
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

A NEUTRAL INFORMATION MODEL FOR SIMULATING MACHINE SHOP OPERATIONS

Y. Tina Lee
Charles McLean
Guodong Shao

Manufacturing Systems Integration Division

National Institute of Standards and Technology
Gaithersburg, MD 20899-8260 U.S.A.

ABSTRACT

Small machine shops typically do not have the resources to
develop custom simulations of their operations or data
translators to import their data from other manufacturing
software applications. This paper presents an overview of
an information model currently under development at the
National Institute of Standards and Technology (NIST) to
address this problem. The model provides neutral data
interfaces for integrating machine shop software
applications with simulation. The information model
provides mechanisms for describing data about
organizations, calendars, work, resources, schedules, parts,
process plans, and layouts within a machine shop
environment. The model has been developed using the
Unified Modeling Language (UML) and the Extensible
Markup Language (XML).

1 INTRODUCTION

Standard interfaces could help reduce the costs associated
with simulation model construction and data exchange
between simulation and other software applications -- and
thus make simulation technology more affordable and
accessible to a wide range of potential industrial users.
Currently, small machine shops do not typically use
simulation technology because of various difficulties and
obstacles associated with model development and data
translation. Small shops typically do not have staff with the
appropriate technical qualifications required to develop
custom simulations of their operations or custom
translators to import their data from other software
applications.
 NIST is working with a number of industrial partners
and researchers to develop neutral formats for machine
shop data to facilitate simulation and modeling activities.
A machine shop data model, as a neutral interface format,
has been under development to support both NIST’s
System Integration of Manufacturing Application (SIMA)

program and the Software Engineering Institute’s (SEI)
Technology Insertion Demonstration and Evaluation
(TIDE) Program. SIMA supports NIST projects in
applying information technologies and standards-based
approaches to manufacturing software integration
problems (Carlisle and Fowler 2001). The TIDE Program
is sponsored by the Department of Defense and SEI; it is
currently engaged in a number of other projects with
various small manufacturers in the Pittsburgh,
Pennsylvania area. The technical work is being carried out
as a collaboration between NIST, SEI, Carnegie Mellon
University, Duquesne University, the iTAC Corporation,
and the Kurt J. Lesker Company (KJLC).
 KJLC is an international manufacturer and distributor
of vacuum products and systems to the research and
industrial vacuum markets. KJLC manufactures complete,
automatically controlled vacuum systems with special
emphasis on custom-designed, thin film deposition systems
for research in alloys, semiconductors, superconductors,
optical and opto-electronics. A small machine shop is
contained within the KJLC manufacturing facility. KJLC’s
machine shop operation has been used to help define the
requirements for simulation modeling and data interface
specification activities described in this paper. Their
facility will also be used as a pilot site for testing and
evaluation of the simulation models, neutral data
interfaces, and other software developed under this TIDE
project. For more information on KJLC, see
<www.lesker.com>.
 The machine shop information model was developed
with two goals in mind: a) support for the integration of
software applications at a pilot facility -- KJLC’s machine
shop, and b) promotion as a standard data interface for
manufacturing simulators and possibly for other software
applications. The information model is continuing to
evolve based on experience and feedback from KJLC’s
implementations and others involved in this effort.
 The objective of the information modeling effort is to
develop a standardized, computer-interpretable

Lee, McLean and Shao

representation that allows for exchange of information in a
machine shop environment. The information model, when
completed, must satisfy the following needs: support data
requirements for the entire manufacturing life cycle, enable
data exchange between simulation and other manufacturing
software for machine shops, provide for the construction of
machine shop simulators, and support testing and
evaluation of machine shops’ manufacturing software.
Data structures contained within the information model
include organizations, calendars, resources, parts, process
plans, schedules, and work orders for machine shops.
 An information model provides a sharable, stable, and
organized representation of information in a selected
domain area. The Integrated Computer Aided
Manufacturing (ICAM) Definition Language 1 Extended
(IDEF1X), EXPRESS, Unified Modeling Language
(UML), and Extensible Markup Language (XML) are most
often used by the manufacturing enterprises for
information modeling. IDEF1X is a formal graphical
language for relational data modeling, developed by the U.
S. Air Force (Appleton 1985). EXPRESS (ISO 10303-11
1994) was designed to meet the needs of the STandard for
the Exchange of Product model data, commonly called
STEP (ISO 10303-1 1994), and it has been used in a
variety of other “large-scale” modeling applications. UML
is a graphic representation for artifacts in software systems,
and is also useful for database design (OMG 2003). XML
is a format for structured documents and it helps make
possible information exchange in a globally distributed
computing environment (W3C 2000).
 Section 2 of this document provides an overview of
the concepts behind the shop information model. Section 3
explains the constructs used to define the information
model, how the model will be used, and gives some
detailed examples of a small portion of the model. Section
4 provides conclusions and a discussion of future work.

2 CONCEPT FOR THE DATA MODEL

In this section, we introduce the concept of the shop
information model from the user perspective. Our primary
objective was to develop a structure for exchanging shop
data between various manufacturing software applications,
including simulation. The idea was to use the same data
structures for managing actual production operations and
simulating the machine shop. The rationale was that if one
structure can serve both purposes, the need for translation
and abstraction of the real data would be minimized when
simulations are constructed. The mapping of real world
data into simulation abstractions is not, for the most part,
addressed in the current data model.
 We also recognized that maintaining data integrity and
minimizing the duplication of data were important
requirements. For this reason, each unique piece of
information appears in only one place in the model. Cross-

reference links are used to avoid the creation of redundant
copies of data.
 The machine shop data model contains twenty major
elements. Each of the major data elements are italicized in
the discussion that follows. The data elements are called:
Organizations, Calendars, Resources, Skill-definitions,
Setup-definitions, Operation-definitions, Maintenance-
definitions, Layout, Parts, Bills-of-materials, Inventory,
Procurements, Process-plans, Work, Schedules, Revisions,
Time-sheets, Probability-distributions, References, and
Units-of-measurement. Figure 1 illustrates some of the
major elements of the conceptual data model and their
relationships to each other. Due to space limitations, the
entire model is not shown or discussed in detail. For more
detailed information on the model, see (McLean et al.
2003). The remainder of this section discusses the data
elements and their significance.
 Perhaps a good place to start the discussion of the data
model is with the customer. Machine shops are businesses.
They typically produce machined parts for either internal
or external customers. Data elements are needed to
maintain information on customers. The types of
organizational information that is needed about customers
is very similar to the data needed about suppliers that
provide materials to the shop. The same types of
organizational data are also needed about the machine shop
itself. For this reason, an Organizations element was
created to maintain organizational and contact information
on the shop, its customers, and its suppliers.
 Organizations can be thought of as both a phone book
and an organization chart. The element provides sub-
elements for identifying departments, their relationships to
each other, individuals within departments, and their
contact information. Various other types of information
needs to be cross-referenced to organizations and contacts
within structure, e.g., customer orders, parts, and
procurements to suppliers.
 The operation of the machine shop revolves around the
production of parts, i.e., the fabrication of parts from raw
materials such as metal or plastic. The raw materials
typically come in the form of blocks, bars, sheets, forgings,
or castings. These materials are themselves parts that are
procured from suppliers. The Parts data element was
created to maintain the broad range of information that is
needed about each part that is handled by the machine
shop. Part data includes an identifying part number, name,
description, size, weight, material composition, unit-of-
issue, cost, group technology classification codes, and
revision (change) data. Cross-reference links are needed to
the customers that buy the parts from the shop and/or the
suppliers that provide them as raw materials. Links are also
needed to other data elements, documents, and files that
are related to the production of parts including: part
specification documents, geometric models, drawings,
bills-of-materials, and process plans.

