrangement even though there
are several arrangements Yyielding local minima.
Simulated annealing borrows from this physical
phenomenon and incorporates analogous properties into a
numerical aigorithm.

Naive minimization algorithms simply seek in the downhill
direction of the objective function and thus will never
escape from a local minimum. Simulated annealing avoids
this pitfall by searching in the downhill direction most of
the time but allowing an uphill move some of the time. The
uphill decision is made using the Metropolis criteria in
which the probability of accepting an uphill move depends
on the “temperature” (the parameter that mirrors the
physical cooling process.) As the temperature parameter
decreases to zero slowly enough, the algorithm converges
on the global minimum.

3 IMPLEMENTATION OF SIMULATED ANNEALING

3.1 Solution procedure

in all cases identified in Table 1, we solve the fitting
problem using the same basic strategy:

1. Fit the feature to the data in a least-squares
sense using the method described in [4].

2. Rotate and translate the data based on the
computed least-squares fit. For circles and
spheres, the data is translated so the least-
squares center is at the origin. For the other
geometries the translation and rotation is such
that the line, axis, or normal of the geometry
coincides with the z-axis.

3. The transformation allows for the fitting geometry
and fit objective function to be defined using
fewer variables than the general case, as given in
table 2.

4. Search for the minimum (or maximum) using the
simulated annealing technique. The parameters
of the search are given in table 2. The
transformed least-squares solution is used as the
initial guess for the optimization search.

5. Derive any additional parameters that define the
geometry according to table 2.

3.2 Notation

x=(x,»,2) A point in 3-dimensional space.

|l The Euclidean (L2) norm. E. g.,
x| =vx?+y? +2% .

x; =(x,v,z;) Thei" data point.

A=(4,8,C) Direction numbers that specify an
orientation, A = 0.

a=(ab,c) Direction cosines that specify an

orientation. Note: ]a' =1. An orientation’s

direction numbers can be converted into
direction cosines by a = A/|A|.



We define g; = g(x;,x,A) as the distance from the point,
x;, to the plane containing x and having normal
direction, a. Specifically,

gl.:g(xi,x,A)za-(xi—x). 1)
We also define
fi .—.f(xi,x,A)=,ax(xi —x)] (2)

as the distance from the point, x;, to the line containing x
and having direction a. We let 4 represent the distance

h; =|xi—x|. (3)
Finally, it will be useful for the case of cones to denote
d; = f;cosy + g; siny , (4)

Where y represents the apex semi-angle of the cone.
The variable, r, stands for the radius, and, in the case of
cones, s is the orthogonal distance from the specified
point on the cone’s axis to the surface of the cone.

from the point, x;, to x. Thatis,

Location | Direction | Parameters used | Objective function | Derived parameter after
in optimization optimization

Min-zone line (x,5,0) (4,B.) (x,5,4,B) max(f; )
Min-zone plane ©002) | @By | (48) max(g;)- min(g;) | = = [max(g;)+ min(g, )}/ 2c)
Min-zone circle (x,5.0) (x.7) max(f; ) - min{#; ) r = [max(#; )+ min(s, )} 2
Min-circ circle (x,,0) (x,) max(#;) r = max(#;)
Max-ins circle (x,y,0) (x,y) min(; ) r = min(4;)
Min-zone sphere (x,3.2) (x,,2) max(#; ) — min(k; ) r= [max(h,—)+ min(4; )]/2
Min-circ sphere (x,5.2) (x,7,2) max(h;) r = max(h;)
Max-ins sphere (x,.2) (x,3,2) min(k; ) r = min{h;)
Min-zone cylinder (x,3,0) (4,B,1) (x,y,4,B) max(f;)-min(f;) | r=[max(f;)+ min(f,)]/2
Min-circ cylinder (x,,0) (4,B,) (x,y,4,B) max(f;) r = max(f;)
Max-ins cylinder (x,7.0) (4,8)) (x,y,4,B) max(f;) r=min(f;)
Min-zone cone Grd) | B | GondBy) | mand)-min@) | s = lmaxld,)+ miald, V2

Table 2. This table shows the parameterization of each geometry along with the parameters used in the optimization, the
appropriate objective function, and any further derived parameters. In the maximum-inscribed cases, the objective function
is to be maximized, rather than minimized as in the other cases.

3.3 Aniflustrative example

To illustrate the procedure and the use of the information
in table 2, consider the case of finding the minimum-zone
cylinder to a set of data points.

1. We first compute the least-squares cylinder to
the data, using the method described in [4].

2. The least-squares solution can be represented by
a point on the axis, the axis direction, and the
radius. Using that information, we translate and
rotate the data points such that the axis of the
least-squares solution of the transformed data s,
in fact, the z-axis.

3. Tabie 2 indicates that we can identify a nearby
cylinder by knowing the location it pierces the xy-
plane and its direction. The least squares cylinder
is located at (0,0,0) and has direction (0,0,1).

