
Integration Framework of Process Planning based on Resource Independent

Operation Summary to Support Collaborative Manufacturing

Boonserm Kulvatunyou*, Richard A. Wysk**, Hyunbo Cho***, Albert Jones*

*MSI Division, National Institute of Standard and Technology
Gaithersburg, MD 20899, U.S.A.

** Department of Industrial and Manufacturing Engineering, Pennsylvania State University
University Park, PA 16802, U.S.A.

*** Department of Industrial Engineering, Pohang University of Science and Technology
Pohang 790-784, Korea

Abstract

In today’s global manufacturing environment, manufacturing functions are distributed as

never before. Design, engineering, fabrication, and assembly of new products are done routinely in

many different enterprises scattered around the world. Successful business transactions require the

sharing of design and engineering data on an unprecedented scale. This paper describes a

framework that facilitates the collaboration of engineering tasks, particularly process planning and

analysis, to support such globalized manufacturing activities. The information models of data and

the software components that integrate those information models are described. The integration

framework uses an Integrated Product and Process Data (IPPD) representation called a Resource

Independent Operation Summary (RIOS) to facilitate the communication of business and

manufacturing requirements. Hierarchical process modeling, process planning decomposition and

an augmented AND/OR directed graph are used in this representation. The Resource Specific

Process Planning (RSPP) module assigns required equipment and tools, selects process parameters,

and determines manufacturing costs based on two-level hierarchical RIOS data. The shop floor

knowledge (resource and process knowledge) and a hybrid approach (heuristic and linear

programming) to linearize the AND/OR graph provide the basis for the planning. Finally, a

prototype system is developed and demonstrated with an exemplary part. Java and XML

(Extensible Markup Language) are used to ensure software and information portability.

Keywords: Process planning, Collaborative manufacturing, Resource independent operation

summary, Resource specific process planning, AND/OR graph linearization

1. Introduction

Virtual manufacturing adds “rapidity” or “agility” of time and “globalization” of space to

the dimension of classical manufacturing. The manufacturers who adopt the concept of virtual

manufacturing are able to respond quickly to customers with various types of product demands. The

Internet and recent Information Technology developments like the Extensible Markup Language

(XML) provide the opportunity for customers and manufacturers in the supply chain to share

product, process, and production-related data across the enterprise. Using these new technologies,

the designer, the planner, and producer can collaborate to reduce the product-development life cycle

and it associated costs.

Until recently, process planning was considered a promising candidate for enhancing the

adaptability and flexibility of manufacturing systems. The primary concerns about process planning

have been its role in the automation and integration of design, shop floor control, and business

functions in the face of the increasing, dynamic nature of manufacturing. For example, designers

now prepare a product design and attempt to validate its specification and manufacturability using

process planning software. Since this software uses engineering as well as design data, this effort

requires the sharing data electronically on an unprecedented scale.

This paper describes a process planning integration framework that facilitates the sharing of

engineering data for collaborative manufacturing. The framework starts with the designer’s input,

called a Resource Independent Operation Summary (RIOS) to facilitate the communication of

product, process, and production requirements. The RIOS is structured hierarchically into two

levels and represented as an augmented AND/OR directed graph. A Resource-Specific Process

Planning (RSPP) module is then responsible for interfacing with the shop floor knowledge base to

assign required equipment and tools, to select process parameters, and to determine manufacturing

costs based on RIOS data. The RSPP module is implemented and demonstrated with a sample part

in the context of a request-for-quote (RFQ) scenario.

The rest of the paper is organized as follows. Chapter 2 describes related research. An

overview of the integration framework is presented in Chapter 3. Each component illustrated in

Chapter 3 is then detailed in Chapter 4, 5, and 6 including the RIOS data specification, the

1

manufacturing resource model, the process knowledge model of the manufacturing site, and the

RSPP. An exemplary planning effort using the described framework is presented in Chapter 7.

Finally, the conclusions and contributions of this work are discussed.

2. Related Work

The process planning begins uses engineering drawings, specifications, and parts or

material lists as inputs. It identifies the machining processes, resources, and cutting parameters

necessary to convert the raw materials into finished products using three different approaches –

variant, generative, and semi-generative. The collection of software applications and databases

needed to execute these functions is called a Computer Aided Process Planning (CAPP) system. In

the variant approach, a standard process plan is retrieved from a database and edited if necessary. In

the generative, approach, the system creates a new process plan from the input data and extracted

manufacturing features. In the semi-generative approach, these two approaches are combined [2].

A number of distributed process planning and process engineering tools has been reported.

CyberCut [15] is an internet-based design tool that is integrated with a design-rule checker for

machining feasibility. The client logs on using a feature-based WebCAD design interface. The

designer starts by defining the workpiece and adding negative features. The design is then

submitted for process planning and fabrication, which is currently done manually. This integration

avoids the part specification exchange by providing the client with a remote, accessible design

interface. However, the clients usually prefer to their own CAD modeling package. In addition,

constraining the design to negative features typically limits the designer creativity.

Design Space Colonization (DSC) is an agent-based enterprise integration for the cable

production service [3]. The system consists of several agents that exchange data and negotiate with

each other. Important agents of this system are the process broker agent and the process capability

agents. The process broker agent, who receives the part design from the design agent, locates

appropriate, candidate, process capability agents and communicates the required information. The

process capability agents represent outside manufacturers who have different process capabilities.

The communication in this integration was under (STandard for Exchange of Product data) STEP

umbrella. (NEED A REFERENCE TO STEP)

2

Candadai et al. [1] developed an automated vendor selection for the manufacturing of

microwave modules. The AIM project at Lockheed Martin [13] has developed several interfaces

and forms to establish partners electronically and to implement using STEP a request-for-quote

service to facilitate manufacturing activities. So far, this project has achieved only business and

legal services using standard Internet protocols, such as (Hyper Text Transfer Protocol) HTTP,

(Send Mail Transfer Protocol) SMTP, and (Network News Transfer Protocol) NNTP. The research

currently is in the process of setting up the infrastructure, including the supplier-information scheme

and associated evaluation, and selection procedures. In addition, the project is also developing an

agent-based supplier evaluation and monitoring system based on that infrastructure.

3. Process Planning for Collaborative Manufacturing

3.1. Conceptual Framework

We have decomposed the process planning function for machined parts into seven

problems. The first three problems are resource-independent and can be addressed in the conceptual

and detailed product design stages. The last four steps, which require information from the first

three steps, require resource-specific data; they are performed at the manufacturing vendor site.