Lee, McLean and Shao

 The Bills-of-materials element is basically a collection
of hierarchically-structured parts lists. It is used to define
the parts and subassemblies that make up higher level part
assemblies. A bill-of-materials identifies, by a part number
reference link, the component or subassembly required at
each level of assembly. The quantity required for each part
is also indicated. Cross-references links are needed
between parts that are assemblies and their associated bill-
of-materials.
 The Parts and Bills-of-materials elements establish the
basic definition of parts produced or used by the shop.
Another element, Inventory, is used to identify quantity of
part instances at each location within the facility. Inventory
data elements are provided for parts, tools, fixtures, and
materials. Materials are defined as various types of stock
that may be partially consumed in production, e.g., sheets,
bars, and rolls. Structures are provided within inventory to
keep track of various stock levels (e.g., reorder point level)
and the specific instances of parts that are used in
assemblies.
 The Procurements element identifies the internal and
external purchase orders that have been created to satisfy
order or part inventory requirements. Cross-reference links
are defined to Parts to identify the specific parts that are
being procured and to Work to indicate which work items
they will be used to satisfy.
 The Work data element is used to specify a
hierarchical collection of work items that define orders,
production and support activities within the shop. Support
activities include maintenance, inventory picking, and
fixture/tool preparation. Work is broken down
hierarchically into orders, jobs, and tasks.
 Orders may be either customer orders for products or
internally-generated orders to satisfy part requirements
within the company, e.g., maintenance of inventory levels
of stock items sold through a catalog. Orders contain both
definition and status information. Definition information
specifies who the order is for (i.e., customer cross-
references), its relative priority, critical due dates, what
output products are required (a list of order items, i.e., part
references and quantities required), special resource
requirements, precedence relationships on the processing
of order items, and a summary of estimated and actual
costs. Order items are also cross-referenced to jobs and
tasks that decompose the orders into individual process
steps performed at workstations within the shop. Status
information includes data about scheduled and actual
progress towards completing the order
 Jobs typically define complex production work items
that involve activities at multiple stations and ultimately
produce parts. Tasks are lower level work items that are
typically performed at a single workstation or area within
the shop.
 The Process-plans element contains the process
specifications that describe how production and support

work is to be performed in the shop. Major elements
contained within Process-plans include routing sheets,
operation sheets, and equipment programs. Routing and
operation sheets are the plans used to define job and task
level work items, respectively, in the work hierarchy.
These process plans define the steps, precedence
constraints between steps, and resources required to
produce parts and perform support activities. Precedence
constraints defined in a process plan are used to establish
precedence relationships between jobs and tasks.
Equipment program elements establish cross reference
links to files that contain computer programs that are used
to run machine tools and other programmable equipment
that process specific parts. Each part in the Parts element
contains cross-reference links to the process plans that
define how to make that part. Jobs and tasks contain links
back to the process plans that defined them.
 The Resources element is used to define production
and support resources that may be assigned to jobs or tasks
in the shop, their status, and scheduled assignments to
specific work items. The resource types available in the
machine shop environment include: stations and machines,
cranes, employees, tool and tool sets, fixtures and fixture
sets.
 The Skill-definitions, Setup-definitions, Operations-
definitions, Maintenance-definitions, and Time-sheets
elements provide additional supporting information
associated with resources. Skill-definitions lists the skills
that an employee may possess and the levels of proficiency
associated with these skills. Skills are referenced in
employee resource requirements contained in process
plans. Setup-definitions typically specifies tool or fixture
setups on a machine. Tool setups are typically the tools
that are required in the tool magazine. Fixture setups are
work-holding devices mounted on the machine. Setups
may also apply to cranes or stations. Operation-definitions
specifies the types of operations that may be performed at a
particular station or group of stations within the shop.
Maintenance-definitions specifies preventive or corrective
maintenance to be done on machines or other maintained
resources. Time-sheets is used to log individual employee’s
work hours, leave hours, overtime hours, etc.
 The Layout element defines the physical locations of
resource objects and part instances within the shop. It also
defines reference points, area boundaries, paths, etc. It
contains references to external files that are used to further
define resource and part objects using appropriate graphics
standards. Cross-references links are also provided
between layout objects and the actual resources that they
represent.
 Schedules and Calendars data elements are used to
deal with time. Schedules provides two views of the
planned assignment of work and resources. Work items
(orders, jobs, and tasks) are mapped to resources, and
conversely, resources are mapped to work items. The

Lee, McLean and Shao

planned time events associated with those mappings are
also identified, e.g., scheduled start times and end times.
Calendars identifies scheduled work days for the shop, the
shift schedules that are in effect for periods of time,
planned breaks, and holiday periods.
 The four remaining major data elements are Revisions,
References, Probability-distributions, and Units-of-
measurement. The Revisions element is used repeatedly
throughout many levels of the data model. It provides a
mechanism for identifying versions of subsets of the data,
revision dates, and the creator of the data. The References
element identifies external digital files and paper
documents that support and further define the data
elements contained within the shop data structure. It
provides a mechanism for linking to outside files that
conform to various other format specifications or
standards, e.g., STEP part design files. The Probability-
distributions element defines probability distributions that
are used to vary processing times, breakdown and repair
times, availability of resources, etc. Distributions may be
cross-referenced from elsewhere in the model, e.g.,
equipment resources maintenance data. Units-of-
measurement specifies the units used in the file for various
quantities such as length, weight, currency, and speed.

The next section provides a detailed illustration of a
small portion of the overall data model, and UML and
XML file structures.

3 SPECIFICATION OF INFORMATION MODEL

An information model is a representation of concepts,
relationships, constraints, rules, and operations to specify
data semantics for a chosen domain of discourse. The
advantage of using an information model is that it can
provide shareable, stable, and organized structure of
information requirements for the domain context. An
information model serves as a medium for transferring data
among computer systems that have some degree of
compliance with this information model. For proprietary
data, implementation-specific arrangements can be made
when transferring those data (Lee 1999).
 In general, the contents of an information model
include a scope, a set of information requirements, and a
specification. Information requirements serve as the
foundation of the specification of the information model. A
thorough requirements analysis is a necessity. The initial
goal for the machine shop information model is to support
data transferring needed for KJLC’s machine shop
operations. This information model, ultimately, will be
promoted as a standard data interface to be used by other
machine shops. Thus, the completeness and correctness of
the information requirements and a consensus on the data
requirements from the industry are also important issues.
 The specification of the information model defines
elements, attributes, constraints, and relationship between

elements for the domain context. The specification should
be laid out using some formal information modeling
language. An information modeling language provides a
formal syntax that allows users to unambiguously capture
data semantics and constraints. Three types of methods that
implement information models are currently used by the
manufacturing community:
• Data transfer via a working form, which is a

structured, in-memory representation of data. The
method uses a mechanism that accesses and changes
data sequentially without actually moving the data
around. All shared data are stored in memory.

• Data transfer via an exchange file, which is a file with
a predefined structure or format. This method requires
a neutral file format for storing the data. The
application systems read and write from files.

• Data transfer using a database management system.
This method uses a database management system
where information is mapped onto and retrieved from
databases.

These implementation methods can be accomplished
through translators that are developed using programming
languages and database management systems. The
selection of an implementation method is heavily
dependent on the target environment where the application
system resides. While the relational database is generally
desirable for data transfer, the traditional file-oriented
systems are being used continually by many manufacturing
applications.
 A specification for the machine shop information
model has been developed based on the data model
concept described in Section 2. Figure 2 shows the top
level of the model. The shop-data element is represented
by a type, an identifier, and a number. Optional elements
include: name, description, reference-keys, revisions,
units-of-measurement, organizations, calendars, resources,
skill-definitions, setup-definitions, operation-definitions,
maintenance-definitions, layout, parts, bills-of-materials,
inventory, procurements, process-plans, work, schedules,
time-sheets, references, and probability-distributions.
 Type is an attribute of shop-data and is an enumeration
to describe types about shop-data. Identifier is a key to
uniquely identify the object internally within the system,
and it is generated automatically by the system when the
object is created. Number is also a unique key for
identifying the object either when taken alone or possibly
together with the object type, and the uniqueness is to the
user or the user’s organization. Type, identifier and number
are required attributes. Name is used to identify the object
by the user or user’s organization. It is provided for
readability sake. Description is used to describe the nature
of the subject. Reference-keys refers to reference
documents or files that are stored external to the model.
When a data element’s name suffixes with “-key” or “-
keys”, these data elements serve as pointers to the model to

Lee, McLean and Shao

avoid redefining the same set of information. All other
attributes, such as organizations, calendars, resources,
etc., are major elements of the model that were introduced
in Section 2.
 The machine shop data model specification is
documented using both UML and XML structures. XML is
chosen to support web users while UML’s standard
graphical notations provide visual communications. UML
is a graphical representation; the language is for
specifying, visualizing, constructing, and documenting,
rather than processing. XML is a format for structured
documents, thus XML documents are decodable.
 The current version of the specification includes XML
documents that are well-formed, but may or may not be
validated. Data should be validated before being imported
to a legacy system. An XML schema is a specification of
the elements, attributes, and structures; it is not only useful
for documentation, but also for validation or processing
automation (van der Vlist 2002). Validation is the most
common use for schema in the XML environment. The
XML documents specification is now being extended to a
schema using the World Wide Web Consortium (W3C)
XML Schema, an XML schema language.
 UML provides several modeling types, from
functional requirements and activity analysis to class
structures and component description. The modeling type
used to map to the XML documents is the UML class
diagram. A UML class diagram can be constructed to
visually represent the structural and behavioural features.
Since the behavioural feature is not relevant to the XML
specification, that feature is omitted here (Carlson 2001).
 The complete specification is not given here due to its
size. Instead a sample data element specification is
described. The data element of orders is chosen for
illustration in this section. Orders is a subgroup of work
and consists of a set of individual order data elements. It
specifies a collection of production work orders to be
processed within the shop. Each order contains the order
definition and/or order status section. The order definition
contains attributes of the order including a list of order
items, i.e., a listing of individual parts that make up a
particular order. The order status describes information
about scheduled and actual progress toward completing the
order. The same part may be listed in the order multiple
times in different order items if each instance has unique
attributes, e.g., different due dates.

3.1 UML Modeling

As mentioned before, the UML class diagram is one
representation for the specification of the information
model. A number of software tools are available for
generating UML diagrams. The UML class diagrams
introduced here have been generated using Microsoft Visio
2000. A UML class diagram can be constructed to

graphically represent the classes, attributes, and
relationships. A UML class is the abstraction of a concept
in the domain of discourse; it is defined by a set of
attributes. An attribute is an additional piece of information
associated with a UML class. Each attribute defines its
type (such as string, integer, date, or user defined data
type), relationships, and optionally specifies its default
value. A special type of class, named DataType, is used to
specify enumeration items.
 Relationships between classes are shown with the
connecting line; the role and cardinality relationship may
be presented along the relationship line. The role describes
how the related class is used. There exist cardinality
relationships between a class and its attributes, and
between classes. The cardinality relationship specifies how
many specific instances of an element could be related to
another element. The cardinality relationship may be “one”
to “zero or one”, “one” to “zero or more”, “one” to “one or
more”, or exactly “n” occurrences, and is presented in the
Figure 3 as 0..1, 0..*, 1..*, n, respectively. The cardinality
relationship used for attributes is enclosed by [].
 The UML information model for the orders element is
shown in Figure 3. The orders element has the attributes of
type (which is a string), an identifier (which is an “int” or
integer value), a number (which is a string), an optional
name (which is a string), an optional description (which is
a string), and an optional reference-keys and revisions
(they are user defined data types). Figure 3 illustrates the
cardinality relationships among orders, order, order-
definition, and order-status. An orders element contains
some order elements. Each order is defined by order-
definition and has an order-status. Orders and order has
“one” to “one or more” relationship, i.e., there may exist
one or many order instances for an orders instance.
Similarly, there may exist zero or one order-definition
instance and zero or one order-status instance for an order
instance. Each order-definition instance is defined by one
customers instance, one due-dates instance, and zero or
one of priority-rating, order-items, precedent-constraints,
resources-required, and cost-summary instances.

3.2 XML Specification

XML supports the development of structured, hierarchical
data entities that contain a high level of semantic content,
that is both human and machine interpretable. There are
several supporting standards from W3C that make working
with XML easier. These include Document Object
Management (DOM) for manipulating XML documents,
XML Schema for defining the format of XML documents,
and Extensible Style-sheet Language (XSL) for translating
XML documents to other formats, see <www.w3.org>.
There also exist commercial off-the-self software
applications to implement creation, parsing, interpreting,
and displaying of XML documents. The current version of

Lee, McLean and Shao

the XML specification of the information model has been
developed using Microsoft XML Notepad.
 An XML document is a collection of parsed and
unparsed pieces. An element is one of the basic type of
nodes in the tree represented by a XML document. A well-
formed document has one unique root element that
contains all other elements. Elements follow one another,
or appear inside one another, but may not overlap. All
elements must have a start-tag and an end-tag that surround
their contents. An element begins with <name-of-element>
(that is a start-tag) and ends with </name-of-element> (that
is an end-tag). XML is case-sensitive. The contents of each
element may include other elements. An XML element
may be defined by a set of attributes and child-elements.
(Child-elements are treated as attributes in the UML
diagram.) Attributes and child-elements are additional
information associated with the element. Attributes are
presented in the start-tag, in the form:
 <name-of-element name-of-attribute=”value”>
The same attribute can appear inside the start-tag once
only. However, the same child-element may appear in the
element more than once if it carries different instances.
Attributes are unordered while child-elements are
presented in order When an element has no content
between the start-tag and end-tag or omits the end-tag and
terminates the start-tag with “/>”, the element is an empty
element. An empty element may contain attributes,
however.
 The XML structure for the orders element is shown
below:

