
focusmodel-driven development

U S G o v e r n m e n t W o r k N o t P r o t e c t e d b y U S C o p y r i g h t P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y I E E E S O F T W A R E 3 3

construction of highly directable model
compilers, test-case generators, and consis-
tency checkers.

The UML repository
UML’s graphical syntax is the tip of an ice-

berg. UML also defines a repository for cap-
turing models that is separate from both visual
presentation and target implementations, as
Figure 1 shows. Users can employ different
UML notations, including textual inter-
faces,1–4 and store the common meaning in the
repository. Many development environments

are based on text files, and textual presenta-
tions for UML are currently used to create
production systems. Textual formats coexist
with graphical presentations in other lan-
guages5 and can do so in UML.

Equally important, the UML repository
disambiguates meaning for notations that
happen to be the same and enables consis-
tency checking between those meanings. For
example, arrows have different semantics in
the various UML diagrams and even within
one diagram. The UML repository stores each
of these arrow types distinctly so that the
compiler can generate systems according to
users’ intentions rather than how they express
those intentions. Also, consistency checkers
can operate on the repository to detect acci-
dental conflicts between those intentions, or a
tool might be repository-aware and only al-
low the construction of consistent models.

Model compilers can use the repository as
source “code” that reduces the various nota-

UML without Pictures

A
lesser-known fact about UML (Unified Modeling Language) is
that it defines a repository supporting both graphical and textual
notations, as well as compilers for emitting code to multiple plat-
forms. A repository-centered architecture enhances communica-

tion between users of different notations for UML concepts by providing a
standard, centralized store for these concepts. Because the repository fo-
cuses on the meaning behind various notations, it also facilitates the

This article reviews the primary concepts of repository-centered
development with the Unified Modeling Language, explaining the
relation between notation, semantics, and model compilation. It
highlights UML’s approach to semantics, and flexibility in notation
and compilation.

Conrad Bock, US National Institute of Standards and Technology

tions to their intended effects on the resulting
system (see www.omg.org/mda). The separa-
tion of repository from notation provides
greater flexibility in compiler construction
compared to using structures closely related to
the ordering of tokens parsed from languages
such as XML (Extensible Markup Language)
and C++.2,3 Repository compilers traverse ab-
stract syntax in a flexible manner rather than
being restricted to a tree closely related to the
presentation. The architecture provides for so-
phisticated compiler directives, which makes
compilers more configurable.

The UML repository is the basis for gener-
ating serialized formats, such as the XML
Metadata Interchange, which provides file-
based interchange in XML Schema,6,7 and ap-
plication programming interfaces such as the
Java Metadata Interface, which provides dy-
namic access to UML model storage from
Java.8 The repository enables constraints to be
stated and maintained on its contents through
languages such as UML’s Object Constraint
Language, which defines a textual syntax and
repository with the same capabilities as
UML’s.9

An example
Figure 2 shows a UML 2.0 activity dia-

gram10,11 for a simple procedure that updates
a bank account with a deposit. The rectangles
on the border are the activity’s input and out-
put parameters. The arrows are object flows
connecting parameters with input pins and
output pins of actions in the activity. Equiva-
lent presentations in C++ and Visual Basic
syntaxes appear at the bottom of the figure,
assuming that data flow in the activity dia-
gram is presented with variables.

The repository is the same for all the nota-
tions in Figure 2, using the integrated activity
and action model in UML 2. Figure 3 shows
the repository for the part of Figure 2 shown
in bold, the flow between Get Balance and
+. Each repository element is an instance of a
metaclass defined in the UML specification,
which is the name to the right of the colon.
The name to the left of the colon is the repos-
itory instance itself, blank if it is anonymous.
The model shows a ReadStructuralFea-
tureAction called GetBalance that gets the
value of the balance property from an object
it receives from the rest of the model (not
shown). The result is put on an output pin and

3 4 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

Notation
(see Figure 2)

Target-specific
code

Compilation

Parsing

Repository

Amount function Accept_deposit
 (a : Account, d : Amount)
{
 Amount nb = a.balance + d;
 a.balance = nb;
 return nb;
}

Accept_deposit

Get

+

Set
Balance

Get
Balance

Amount

Account

Amount

Figure 1. A repository-centered architecture.

Amount function Accept_deposit (a : Account, d : Amount)
 {
 Amount nb = a.balance + d;
 a.balance = nb;
 return nb;
 }

Public Function Accept_deposit (a As Account,
 d As Amount) As Amount
 Dim nb As Amount
 nb = a.balance + d
 a.balance = nb
 Accept_deposit = nb

End Function

Accept_deposit

Amount

Get
Balance

+

Set
Balance

Output pin Input pin
Object flow

Action
(ReadStructuralFeatureAction)

Input
parameter

Output
parameter

Action
(ApplyFunctionAction)

Account

Amount

Figure 2. A UML 2.0 activity diagram and equivalent C++ and Visual
Basic syntaxes.

passed to an ApplyFunctionAction input
pin. This applies the primitive function + to its
inputs (other inputs not shown).

Once the surface notation is translated
into the repository, model compilers can
generate systems for multiple platforms. For
example, the C++ syntax in Figure 2 could
be compiled to a platform supporting Visual
Basic and vice versa. The compiler might
also detect that no object operations are
used in Figure 2 and offer compilation to a
relational database accessed by Structured
Query Language.12

R epository-centered architectures ex-
tract a system builder’s intention ex-
pressed in multiple notations for use

by highly directable compilers. Users can
view notations they feel comfortable with
and still interchange models with others who
use different presentations for the same con-
cepts. A repository facilitates compiler con-
struction and can be accessed without navi-
gation restrictions implied by the input
syntax. A repository focusing on semantic
rather than notational distinctions supports a
wider set of users and enables more powerful
and accurate system generation and consis-
tency checking.

Acknowledgments
I identify the commercial software languages Java

and Visual Basic to adequately describe concepts. In
no case does such identification imply recommenda-
tion or endorsement by the National Institute of Stan-
dards and Technology, nor does it imply that the soft-
ware languages are necessarily the best available for
any purpose.

References
1. Unified Modeling Language Specification, Version 1.5,

Object Management Group, Mar. 2003; www.omg.org/
cgi-bin/doc?formal/03-03-01.

2. Extensible Markup Language, W3C, Oct. 2000; www.
w3.org/TR/REC-xml.

3. D. Kaley, ANSI/ISO C++ Professional Programmer’s
Handbook, Que, 1999.

4. Human-Usable Textual Notation, revised submission,
Object Management Group, 1 Apr. 2002; www.omg.
org/cgi-bin/doc?ad/2002-03-02.

5. D. Schenck and P. Wilson, Information Modeling the
EXPRESS Way, Oxford Univ. Press, 1994.

6. XML Metadata Interchange, Version 2, Object Man-
agement Group, May 2003; www.omg.org/cgi-bin/
doc?formal/03-05-02.

7. UML 2 XML Schema, Object Management Group,
Apr. 2003; www.omg.org/cgi-bin/doc?ad/03-04-02.

8. The Java Metadata Interface (JMI) Specification (JSR
40), Java Community Process, June 2002; www.jcp.org/
en/jsr/detail?id=40.

9. Response to the UML 2.0 OCL RFP, Object Manage-
ment Group, Jan. 2003; www.omg.org/cgi-bin/doc?ad/
2003-01-07.

10. U2 Partners, Unified Modeling Language: Superstruc-
ture, Version 2.0, 3rd revised submission to OMG RFP
ad/00-09-02, Apr. 2003; www.omg.org/cgi-bin/doc?ad/
2003-04-01.

11. C. Bock, “UML 2 Activity and Action Models,” J. Object
Technology, vol. 2, no. 4, July/Aug. 2003, pp. 43–53.

12. H. Darwen, A Guide to SQL Standard, Addison-
Wesley, 1997.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

S e p t e m b e r / O c t o b e r 2 0 0 3 I E E E S O F T W A R E 3 5

: ObjectFlow

: OutputPin
+source

GetBalance : ReadStructuralFeatureAction

+result

: InputPin
+target

+ : PrimitiveFunction: ApplyFunctionAction

+argument

+function

balance : Property
+structuralFeature

Reads the balance attribute
of the account

Applies addition function

Passes output of one action to
input of another

Figure 3. Partial UML
2.0 repository for
Figure 2.

About the Author

Conrad Bock is a computer scientist at
the US National Institute of Standards and
Technology specializing in the Unified Modeling
Language and modeling language semantics.
He is one of the developers of the UML reposi-
tory model at the Object Management Group.
His research interests include process ontolo-
gies and hybrid modeling. He received his MS
in computer science from Stanford University.

Contact him at 100 Bureau Dr., Stop 8263, Gaithersburg, MD 20899-
8263; conrad.bock@nist.gov.