The paper describes the integration issues of the last four steps.

1) Resolve repeatability requirements, which constrain the grouping of processes to those

that must be done without refixturing the workpiece.

2) Resolve geometric tolerance requirements, which constrain the processing sequence to

maintain the repeatability and accuracy (e.g., process reference surface first).

3) Resolve precedence constraints based on economic and technological considerations of

machining – for instance, performing roughing operations before finishing operations

will reduce tool chattering.

4) Analyze producibility. This step involves aggregate level analysis in order to determine

and quickly respond with whether the shop has sufficient manufacturing capability to

satisfy the requirements specified in the RIOS.

5) Select available resources on which the processes are available to satisfy technological

requirements and utilization.

3

6) Select available processes, and precedence constraint among those processes, to meet

shape requirements and accuracy constraints. The result is a unidirectional chain of

process operations [18]. For example, when a hole needs to be bored or reamed to

obtain required accuracy, it must be drilled first.

7) Generate final linearized plan that specifies exact sequence of processes and resources

based on some performance criterion such as to minimize cost and/or time.

The framework used to integrate design and manufacturing activities and implement the

RSPP module with the RIOS is illustrated in Figure 1. The process planning system is required to

respond automatically to a RFQ from the design house. In addition to the actual RFQ, the client

sends the product data as well as the RIOS. The RIOS is represented by a set of process

requirements and alternatives organized into a set of hierarchical, AND/OR directed graphs with

references to part geometry. These serve as input into the RSPP module, which parses them into

object-based entities. Using two repositories, a Manufacturing Resource (MR) model and a Process

Knowledge (PK) model, the RSPP module conducts a shop-level producibility analysis. If this

analysis shows that the best attainable manufacturing capabilities cannot satisfy the process

requirements, then a rejection quote is returned. Otherwise, a detailed planning activity proceeds. It

should be noted that the MR and PK models are vendor-specific manufacturing data.

During the detailed planning stage, all possible equipment, processes, and costs are

assigned to each manufacturing operation in the RIOS. The PK and MR models are used to make

these assignments. Since alternative processes and equipment are possible, the next step is to select

the best from among those alternatives and then compute the total, expected, production cost.

Chapters 4 to 6 detail each component illustrated in Figure 1.

4

Parse XML process
data

Manufacturing
resource model

Resource, Process,
and Final plan

selection

Output to client

 Process data
(XML)

Design
data

Producibility
analysis

Process
knowledge

RIOS data objects

Total cost and time in
the Quote document

Parts not producible with respect
to the available processes

RIOS data

If impossible

Shop floor
knowledge model

RSPP Module

If impossible

Design house Manufacturer side

RFQ

Figure 1: Overview of process planning for collaborative manufacturing

3.2. Implementation Framework

This section describes the process-knowledge service architecture, which the RSPP module

utilizes to perform its tasks. Figure 2 shows that the RSPP module functions as a control center

utilizing the service provided by the MR model (named as resourceModel package in the figure)

through the PK model (named as processknowledge package) for the process planning. The

processknowledge package is an interface specification, which decouples the RSPP module from the

actual process-knowledge implementation, which is done by the MR model. Thus, the RSPP

module can interoperate across process-knowledge implementations that conform to the interface

specification. This in turn enables third-party vendors and users to supply process knowledge that

might be provided by the original equipment manufacturer (OEM) along with the purchased

equipment.

5

resourceModel

+ Endmil l
+ Reamer
+ Dri ll
+ Boring

<<Entity>>

processKnowledge

+ Hole_making_capable
+ Countersinking_capable
+ Slot_making_capable
+ Corner_rounding_capable

<<Boundary>>

rspp

+ CimProducibilityRSPP
+ CimProcessSelectionRSPP
+ HoleMakingProcessPlanner
+ SlotMakingProcessPlanner
+ CompositeGroupProcessesRecognizer
+ SerialAndHandler

<<Control>>

im plements
coordinates

machiningParameter

+ MachiningParameterManager
+ TwistDrillingParameter
+ SlotMillingParameter
+ PeripheralMillingParamter
+ BoringParameter
+ ReamingParameter

uses

Figure 2: UML package diagram of the RSPP module implementation

In the service architecture, each manufacturing resource provides process knowledge

through a set of interfaces that capture its capabilities including shape producing capability, process

accuracy, process selection and sequencing, and machining parameter selection. Conceptually, an

interface indicates a service or services provided by the object implementing the interface.

Theoretically, an interface defines a common set of specifications for any object that commits to

provide a service or services. Thus, a set of interfaces defines a service architecture, which consists

of service specifications, service providers, and clients. The service architecture provides any

service-provider object conforming to the service specification seamless plug-in to the client

module, which utilizes the service. In this architecture, the manufacturing resources are service

providers since they implement the interfaces, and the RSPP module is the client.

The UML class diagram in Figure 3 demonstrates how the service architecture works with

the MR model. Three interfaces (indicated by the boundary class stereotype) are shown in the figure

including the Hole_making_capable, Slot_making_capable, and Countersinking_capable. The

Drill class implements the Hole_making_capable and the Countersinking_capable. This means

that Drill and its subtypes have a hole- and countersink-shape-producing capabilities and are

committed to provide the hole-making and countersinking services. Consequently, Drill must

implement the functions defined in the interface specification. For example, the functions

6

verifyHoleDiaTolPlus(tolVal) and verifyHoleDiaTolMinus(tolVal) indicate that the object

implementing the Hole_making_capable interface must provides a service, which determines

whether it can achieve the specified diametric tolerance (given by the tolVal input parameter).

Twist_drill
(from resourceModel)

Spade_drill
(from resourceModel)

Step_drill
(from resourceModel)

Reamer
(from resourceModel)

<<Entity>>

service

service
Drill

(from resourceModel)

<<Entity>>

service

Slot_making_capable

verifySlotMakingGeometry()
verifySlotMakingAccessibility()
veritySlotMakingPosTol()
verifySlotMakingSF()
planSlotBody()
planSlotTop()
verifySlotMakingProcessAccuracy()
planMultipleSlot()

(from processKnowledge)

<<Boundary>>

Hole_making_capable

verifyHoleMakingDiaTolPlus()
verifyHoleMakingDiaTolMinus()
verifyHoleMakingSF()
verifyHoleAccessibility()
planHoleBody()
planHoleTop()
verifyProcessAccuracy()
planMultipleHole()

(from processKnowledge)

<<Boundary>>

implements

implements

Countersinking_capable

verifyCountersinkingGeometry()
verifyCountersinkingAccessibility()
planCountersinking()

(from processKnowledge)

<<Boundary>>

implements

Endmill
(from resourceModel)

<<Entity>>

implements
implements

implements

Figure 3: UML class diagram showing the process knowledge interfaces

Since the UML specification does not have specific symbol for the interface, the class

stereotype is used as a notation to differentiate the class and interface. The entity stereotype is

normally used to represent class that is purposely created to hold static information (i.e., data

structure and class logic). The boundary stereotype typically (1) handles communication between

system surroundings and the inside of the system, and (2) provides the interface to a user or another

system [14]. Consequently, the boundary prototype corresponds to the interface and the verb at the

center of the association connection describes the relationship – for examples, the Drill implements

the Hole_making_capable. The text at the end of the association connection indicates the role in the

relationship – for example, the Hole_making_capable represents a service. The arrow connection

represents the subtype relationship.

7

4. Resource Independent Operation Summary

The RIOS contains order management data, production requirements data, and a two-level

process-plan graph. The order management data includes a general client identity and order-

tracking data. The production requirement data includes order size, delivery date, and material

requirements. These data are not the focus of this paper; it focuses on the process-plan graph, which

consists of manufacturing specifications. The upper level graph is called an Operation Level Graph

(OLG) and the lower level graph is called a Process Level Graph (PLG). The OLG is a directed

AND/OR graph, in which each node describes a type of operation, equipment, work-holding

requirements, and a pointer to associated PLG. An operation is viewed as an aggregation of

processes where the product specification necessitates that they are executed without refixturing

(e.g., due to extremely tight repeatability requirement). The PLG is an augmented directed

AND/OR graph, in which each node contains process capability requirements such as type of

process, required accuracy, and associated geometric entities, which come from the product data.

Together, the RIOS forms an integrated product and process definition.

These graphs can represent a variety of plan alternatives. The AND connections lead to

sequencing alternatives of which there are two subtypes: serial and parallel. If the serial AND

circumscribes two or more nodes, they must be done in sequence yet in any order. If the parallel

AND connects two or more nodes, then they must be done but it is possible to execute them

simultaneously. The OR connections lead to processing alternatives, in which only one node within

the connection shall be executed. It is used, for example, when two or more types of operations can

achieve the same requirement. A GROUP connection is also used in the PLG whenever it is

possible to combine the tasks into a single execution. This can happen only when the volumetric

entities of the tasks within the GROUP are adjacent in the product model – for example, it is

possible to combine a hole processing and a counterbore processing into a step drilling.

Typical process plans are generated with specific resources on the shop floor. We regard

the RIOS as resource independent, because it (1) is based on process requirements only, (2) is

generated from universal-level process knowledge [1], (3) incorporates the principles of process-

plan decomposition, and (4) it allows representation of alternative operations and processes. The

following paragraphs describe these characteristics in more detail.

8

The RIOS specifies processing requirements only; it does not state directly a set of tasks to

be executed to meet those requirements. However, these requirements could certainly be used to

generate such set. The universal-level process knowledge refers to knowledge and practices in

common use among professional process engineers and found in manufacturing handbooks [11].

For example, parameters like overall shape-producing capability, workpiece materials, overall

geometry, and production size can indicate the preferred type of manufacturing processes – casting,

machining, stamping, and so on. Typically, these parameters are determined at the conceptual

design stage, where it is impossible to identify specific manufacturing equipment. The use of

conceptual design data and universal level-process knowledge to select process requirements can be

found at the Manufacturing Advisory Service web site [17]. An exemplary construction of RIOS

data is presented in Section 7.1.

5. Shop Floor Knowledge

We now describe the MR and PK models, which contain the vendor-specific shop floor

knowledge base that is required for the RSPP module to generate a Resource Specific Plan (RSP)

from the RIOS.

5.1. Manufacturing Resource (MR) Model

The MR model characterizes the vendor-specific shop floor resources that could be used to

fabricate the requested product. Generally, the MR model must represent the technological and

economical specifications for the resources. The technological specifications of machine tool may

include table size, repeatability, and capacity. The economical specifications of machine tool may

include the utilization cost, set-up cost, tool life, maintenance schedule and operating status [10].

Figure 4 illustrates the top-level schema for a typical set of manufacturing resource entities

(extended from [6]). The relation between Milling_machine and Machine_tool represents an ‘is-a’

relationship. The relation between Milling_machine and Tool_magazine represents an ‘owns-a’

relationship. The relation between Milling_machine and Milling_spindle is also an ‘own-a’

relationship; however, a Milling_machine may own several Milling_spindle’s. All other attributes

associated with an entity, which is of simple data type (not of entity type), are said to have ‘has-a’

relationships with the entity. We note that the term ‘entity’ refers to the generic definition, while the

term ‘instance’ refers to a particular realization of an entity.

9

Figure 4: Top-level entities in the manufacturing resource schema

There are number of possible relationships between manufacturing resources. To

distinguish among these relationships, we developed a set of predicates that formally define the

semantics of each relationship as shown in Table 1. In addition, each manufacturing resource

provides process knowledge associated with it by implementing a set of interfaces as described in

Section 3.2. Table 1 also includes predicates that define the semantics of relationships between

resources and interfaces. These predicates are necessary to make inferences about the resource

capabilities associated with the interfaces and ownership relations. They also enable the top-down

producibility analysis as well as resource and process selections mechanism. We note that the

Resource is the highest-level object in the MR model’s universe of discourse. Thus, every object in

the MR schema is a subtype of the Resource.

10

Table 1: Predicates defining the semantics of resource relationships

Predicate Description
Resource(x1), Resource(x2), Resource(x3),
Resource(x4), Resource(x5)

x1, x2, x3, x4, and x5 are instances of the Resource object.
Attribute(a1), Attribute(a2) a1 as well as a2 is an Attribute.
HasAttr(x1, a1) Resource x1 has attribute a1.
HasAttrVal(x1, a1, c1) Attribute a1 of resource x1 has value c1.
Is(x1, x2) Resource x1 is a subtype of resource x2 (‘is-a’ relationship).
HasAttrVal(x1, a1, c1) HasAttr(x1, a1) If attribute a1 of resource x1 has a value of c1, then it is true that

resource x1 has attribute a1.
Owns(x1, x4) Resource x1 owns resource x4 (‘owns-a’ relationship).
Owns(x1, x4) and HasAttrVal(x4, a2, c2)
HasAttrVal (x1, a2, c2)

If resource x1 owns resource x4 and attribute a2 of resource x4
has value c2, then resource x1 also has attribute a2 of value c2.
This implies that an owner of a resource posses its capability.

Is(x1, x2) and HasAttr(x2, a1) HasAttr(x1,
a1)

If resource x1 is a subtype of resource x2, then it inherits the
attribute of x2 (object inheritance).

Is(x1, x2) and Is(x2, x3) Is(x1, x3) The ‘is-a’ relationship is transitive.
Owns(x1, x4) and Owns(x4, x5) Owns(x1,
x5)

The ‘owns-a’ relationship is transitive.
Interface(y1), Interface(y2) y1 and y2 are interfaces.
Is(x1, x2) and Implements(x2, y1)
Implements(x1, y1)

If resource x1 is a subtype of resource x2 which implements
interface y1, then resource x1 also implements interface y1.

Implements(x2, y1) ↔ ProvidesService(x2,
y1)

If resource x2 implements interface y1, then it is implied that
resource x2 provides service y1. The reverse is also true. Note
this is to say that Implements means ProvidesService.

Owns(x1, x3) and Implements(x3, y2)
ProvidesService(x1, y2)

If resource x1 owns resource x3 and x3 implements interface y2,
then it implies that owner x1 also provides service y2.

5.2. Process Knowledge (PK) Model

Process knowledge captures capabilities and utilizations of each resource including shape

producing capability, process accuracy, process selection and sequencing, and machining parameter

selection.

5.2.1. Shape Producing Capability Knowledge

The shape-producing capability indicates the types of RIOS processes the equipment can

produce. In this research, a resource indicates its shape producing capabilities by implementing

interfaces as illustrated in Section 3.2.

11

5.2.2. Process Accuracy Knowledge

The process-accuracy indicates the level of precision capability of the process. In particular,

one may use process bounds to represent process accuracy knowledge. For example, the process

bounds used for the hole-making process and the slot-making process may follow the research

results from [7] and [18], respectively. These bounds give ranges for the attainable accuracy of

these processes.

Ferreira et al. [4] suggested that the ownership relations signify the capabilities of the

owner. For example, if a milling machine owns a 0.5 cm twist drill (i.e., the twist drill can be

mounted on the milling machine and perform its task) then it can drill a hole with diameter 0.5 cm.

The relationship suggests that the process knowledge as well as resource knowledge may be

classified into individual facts and relational facts. A relational fact is the data resulting from the

combination of resources. In a flexible manufacturing system, process accuracy is typically affected

by relations between resources because the same tool mounting on different machines can result in

different process accuracy. For example, relational facts between a particular milling machine and a

particular carbide drill bit may be the diametric accuracy capability, the positioning accuracy,

among thers. The relational facts help build the knowledge base of the flexible manufacturing

system. The facts are characterized along with the ownership relations between resources. The

individual fact is opposite. It is not changed when resources are used in combination with other

resources. An exemplary individual fact about process is its economical utilization.

5.2.3. Process Selection and Sequencing

The process selection and sequencing capture the unidirectional chain of processes and the

economical utilization of processes. The unidirectional chain of processes, which is derived from

the process accuracy requirement, may be captured in a decision tree along with the process

accuracy as described in [2]. In this research, the unidirectional chain of process is captured as a

self-contained knowledge of each process. For example, if it is determined that a Reamer, which

implements Hole_making_capable, is required to achieve the accuracy requirements, then the Reamer

itself provides the unidirectional chain of processes (e.g., drilling first, semi-finished reaming, and

then finished reaming). The economical utilization of process can be determined directly from the

cost and/or time. However, this can be exhaustive. In this research, the economical utilization of

12

process is performed in two stages. First, a heuristic is used to indicate the preferred process (as

well as resource) for each node in the process-plan graph; then the cost/time rational is used at the

final plan generation to linearize the graph.

5.2.4. Machinability Data

Machinability data, typically from a reference handbook, specifies properties of materials

with respect to specific cutting and forming processes. For example, recommended machining

speeds, cutting depths, feed rate, and coolant choice will be specified when using particular cutters

to machine particular types of materials. In some cases, characterizations of thermal effects, surface

finishes, and chaff/chip formations are included. The machinability data can be declarative (e.g.,

machining data handbook), procedural (machining parameter optimization) [18], a mix of

declarative and procedural [16], based on the experience of machinists, or supplied with the

equipment by the manufacturer.

6. Resource-Specific Process Planning

This chapter describes the core software components implemented in the RSPP with a

special emphasis on the object-oriented architecture that binds them together. These software

components are the XML parser, the XML object packages, and the process planning-related

classes. These components provide a basis for the integration of process planning between a client

side and a server side. Typically, each manufacturing partner implements these components by

extending (subclassing) the utility classes and customizing a set of defined procedures using its own

shop floor knowledge. The discussion in this section follows the subcomponents of the RSPP

module illustrated in Figure 1.

6.1. XML RIOS Data Objects

Because the RIOS data from the design house are encoded in XML, an XML parser is

necessary. A parser, which converts XML data elements into self-contained objects, allows

software components to exploit object-oriented features such as object abstraction and object

polymorphism. Such parser framework (available at [5]) allows the RSPP module to be reusable. To

use this parsing framework, we defined Java classes for each type of data element in the

information models. Figure 5 shows that all the classes are organized into XML Object Packages

13

with respect to the RIOS information schemas including the graph -- operation, process, and

support. The operation and the process schemas define the process-plan schemas for the operation-

and the process-level graphs. The support schemas define low-level entities for the operation and

process requirements (such as measurement items).

manufacturingProcess riosSupport

operati onri osGraph

Figure 5: UML package diagram of XML object packages

Figure 6 shows a small portion of class diagram within the RIOSGraph package -- where all

of the graph- related elements are defined. The traverseGraph method was defined only once in the

DirecteGraph class for all DirectedGraph subtypes (object abstraction). Alternatively, the subclass

can override or add more definition to this behavior (object polymorphism).

Di rectedGraph

traverseGraph(curNode)
getInitialNode()

IBMXMLElement

getAttributeValue()

ProcessLevelGraph

ge tProcessInfo(Node)

OperationLevelGraph

getOperationInfo(Node)

Figure 6: UML class diagram showing examples of XML object definitions

14

6.2. Producibility Analysis

The producibility analysis conducts an aggregate analysis of a vendor's manufacturing

capabilities for a quick response to a RFQ from the design house. The class diagram in Figure 7

shows the object architecture used for the producibility analysis. The ProducibilityRSPP class

utilizes the MR and PK models described earlier to evaluate manufacturability and to respond to the

RFQ. It handles the aggregate pass of manufacturability analysis. Nevertheless, manufacturing

partners must supply their own process knowledge and decision-making procedures through the

abstract methods defined within the class. They do this by subclassing the class and implementing

those abstract methods (marked by the 'key' icons). A particular manufacturing partner may

subclass the class as CimProducibilityRSPP and define the associated abstract methods. The

producibility analysis is executed in two levels: the operation level and the process level. The

operation level analysis considers the operation type and work holding, while the process level

analysis consider the process type, size, and best attainable accuracy.

Producibil ityRSPP

Producibi l it yRSPP()
analyzeProduci bil ity()
trave rseProducibi li ty()
handl eCo nnecti onNode()
analyzeOperationProducibi li ty()
analyzeProcessProd uci bi li ty()
analyzeGroupProcessProducibi li ty()

<<Control>>

CimProducibil ityRSPP

analyzeOperationProducibi li ty()
analyzeProcessProd uci bi li ty()
analyzeGroupProcessProducibi li ty()

<<Control>>

Figure 7: UML class diagram for producibility analysis

The operation-level procedures must be encoded in the analyzeOperationProducibility()

method where the CimProducibilityRSPP class inherits from the ProducibilityRSPP class. The

traverseProducibility() method will invoke this method on each node of the OLG. Similarly, the

15

process-level producibility procedures must be encoded in the analyzeProcessProducibility()

method. The traverseProducibility()method will invoke this method on each node of the PLG.

A set of predicates included in Table 2 formally describes the functional requirements for

producibility analysis in the abstract level. The predicates defined in Table 1 are used in this table.

The semantics of these predicates must be captured within the analyzeOperationProducibility()and

the analyzeProcessProducibility().

Table 2: Producibility analysis predicates

Predicate Description
∃xOperationType(x) ∃y[Machine_tool(y) and
isCapableOf(y,x)]

If there exists a requirement for operation x, there must exist
machine tool y that is capable of performing operation x.

∃xWorkpiece(x) ∃y∃z[Machine(y) and
Fixture(z) and Owns(y,z) and CanHold(y,z,x)]

If there exists a requirement for workpiece x, there must
exist a machine y that owns fixture z. The combination of
machine y and fixture z must be able to hold workpiece x.

Process(x) X is any type of material removal process.

GeometricRqmt(x) A set of geometric requirements of process x.
TopologicalRqmt(x) A set of topological requirements of process x.
ProcessAccuracyRqmt(x) A set of process accuracy requirement of process x.
∃xProcess(x) ∃y∃z[Machine_tool(y) and
Tool_body(z) and Owns(y,z) and
satisfiesGeometricRqmt (y,z,GeometricRqmet(x))
and satisfiesProcessAccuracyRqmt (y, z,
TopologicalRqmt(x)) and
satisfiesProcessAccuracyRqmt
(y,z,ProcessAccuracyRqmt(x))]

If there exists a requirement for process x, there must exist
machine tool y that owns tool body z. The combination of
machine tool y and tool body z must satisfy the geometric
requirements, topological requirements, and process
accuracy requirements of process x.

6.3. Resource Selection

Resources are selected by matching the resource specifications with respect to the

requirements in the OLG. The first two predicates in Table 2 capture this semantics. The class

diagram in Figure 8 shows the object architecture for the resource selection (as well as process

selection described in the next section). Similar to that described in Section 6.2, the abstract

functions, which require vendor specific implementations, are defined in the ProcessSelectionRSPP

and must be implemented in the subclass (e.g., the CIMProcessSelectionRSPP class). The function

getFeasibleMachines() is executed on each node of the OLG to provide a list of possible machines

for the process selection step. The list may be ordered with respect to a set of conflict resolution

strategies. Examples of such strategies are minimum resource utilization and minimum utilization

16

cost. These strategies may be ranked differently by each vendor. In addition, this ranking may

change over time. For instance, equipment with lower resource utilization may be ranked higher

during heavier production periods to produce more and meet customer demand. On the other hand,

equipment with lower utilization cost may be ranked higher during lighter production periods.

6.4. Process Selection

A partial list of the abstract functions used for the process selection is listed in Figure 8. For

instance, the assignProcessPlanAndCost()is invoked on every process node on the process-level

graph, and the assignGroupProcessPlanAndCost()is invoked on every GROUP connection. The

manufacturing vendor provides the implementations of these functions through the

ProcessSelectionRSPP subclass (e.g., CimProcessSelectionRSPP) using its shop floor knowledge.

ProcessSelectionRSPP

ProcessSelectionRSPP()
assignResourceSpecifics()
traverseProcessSelection()
handleConnectionNode()
writeCostTime()
writeQuote()
getOptimalPath()
getFeasibleMachines()
assignProcessPlanAndCost()
assignGroupProcessPlanAndCost()

<<Control>>

CimProcessSelectionRSPP

getFeasibleMachines()
assignProcessPlanAndCost()
assignGroupProcessPlanAndCost()

<<Control>>

Figure 8: UML class diagram for resource, process, and final plan selections

The implementation in this research creates helper classes including planners, handlers, and

recognizers to provide specific functionalities for the process selection. A planner class, aggregates

a set of services to achieve a specific planning task, is associated with each process type. Handler

and recognizer classes are created to facilitate the AND/OR graph linearization. The process-

selection procedure calls appropriate planners, handlers, and recognizers with respect to node types

and the process requirements specified in each node of the PLG. A collaboration diagram in Figure

17

9 illustrates examples of helper classes including the HoleMakingProcessPlanner,

SlotMakingProcessPlanner, SerialAndHandler, and CompositeGroupProcessRecoginzer. In this

diagram, the interactions between classes are illustrated by request-for-assistance messages passing

between them. For example, the CimProcessSelection ask the HomeMakingProcessPlanner to plan hole

(message #1) when a Hole_making_process is encountered in the PLG. Note that the planner classes

utilize the process knowledge through the interface specifications (e.g., Hole_making_capable),

which are implemented by the manufacturing resources.

 : HoleMakingProcessPlanner
 : SlotMakingProcessPlanner

 : CompositeGroupProcessesRecognizer

 : Hole_making_capable
 : Slot_making_capable

 : Countersinking_capable : Corner_rounding_capable

 : CimProcessSelectionRSPP

 : Corner_rounding_capable

 : SerialAndHandler

If recognizable, this
class send a
messeage to the
planner to plan
multiple hole, for
example

4: Verify Geomtric Capability
5: verifyHoleAccessibility ()

6: verifyHoleProcessAccuracy ()
7: planHoleBody ()
8: planHoleTop ()

9: verifySlotMakingGeometry ()
10: verifySlotMakingAccessibility ()

11: verifySlotMakingProcessAccuracy ()
12: planSlotBody ()
13: planSlotTop ()

17: Cannot recognize, treat Group as SerialAnd

15: plan chamfer transition
14: plan round transition

16: plan chamfer transition

1: plan hole 2: plan slot

3: Recognize Group Process
18: handle Serial_and

Figure 9: UML collaboration diagram between control classes and boundary classes

The process selection traverses each process node in the PLG to select a process or

processes and assign a cost. The analysis examines the process capability of each machine with

respect to the ordered list of feasible machines received from the resource selection. The

CimProcessSelectionRSPP coordinates the analysis through planners (e.g., message #1 and #2 in

Figure 9), which are subordinate controllers. The planners in turn issue messages to request process-

capability verification from the PK interfaces. They use the results to select appropriate processes

and resources -- a conflict-resolution or a vendor-specified order of preference is used when

multiple candidate processes are available. For example, an ordering of twist drill, end mill, reamer,

18

and boring may be specified whenever Hole_making_capable is invoked. This means that the twist

drill will always be selected first (because of its cost and time efficiency), if it is capable of

achieving the process requirements. Suppose a reamer is selected for a hole, the planner then makes

a planning-service request -- a call to the planHoleBody() method would be made to generate the

necessary processing sequences and associated costs -- from the Hole_making_capable interface of

the reamer. The interfaces may send messages among themselves to request auxiliary services. For

instance, the Hole_making_capable may need to send a request to the Countersinking_capable to plan

for chamfer on the top.

When a Serial_and connection is encountered, the CimProcessSelectionRSPP delegates the

task to the SerialAndHandler. The SerialAndHandler tasks are to find out if an intersection exists and

to linearize the connection -- an intersection between a pair of processes occurs whenever the

surfaces generated by the processes share at least a common edge. Since there might be an

intersection between the processes within the Serial_and connection, the information related to the

removal volume may be changed after the linearization.. When this happens, the related volume-

removal information must be modified; this can be a complicated task, which depends upon how the

processes are linearized. For example, the volume-removal information associated with successive

Hole_making_process operations is obtained by compensating the body depth. Figure 10 illustrates

this example. Finding the optimal linearization of the Serial_and connection can be exhaustive, so

is typically rule-based. For example, a simulation study [18] showed that it is more cost effective to

make a step hole by starting from the largest diameter. However, other considerations may affect

the rule. For instance, the most cost-effective sequence may reduce the accuracy or it may subject to

power or geometric constraint.

The CimProcessSelectionRSPP also asks the CompositeGroupProcessRecognizer to determine

if multiple processes within a GROUP can be achieved in a single sequence. A graph-based pattern-

matching algorithm can be used to handle this task. If a pattern matches, the recognizer asks the

respective planner to determine whether resources exist to achieve the desired requirements and to

plan accordingly (e.g., the planMultipleHole() method in the HoleMakingProcessPlanner class). If

the recognizer determines that there is no matching pattern or there is no applicable resource for the

matched pattern, the GROUP connection is treated as a Serial_and connection, which sends the

control back to the SerialAndHandler.

19

h1
h2

h1

h2

h1
h2

SerialAnd

Hole-1

Hole-2

close

Slot-1 Slot-2

Before linearization

Graph Volume Removal

SerialAnd

Hole-1

Hole-2

close
Linearized graph
Hole-1 before Hole-2

SerialAnd

Hole-1

Hole-2

close
Linearized graph
Hole-2 before Hole-1

Figure 10: Effect of the graph linearization to the volume removal information

6.5. Final Plan Selection

The final plan selection includes the procedure to linearize the process-plan graph. The

procedure for this is readily provided in getOptiomalPath() function within the

ProcessSelectionRSPP class. When the process selection finishes traversing the PLG, only the OR

connections remain. At this step, the graph forms the basis for a network-flow problem, which can

be formulated and solved using linear programming -- Figure 11 illustrates the problem

formulation. The total cost of each PLG is assigned to the associated node in the operation level.

The OLG is then linearized to obtain the total cost.

20

init

P1

End

Not
Feasible

P2

G CC OR

P3

P4

P5

CC

init P1 EndP2 OR

P4

P5

CC

Cannot be
combined.

Treat it as SA

C01=01 C12 C23

C34=0

C35=0

10 2 3

4

6 7

5

S12S01 S23
S34

S35

C46

S56

C67

S67C56
S46

init

P1

End

P2

SA CC OR

P4

P5
CC

=
=

=

=

==−

=

∑ ∑

∑∑

−

= =

−

= =

0. node Connection ofcost
i. node ofcost j toi node fromcost

jtoinodefromflow

10

1
1

0 1

01

1

0 1

ij

ij

n

i

n

k
jkij

n

i

n

j
ijij

C

Swhere

ntojallSS

StoSubject

CSMinfunctionObjective

Figure 11: Graph linearization

7. Planning Example using RIOS Data

7.1. Example RIOS Data

Figure 12 illustrates a 2.5D prismatic part with a step slot and with all dimensions in inches.

Since the design is 2.5D and Aluminum has an excellent formability, extrusion seems to be a good

candidate process. However, the production size, which is 1000 pieces, might be too small.

Therefore, a material-removal operation should be considered as well. It is universally true that

these two types of operations have a capability to accommodate the workpiece size and accuracy

specification. While casting might be another candidate, mold cost and the finishing requirement

exclude it from consideration.

21

Figure 12: Example Part

The OLG is shown in Figure 13, which consists of one material removal operation and one

extrusion operation. Since one setup is sufficient for both topological and process-accuracy

constraints, only one removal operation is needed. The tolerance chart for material removal

operation in Figure 14 shows that there is one tolerance stacking in equation (2) causing M01 and

M02 to have a smaller allowance. However, if M01 and M02 are equally allocated with 0.01”

allowance (where C02 = 0.02”), this tolerance is still achieved easily by a milling process. Similar

analysis can be performed for the extrusion operation (OP2), but we have not included the results.

init OR
OP2: Extrusion

OP1: Track
Datum: A:B:C
Tol eq1: M01 ≤ 0.02”
Tol eq2: M01+M02 ≤ 0.02”

CC End

Figure 13: Operation level graph

22

0

1

2

3

a b c d

C01

C02

C03

e

M03

M01

Cbd

M02

M01 <= C01 (1)
M01 + M02 <= C02 (2)
M03 <= C03 (3)
Mad <= Cad (4)
Mbd <= Cbd (5)
Mcd <= Ccd (6)

Cad

Ccd

Mbd

Mcd

Mad

A

B

Figure 14: Tolerance analysis chart

Figure 15 shows the PLG of OP1, namely PLG1. PLG1 consists of two Slot_making_process

nodes within a GROUP connection. In this particular instance, the GROUP connection indicates that the

two processes can be executed in any order and can be combined into a single sequence using

composite tool geometry. Note, as indicated earlier, that the removal volumes of the processes

within the GROUP connection are adjacent.

init

P1: Slot-L (Large)
Slot_making_process

End
P2: Slot-S (Small)
Slot_making_process

G CC

Figure 15: Process level graph for operation OP1, PLG1

7.2. Producibility Evaluation and Process Selection

This section illustrates the shop floor knowledge and the RSPP module working together

through the fabrication laboratory at Penn State University, CIM Lab, and the example described in

Section 7.1 with the focus on OP1. CIM Lab has two Haas vertical milling machines -- Haas VF-OE

(3-axis) and Haas VF-3B (5-axis). A number of fixtures and tools are associated with these two

machines; these tools and fixtures are discussed as necessary.

23

The example in Figure 16 illustrates an operation-level producibility analysis. The

relational capability between the fixture and Haas VF-OE must comply with the workpiece holding

size and the fixture requirements. In this example, the workpiece width (W), the workpiece length

(L), the vise's maximum open distance (VW), and the machine's maximum workpiece width (C),

must satisfy one of the following two conditions: [W < VW and L < C] or [W < C and L < VW]. In

addition, the stacking up of workpiece height (H), the vise's bottom thickness (VT), and the

machine's maximum workpiece height (A) must satisfy H + VT < A. In this example, both of the

machines satisfy the constraints in OP1. Hence, both are forwarded to the process-level producibility

analysis. This analysis traverses through each process node in the PLG graph to determine whether

at least one of the machines possesses process capabilities that satisfy the process requirements

associated with the process nodes. An example process level producibility analysis of PLG1,

particularly P1, is given in detail in Table 3. The resource and process selections occur in a similar

way with an exception that the connection nodes are linearized and the processes and cost/time

estimations are assigned to each node. The final plan is then selected and a quote is sent to the

design house. If the design is not producible, the manufacturing vendor may reply with the RIOS

graph, in which each non-manufacturable node is marked.

Work table

Rectangular vise

workpieceA

L W

H

B

C

vt

V W

Figure 16: Example of operation level producibility analysis, the work holding requirement

24

Table 3: Example data of PLG1 and its process level producibility analysis

Data name Value Producibility Analysis Discussion
Process_level_graph id = Door_Track_PLG1,

init_node_id = node1.1
Call analyzeProcessProducibility()

Init_node node_id = node1.1 Go to next node
Group_node node_id = node1.2, prev_node_id =

node1.1
Call analyzeGroupProcessProducibility(). This group of processes is
recognized as a step slot, however, there is no step mill in the
inventory that fits the geometric requirements. The two processes are
processed separately.

Manufacturing_process_node node_id = node1.3, prev_node_id =
node1.2, process_name = Slot-L

Suppose current production status indicates that lower cost criteria
has higher priority. In this case, the Hass VF-OE is preferable to the
Hass VF-3B.

Slot_making_process Slot-L If a tool complies with all of the requirements then the node is
producible; otherwise, it is not producible. Suppose an endmill of
0.5" diameter is being evaluated.

>Processing_material Aluminum The tool is checked if the material is within the roster of materials,
which this tool is capable of removing.

>slot_shape_information Rectangular_slot
>body_width Toleranced_length_measure

1.25"+/- 0.01 w.r.t. Datum A_1
>body_depth_of_size Length_measure: 0.5"
>positioning Toleranced_length_measure 1.75"

+/- 0.01 w.r.t Datum B
>orientation_tolerance None
>bottom_information Flat_slot_bottom_condition(No

bottom_transition)
>>body_depth_tolerance_plus Length_measure: M02/2
>>body_depth_tolerance_minus Length_measure: M02/2
>>resulting_bottom_face Surface_id = 52
>>SF_bottom Surface_finish = 128 microinches
>resulting_side_faces Surface_id = 42, 54
>Slot_side_form_tolerance None
>SF_side Surface_finish = 128 microinches

Call verifySlotGeometricCapacity() where tool diameter and the
depth capacity are checked against these shape constraints. In this
example, the endmill's diameter and depth capacity are 0.5" (< 1.25"
width) and 2.0" (> 0.5" depth), respectively. Therefore, it passes the
geometric capacity verification.
Call verifySlotProcessAccuracy() where all the process accuracy
requirements are checked. In this example the endmill dimensional
capability is +/- 0.0005 and positional tolerance is up to 0.001 and
the surface finish is up to 30 microinches.
The tolerance of body_width and body_depth (in the worst case
where M02 is allocated 0.001, and M01 has more than enough to
satisfy C02) are larger than the dimensional capability. The surface
finish capability also satisfies the SF_side and SF_bottom. This is
also true with the positioning tolerance; therefore, this endmill
satisfies the process accuracy requirements.

>placement_surface Surface_id = 40
>access_distance Basic_length_measure: 0 w.r.t

Datum AA (opposite to Datum A)

>ends_information Through_end_condition (without
transition)

Call verifySlotTopologicalCapability() where the tool offset length
is checked if it is long enough to accommodate the access distance
plus the slot depth. In addition, the offset length is also checked
against the workholding assembly whether there is enough space for
the tool after the workpiece and fixture assembly. The endmill offset
length is 3.3125". In the operation level example, there is still more
than enough (21.5") space available after the workpiece and fixture
assembly. The placement_surface and ends_information are also
checked if any required pre-condition or post-condition can be met
for the tool to remove the material and produce the required end
condition. In this case, the slot has both ends through and the
beginning_surface data below indicates no blocking, therefore no
plunging or post process is required.

>top_transition None Request service from Countersinking_capable or
Corner_rounding_capable resources as necessary.

>sweeping_information Sweeping_path The sweeping_information is used for cost calculation purpose.
>>sweeping_type Linear_path
>>beginning_surface Surface_id = 23
>>sweeping_distance 2.0
>>Manufacturing_process_node node_id = node1.4, prev_node_id =

node1.2, process_name = Slot-S
This node is also a Slot_making_process node. Therefore, the
producibility analysis follows the same procedure as described
above.

Slot_making_process Slot-S The detail of this process is similar to the Slot-L process and will be
omitted from this table.

Connection_close_node node_id = node1.5, prev_node_id =
node1.3 node1.4

Go to next node

End_node node_id = node1.6, prev_node_id =
node1.5

This process level graph is producible; thus, the OP1 is producible.

25

8. Conclusion

This paper described an integration framework for process planning to facilitate

collaborative product development activities such as design and manufacturing. The framework

uses an Integrated Product and Process Data (IPPD) representation called a Resource Independent

Operation Summary (RIOS) to facilitate the communication of business, product, process, and

production requirements. Hierarchical process modeling, process planning decomposition, and

AND/OR directed graphs form the basis for this representation. We described the shop floor

knowledge architecture and requirements to support the planning task from the RIOS input. A

hybrid approach, based on a heuristic and linear programming, was used to linearize the AND/OR

graph of the RIOS data. Finally, we demonstrated the integration framework for shop floor

knowledge and process planning task based on the object-oriented and service architectures. These

architectures allow the software to be reusable and plug-and-play compatible across the enterprise --

particularly, the RSPP module can be reused and the process knowledge can be supplied to the

RSPP module from the original equipment manufacturer. Reusability and flexibility provide

potential cost savings to the implementations of business and engineering integrations. We believe

that this framework will be especially valuable in supply chains that make complex products such

as cars, planes, and computer where the outsourcing design and engineering functions have become

a growing practice.

Acknowledgment
This work was funded by National Institute of Standard and Technology, contract No. NIST
SB1341-01-W-0383.

Product Disclaimer
Certain commercial software products are identified in this paper. These products were used only
for demonstration purposes. This use does not imply approval or endorsement by NIST, nor does it
imply that these products are necessarily the best available for the purpose

References

1. Candadai, A., Champati, S., Jeffrey, W. H., Ioannis, M., and Ramachandran, V. (September,
1994). 101-109, Information needs in agile manufacturing, Proceedings of the ASME Database
Symposium, Minneapolis, MN.

2. Chang, T.C. and Wysk, R. A. (1985). An Introduction to Automated Process Planning Systems,
Prentice Hall, Englewood Cliffs, NJ.

26

27

3. Cutkosky, M. R. and Leifer, L. J., http://cdr.stanford.edu/DSC/ (September 1997). Design
Space Colonization.

4. Ferreira, J. C. E., Steele, J., Wysk, R. A., and Pasi, D. A., A schema for flexible control in
manufacturing systems. International Journal of Advanced Manufacturing Technology, 18 (6),
410-421.

5. IBM Alphawork Internet Web Site. Available Online via http://www.alphaworks.ibm.com
[accessed December 2001].

6. Jurrens, K. K., Fowler, J. E., Algeo, M., and Elizabeth A. (July 1995). Modeling of
manufacturing resource information: Requirements specification. NISTIR Document No. 5707,
National Institute of Standards and Technology.

7. Khoshnevis, B. and Tan, W. (August 1995). A process planning system for hole making.
Proceedings of IEEE International Symposium on Assembly and Task Planning, Pittsburgh,
Pennsylvania.

8. Knutilla, A., Schlenoff, C., Ray, S., Polyak, S. T., Tate, A., Cheah, S.C. and Anderson, R. C.
(May 1998). Process specification language: An analysis of existing representations. NISTIR
Document No. 6160, National Institute of Standards and Technology.

9. Kulvatunyou, B. (2001). A Resource Independent Process Representation for Enterprise-based
Engineering Integration, Ph.D. Thesis, Pennsylvania State University.

10. Kulvatunyou, B., and Wysk, R.A., (July 2000). A functional approach to enterprise-based
engineering integration, Journal of Manufacturing System, 19 (3), 156-171.

11. Metcut Research Associates Inc. (1980). Machining Data Handbook 3rd Edition, v.1 and v.2,
Cincinnati, OH.

12. Shah, J. J. and Mantyla, M. (1995). Parametric and Feature-Based CAD/CAM, John Wiley &
Sons, NY.

13. Sriram, R. and Candadai, A. (March 1996), Agile infrastructure for manufacturing systems
(AIMS): A pilot program, Fifth National Agility Forum Conference, Boston, MA.

14. Terry, Q. (1998). Visual Modeling with Rational Rose and UML, Addison Wesley, Reading,
MA.

15. Wang, F. and Wright, P. K. (September 13-16, 1998). Web-based CAD tools for a networked
manufacturing service. 1-9, ASME Design Engineering Technical Conferences, Atlanta, GA,
(ASME Document No. DETC98/CIE-5517).

16. Wang, H. P. (1986). Intelligent Reasoning For Process Planning, Ph.D. Thesis, The Penn State
University.

17. Wright, P. (2000) Manufacturing Advisory Service. Integrated Manufacturing Lab. University
of California, Berkeley. Available online via http://cybe-rcut.berkeley.edu/mas2/index.html
[accessed August 2000].

18. Wysk, R. A (1977). An Automated Process Planning and Selection Program: APPAS, Ph.D.
Thesis, Purdue University.

http://cdr.stanford.edu/DSC/
http://www.alphaworks.ibm.com/
http://cybercut.berkeley.edu/mas2/index.html

	Abstract
	Introduction
	Related Work
	Process Planning for Collaborative Manufacturing
	Conceptual Framework
	Implementation Framework

	Resource Independent Operation Summary
	Shop Floor Knowledge
	Manufacturing Resource (MR) Model
	Process Knowledge (PK) Model
	Shape Producing Capability Knowledge
	Process Accuracy Knowledge
	Process Selection and Sequencing
	Machinability Data

	Resource-Specific Process Planning
	XML RIOS Data Objects
	Producibility Analysis
	Resource Selection
	Process Selection
	Final Plan Selection

	Planning Example using RIOS Data
	Example RIOS Data
	Producibility Evaluation and Process Selection

	Conclusion