4. Starting with an initial guess of (0,0,0,0), we
search over other values of (x,y, 4,B) to find the
minimum of the objective function. For any fixed
values of (r,y,4,B), the objective function is
given in table 2 as max(f; )- min(;).

5. Once the minimum is found, we know the
minimum-zone cylinder’s location and direction.
But in order to find its radius, we simply compute

it based on the last column of table 2. Thus the
minimum-zone cylinder is obtained.

3.4 Implementation details of temperature

Simulated -annealing is an iterative method that requires at
each step a reduction in a key parameter (called
“temperature,” mimicking the physical annealing process).
A suitable temperature reduction schedule is needed that
allows these algorithms to converge. Finding a working
schedule through iterations in the search can be more of
an art than a science. In our implementation, we began
with a temperature of 10 and reduced it by a factor of 0.9
at each iteration. Faster decreases (factors of 0.7 and
lower) seemed to work equally well, but since these are
purely reference algorithms, we can afford to be overly
conservative.

4 TESTING THE REFERENCE ALGORITHMS

We implemented the simulated annealing algorithm and
tested them four different ways, which we document here.
By performance, we speak only of the accuracy of the
results, not the time required to obtain them. As these are
reference algorithms, speed is a secondary consideration.
The testing documented here involves data sets of up to
several hundred points. We have not yet conducted any
testing with large data sets of over 10,000 points.

4.1 Testing versus the exhaustive search solution

For some geometric cases (lines, planes, circles), and for
relatively small data sets, the solution of the fitting problem
can easily and reliably (albeit not quickly) be obtained



through an exhaustive search [6], and these can be
compared with results from these new algorithms.

We created a data set with two superimposed lobed form
errors designed to yield a data set having two maximum
inscribed circles. Each algorithm found a different
maximum inscribed circle as table 3 shows. The 100 data
points were selected using equispaced angular intervals
on a perturbed unit circle given by

(@)= 1+(02)sin 46 + (01)sin 26 . (5)
Exhaustive search Simulated annealing
2 | -.00369371351261293 | .00369371351260858
Yy | -.00784954077495501 | .00784954077494546
r | .9726878093314897 .9726878093314895

Table 3. Results from two algorithms using a
data set having two maximume-inscribed circles.

We observe that the methods found different maximum
inscribed circles, but each has the same radius (to within
computational limits). Also, the effect of roundoff errors is
evident in the fact that the reported centers are not exactly
symmetric with respect to the origin.

The close agreement between the results of the two
methods (up to nearly the computational limits) is
representative of hundreds of other comparisons made
between the methods. The computed centers were the
same in all cases except this contrived case, designed to
have a nonunique solution.

4.2 Testing versus data sets with known solutions

Since the fit types considered in the paper are determined
by a small set of critical points within a data set, it is
possible to construct data sets with known solution
information by prescribing the critical points and adding
additional data points. If the computed solution has a
higher objective function than that in the data construction,
then the algorithm has not found the optimal fit.

We performed tests on about 100 data sets in this fashion
and never encountered the case where the objective
function value returned by the algorithm was worse than
the value designed (aside from negligible differences due
to computational limits of precision).

4.3 Testing versus industrial results

We ran comparisons with industrial partners for all the
algorithms described in this paper. We found the results
encouraging with respect to our algorithms, but alarming
with regard to the outside algorithms used in the
comparison. For each discrepancy, we computed the
objective functions in order to determine the better fit. In
every case of diifference, the algorithms presented in this
paper gave the better objective function values. This
means that serious problems exist in some algorithms that
can be found in commercial use today.

Details were presented at [7], but, in summary, out of
about 200 data sets, there were very large differences in
about 20% of the fits. Of these, the algorithms presented
in this paper invariably returned the better fits, based on
objective function values.

4.4 Testing by observing repeatability

Repeatability can be seen by making several runs on the
same data set while varying the initial guess. When the
sizes of the initial guess perturbations were of the order of
the form error of the data, the algorithms consistently
found the true fit up to negligible roundoff effects due to

computational limits. Figure 2 shows the repeatability of
computing the minimum-zone cylinders for several data
sets. This figure is representative of repeatability results of
other fits described in this paper. Each of the 10 data sets
was fit 10 times using different initial guesses. Shown are
the ranges of the diameters returned for each data set.
These data sets contained 100 points each and had
nominal diameters between 150 and 180 mm.
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Figure 2. The repeatability of the diameters of the
maximume-inscribed cylinder fits.

5 CONCLUSION

We successfully implemented simulated annealing
optimization techniques to create 12 reference fitting
algorithms of various combinations of geometric shape
and fit objective. We used a fourfold method of testing the
results of these algorithms to find that the reference
algorithms, though not meant to be fast, are very reliable
in their fit results. We also found alarming results when
comparing results with other algorithms that can be found
in industrial use today. At NIST we are using these
algorithms to develop data sets and reference results that
can be made available to industry to allow for testing and
provide means for improvements in industrial software.
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