<orders type="" identifier="" number="">

<name />
<description />
<reference-keys />
<revisions />
<order type="" identifier="" number="">

<name />
<description />
<reference-keys />
<revisions />
<order-definition>

<customers />
<priority-rating />
<due-dates />
<order-items/>
<precedent-constraints />
<resources-required />
<cost-summary />

</order-definition>
<order-status>

<work-scheduled-progress />
<work-actual-progress />

</order-status>
</order>

</orders>

In the above structure, the element of orders is defined
by the attributes of type, identifier, and number, and the
child-elements of name, description, reference-keys,
revisions, and order. Order is further defined by the
attributes of type, identifier, and number, and the child-
elements of name, description, reference-keys, revisions,
order-definition, and order-status. All attribute values are
undefined in this case. Child elements are empty elements.
Data types, cardinality relationships, constraints, default
and values, enumerations are not included in this sample
XML document. They will be defined in the XML schema
that is currently under development.

4 CONCLUSIONS AND FUTURE WORK

This paper described the work being carried out by NIST
in developing a neutral model and data exchange format
for machine shop data. The objective of the information
modeling effort was to develop a standardized, computer-
interpretable representation that allows for the efficient
storage and exchange of manufacturing life cycle data in a
machine shop environment.
 The information model will continue to evolve based
on the experience and feedback from others involved in
this effort. The model is now being transformed into a
schema using an XML schema language. There are also
plans to expand the model to include assembly line, supply
chain, and other domain areas.
 The current model addresses the exchange of real
world data between simulation and other manufacturing
software applications. Another information model and
exchange file format is needed to support the simulation
abstraction process. This model would be used to maintain
data regarding the mapping of real world objects into their
simulated representation. For example, as part of the
abstraction process data values may be approximated,
different colors may be substituted for real objects, shapes
and sizes may be changed, and probabilistic distributions
may be substituted for actual arrivals and other time-
dependent events.
 The information model will be proposed as a candidate
standard to be considered by a formal standards body. A
preliminary plan is in process for standardization through
the Institute of Electrical and Electronics Engineers
Standards Association (IEEE SA) 1516 Committee that
was responsible for the Department of Defense High Level
Architecture (HLA).
 There are also experimental development activities
underway to test the viability of the model with real world
applications. A generic manufacturing simulator is being
developed at NIST for the TIDE Program (McLean et al.
2002). The model is also being used in the TIDE Program
to integrate a manufacturing execution system with a real-

Lee, McLean and Shao

time adaptive scheduler, and the manufacturing simulator.
An aerospace manufacturer is also working on a prototype
simulation based on the specification. A database
implementation using Microsoft Access is currently
underway.

ACKNOWLEDGMENTS AND DISCLAIMER

This project is funded by NIST's SIMA Program and the
SEI TIDE Program. SIMA supports NIST projects
applying information technologies and standards-based
approaches to manufacturing software integration
problems. No approval or endorsement of any commercial
product by the National Institute of Standards and
Technology is intended or implied. The work described
was funded by the United States Government and is not
subject to copyright.

REFERENCES

Carlisle, M., and J. Fowler. 2001. Systems Integration for
Manufacturing Applications Biennial Report. Fiscal
Years, NISTIR 6721. Gaithersburg, Maryland:
National Institute of Standards and Technology.

Carlson, D. 2001. Modeling XML Applications with UML:
Practical e-Business Applications. Boston, MA:
Addison-Wesley.

D. Appleton Company, Inc. 1985. Integrated Information
Support System: Information Modeling Manual,
IDEF1-Extended (IDEF1X). Wright-Patterson Air
Force Base, Ohio.

ISO 10303-1. 1994. Part 1: Overview and Fundamental
Principles. Industrial Automation Systems and
Integration-Product Data Representation and
Exchange. Geneva, Switzerland: International
Organization for Standardization.

ISO 10303-11. 1994. Part 11: The EXPRESS Language
Reference Manual. Industrial Automation Systems and
Integration-Product Data Representation and
Exchange. Geneva, Switzerland: International
Organization for Standardization.

Lee, Y. T. 1999. Information Modeling: From Design To
Implementation. Proceedings of the Second World
Manufacturing Congress, ed. S. Nahavandi and M.
Saadat, 315-321. