
focus

U S G o v e r n m e n t W o r k N o t P r o t e c t e d b y U S C o p y r i g h t P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y I E E E S O F T W A R E 5 9

use models even more rarely for later integra-
tion efforts, when the systems have been re-
peatedly patched or have become brittle and
the models themselves are often inaccessible, if
even applicable.

However, can models be more than tools
discarded along the way? Might they provide
the enterprise with enduring value? Engineers
can use these models to automate some sys-
tems integration steps that occur as systems
evolve. If models can enable automated inte-
gration methods, the overall integration costs

will decrease and modeling efforts’ enduring
value will return because models will become
key to a wider segment of the system’s life
cycle.

Our approach to model-driven integration
uses a system’s existing models to characterize
how the system’s resources might be used to ful-
fill requirements for new interactions. Links-
across-views capture the design intent behind
legacy systems. They are combined with re-
quirements for new interactions to produce a
joint action model. Developers can use the JAM
in downstream, automated integration.

Views of business activity
In modeling the interactions and communi-

cations that let subsystems work together, at
least two distinct levels of abstraction are im-
portant: conceptual (or business) views and
engineering views.

Model-Driven Integration
Using Existing Models

A
s we engineers develop systems, we build models. These models
might include business policy guidelines, database schemata, or-
ganization charts, class diagrams, and so on. The models span di-
verse viewpoints and levels of formality.

We seldom revisit these models as the enterprise evolves. Often, the mod-
elers themselves have disappeared, and any knowledge that wasn’t captured
in the specialized models is inaccessible, forgotten, or written off. Engineers

model-driven development

Peter Denno, Michelle Potts Steves, Don Libes, and Edward J. Barkmeyer,
US National Institute of Standards and Technology

While developing software systems, and during the enterprise’s
subsequent evolution, developers define models. These models can
help automate some systems integration tasks. The joint action model
describes a new business transaction that motivates systems
integration.

A conceptual view describes a business’s
concepts, rules, and relationships. A concep-
tual model of cooperative action sees the in-
teracting agents as playing specific roles in the
business process, such as buyer and seller or
machine controller and source of cutting in-
structions. The model characterizes the inter-
action as flows of information and service re-
quests. At a high level, this model might not
even assume that the agents are automated. At
this level, the model is organized around

■ Business actions: functions and behaviors
that implement each agent’s roles or relate
to those functions

■ Business entities: objects discussed in the
communications that the cooperative ac-
tion uses or modifies

■ Transactions: notifications, requests for in-
formation, requests for functions or serv-
ices, and responses

An engineering view of cooperative actions
sees the interacting agents as software compo-
nents communicating through one or more
mechanisms, such as file transfer, database ac-
cess, operation invocation, or queued messag-
ing. For each unit of communication, a mech-
anism exists, and each agent plays a specific
role with respect to that mechanism—for ex-
ample, file writer or distributed object server.
Additionally, for each communication unit, a
“message” exists—that is, a set of information
that the communication unit transfers. In en-
gineering models, messages have a representa-
tion that involves message type, operations,
information units, and so on. These should
convey the corresponding concepts found in
conceptual models.

Engineering models may provide a further
level of detail that defines the detailed protocols
for the communications and the binary repre-
sentations for each data item. However, since
1990, these details have usually been specified
by some standard, and the engineering models
simply refer to the appropriate standard for
that level of detail.1

Two views of the integration task
The system capabilities that are the product

of integration are not built into existing com-
ponents. Rather, the existing components are
built with features that support certain capa-
bilities by providing for certain kinds of inter-

actions. These features are loosely termed sys-
tem interfaces. An API, an exchange file, a
CORBA interface, and a Web service port are all
examples of interfaces in this general sense.

Integration lets separate components act
jointly (cooperatively) toward some goal by
enabling message exchange between them.
Being “separate” is what makes components
components. Messages bridge the separated
components. In a conceptual view, a message
advances the business process and informs the
cooperating agents. In an engineering view, a
message advances the transaction; the mecha-
nism through which we convey the message is
a principal concern.

System developers conceive solutions to in-
tegration tasks in business or conceptual terms
and implement them in engineering terms. The
solution conception, relying on conceptual
models, defines requirements for the engineer-
ing implementation. Our method uses concep-
tual models to describe integration require-
ments and engineering models to identify
elements of potential implementations.

Although conceptual views and engineering
views serve different roles, we don’t use them
in isolation. Consider how engineers do things
now, manually. When systems engineers try to
satisfy a new requirement for interaction, they
examine how they can use existing (engineer-
ing) means to achieve their (business) ends.
For example, a system supporting sales might
be able to provide an item’s cost. To support a
certain new customer, however, the system
might have to provide the cost value in a form
different from the current one.

Linking views
As the previous paragraph suggests, we use

model elements from conceptual and engineer-
ing views together. The knowledge that relates
those views, however, often exists only in the
systems engineer’s mind. Our method defines
intermodel relationships called links-across-
views to relate elements from various models.
Links-across-views capture the coherence
among conceptual and engineering views. Our
method requires us to produce these linked
models for each component business entity in
the new interaction. Figure 1 shows one such
business entity (called Partner A). This entity
can request an item’s price through a method
getQuote described in a UML Class Dia-
gram. Links-across-views are defined linking

Integration
lets separate
components
act jointly

(cooperatively)
toward some

goal by enabling
message
exchange

between them.

6 0 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

■ The request for a quote in a conceptual
model with the item’s representation that
is a parameter to getQuote (Link 1)

■ The response with the method’s return
type (Link 2)

The links establish the relationship between the
business activity of requesting a quote and an
engineering means of implementing that activity.

Links-across-views provide a view that lets
the systems engineer focus on those system in-
terfaces that are relevant to the systems’ roles
in the joint actions to be implemented. In se-
lecting which links to define, the engineer
might be able to ignore much of the existing
systems’ modeling because it is irrelevant to
the intended joint action. That is, the intended
joint action focuses the engineer’s attention on
the subset of the interface capabilities that will
be useful to integration. This is a further ben-
efit of having system models—the engineer
can determine exactly which elements of the
existing system he or she needs.

In our initial exploratory work, we identi-
fied five kinds of links-across-views that help
provide coherence among models:

■ Object-equivalence: link declares that
model elements represent equivalent ob-
jects or object types.

■ Relation-equivalence: link declares that model
elements represent equivalent relations.

■ Activity-equivalence: link declares that
model elements represent the same activity.

■ Object-state-during-activity: link declares
that the object or object type the model el-
ement represents remains in a particular
state during a business activity.

■ Activity-partitions-object-type: link de-
clares that the business activity classifies
instances of an object type into one or
more of its subtypes.

In the example in Figure 1, the links-across-
views are both object-equivalences.

Describing requirements: The joint
action model

Systems comprise components, which are
themselves systems. In our example, links-
across-views reference only the models of a
system of buyers and sellers that are already in-
tegrated; they can buy and sell with each other.
If new partners—possibly from outside the sys-

tem—become involved in trading, we might
need to perform an integration task. The new
partner might have business processes and
mechanisms for trade, but these could differ
from the existing approach. The existing sys-
tem and the new partners’ trading system be-
come components in a new, expanded system.

As the previous section described, our ap-
proach’s first step calls for linking engineering
models to conceptual models for each partici-
pant in the new interaction. The next step pro-
duces a conceptual model of the new interac-
tion, describing in conceptual terms the
transaction steps and objects referenced. This
new model, the joint action model, is a re-
quirements model for the new interaction; it
describes what must occur in the business
transaction. It does not model either compo-
nent, nor does it have their scope. Its scope is
limited to the required interaction. The JAM
uses links-across-views to relate the partici-
pants’ views to shared concepts. Links-across-
views from the JAM to the linked models re-
late roles in the transaction to resources in the
participants’ linked models.

The systems engineer manually builds the
JAM and the links-across-views to produce an
engineering model of the interaction (see Fig-
ure 2). We can automate this final step of our
approach; the models and composition of
links-across-views are used to produce an en-
gineering model that uses the interfaces identi-
fied in the engineering models to achieve the
goal the JAM describes.

S e p t e m b e r / O c t o b e r 2 0 0 3 I E E E S O F T W A R E 6 1

Link 1 Link 2

dollarAmt getQuote(...)

Conceptual model

Respond with quote $

Seller
(you)

Buyer
(me)

Engineering model

Request quote item

Figure 1. Partner A’s
view of the system, in
which he is a buyer.
Sellers use ggeettQQuuoottee(())
to receive quotes. The
value returned is a
ddoollllaarrAAmmtt.

The JAM model specifies exactly which
messages the system will use to accomplish the
transaction. In the buyers-and-sellers example,
the systems engineer might specify, for in-
stance, that Partner A’s getQuote method will
be used without modification. Partner B’s ex-
isting response to a request for a quote might
need modification to service requests in this
way. Differences that require information
mapping rely on links-across-views between
Partner B’s request for quote methods and its
product database. Differences in the engineer-
ing mechanism (for example, CORBA versus
Web services) follow a pattern that is inde-
pendent of such problem details.

Views, metamodels, and
systems engineers

When creating the JAM, the systems engi-
neer references elements in the existing sys-
tems’ linked models. One significant mistake
an engineer can make is to misunderstand
what a view communicates. So, when the sys-
tems engineer references an element in a linked
model, he or she must know what others
might infer from that reference. To deal with
this problem in our approach, we appeal to
the view’s viewpoint. A viewpoint is a disci-
pline for structuring a view (as though the
view were an instance of the viewpoint). The
discipline defines what details and concerns to
capture and to omit. It winnows the view’s
audience to those with a particular set of con-
cerns and helps them focus on those concerns.
The UML Class Diagram, for example, pro-
vides a viewpoint.

Our approach defines a viewpoint’s in-
tended meaning in the modeling language’s
metamodel. To describe notions that general-
ize across languages, these metamodels refer-
ence a model one metalevel higher, similar in
purpose to the Meta-Object Facility Model.2

The JAM must provide a view that helps
manage the relationship between requirements
and discipline-specific system views; this is a
principal role for systems engineers.3

Although the JAM’s explicit specification is
particular to our approach, aspects of its cre-
ation are familiar to engineers. When systems
engineers attempt to integrate existing or new
systems, they identify elements of the concep-
tual model that are relevant to the integration
activity’s motivating business needs. They
might or might not formalize this model, but
they must have it in mind. They cast the exist-
ing systems into roles in that model. If the en-
gineers can access the existing system’s mod-
els, they can more easily determine whether
the system was intended to fulfill such a role.
Even if the system was not intended expressly
for that role, the models describe the system’s
functions and communications capabilities
and might let the engineers determine that the
system is accidentally suited to the role. We
compare our method to traditional integration
methods in the “Comparisons” sidebar.

The advantage of examining models over
searching software documentation is connec-
tivity. Graphical models always involve ex-
plicit, visible links between concepts that are
connected in the same view. Additionally, they
contain and emphasize the keywords (object
names, events, actions, roles, and associations)
that will serve as links to the related concepts
in other views. The visible links let us quickly
see what’s connected to a concept that is cen-
tral to a particular integration task and
quickly identify the keywords that find the
connections in other views. In many cases, the
modeling tool itself can deliver a view com-
prising only the connections to a selected cen-
tral concept and can thread the links to the
same concepts in other views. Additionally,
graphical models can be mapped to reposito-
ries and queried. Text cannot.

This is probably models’ single greatest
benefit when we’re developing a new system
from a suite of components—they minimize
the time and expertise required to match ex-
isting components to target roles.

6 2 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

Joint
action model

RFQ

Engineering model

Engineering model

Conceptual model

(automated)

Link
Link

Link Link

SB

S

S

B

B

Partner A

Engineering model

Conceptual model

Link Link

S

S

B

B

Partner B

Figure 2. A joint action
model relates the
interaction to each
participant’s engineering
details.

C ontinuing system evolution and re-
peated large-scale and expensive inte-
gration are commonplace with virtually

all moderately complex software. Traditional
integration makes little or no use of the models,
which were created at great expense and which
provide valuable information about a system.
These models can and should be maintained and
reused for maintenance and integration.

Creating and using joint action models and
linked component models, which meld other
specialized models, is the key to making the
best use of prior investments in model con-
struction. This will significantly ease integra-
tion projects by allowing automation of tasks
that are presently performed manually.

References
1. E. J. Barkmeyer et al., Concepts for Automating Sys-

tems Integration, NIST Internal Report 6928, US Nat’l
Inst. of Standards and Technology, Jan. 2003.

2. Meta-Object Facility Specification, version 1.4, Object
Management Group, Apr. 2003, www.omg.org/cgi-bin/
doc?formal/2002-04-03.

3. M. Jackson, Software Requirements & Specifications,
Addison-Wesley, 1995.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

S e p t e m b e r / O c t o b e r 2 0 0 3 I E E E S O F T W A R E 6 3

We see model-driven integration as a downstream extension
of the OMG Model Driven Architecture concept,1 using all lev-
els of MDA models developed during system design. The JAM
driving the integration is a computation-independent model
(this is MDA terminology for a mechanism-independent model).
Our JAM is devoid of engineering decisions partly because im-
plementing the interaction might require using more than one
communication mechanism (MDA platform class) and interven-
ing protocol conversion.

In MDA, the platform-independent model (PIM) is an engi-
neering model that selects the mechanism and defines the inter-
face’s functional elements. The platform-specific model (PSM) de-
fines a particular protocol’s corresponding implementation
elements. This separation of concerns has limited value in model-
driven integration. In defining the engineering model for integra-
tion, the critical information is the links-across-views between the
JAM concepts and the PSM elements that implement them. In Fig-
ure 2 in the main text, when the PIMs in the Partner A and Part-
ner B engineering models are different, we use them to define the
local conceptual-model-to-PSM links, but they play no direct role
in the integrating engineering model. But in the special case
where the PIMs are identical and only the PSMs are different, the
integrating JAM is reflected in the common PIM, and the PSM-A-
to-common-PIM and common-PIM-to-PSM-B links effectively de-

fine the engineering model for the integration—the conversions
between the PSM elements that must be implemented.

Our approach is similar to how systems are integrated using
Enterprise Application Integration tooling.2,3 Such tooling helps
engineers develop the interaction’s conceptual model, usually by
tailoring a conceptual model that the EAI vendor provides. The
tooling then walks the engineer through the process of develop-
ing the links-across-views directly to the communicating systems’
engineering models. EAI is a kind of model-driven integration.

The difference is that most EAI tooling does not exploit exist-
ing models other than those the EAI vendor provides; it does
create and archive the component models and interaction mod-
els developed under its guidance. We advocate developing and
maintaining such models during construction and acquisition of
the individual systems, so that engineers can employ the same
approach to integration with models that already exist.

References
1. J. Miller and J. Mukerji, eds., MDA Guide, ver. 1.01, Object Management

Group, June 2003, www.omg.org/docs/omg/03-06-01.pdf.
2. B. Gold-Bernstein and D. Marca, Designing Enterprise Client/Server Sys-

tems, Prentice Hall, 1998.
3. UML Profile and Interchange Models for Enterprise Application Integration

(EAI) Specification, Object Management Group, 2002, www.omg.org/
docs/ptc/02-02-02, 2002.

Comparisons

About the Authors

Peter Denno is a computer scientist at the US National Institute of Standards and Tech-
nology. His research interests include information modeling and systems engineering. He re-
ceived his BS in mathematics from the University of Connecticut. Contact him at the Nat’l Inst. of
Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899; peter.denno@nist.gov.

Michelle Potts Steves is an information systems analyst at the National Institute of
Standards and Technology. Her research interests include computer-supported cooperative
work, software usability evaluation, and information modeling. She received her BS in mathe-
matics and computer science from Western Maryland College. Contact her at the the Nat’l Inst.
of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899; m.steves@nist.gov.

Don Libes is a computer scientist at the National Institute of Standards and Technology.
His research interests include interaction integration automation and national broadband
policy issues. He received his MS in computer science from the University of Rochester. Contact
him at the Nat’l Inst. of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899;
don.libes@nist.gov.

Edward J. Barkmeyer represents NIST on national and international standards bod-
ies in the areas of interface specification, information modeling, and data interchange for
manufacturing software. He is currently leading a project in automating software integration
processes using systems engineering and artificial intelligence methods. He received his MS in
applied mathematics from the University of Maryland. Contact him at the Nat’l Inst. of Stan-
dards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899; edbark@nist.gov.

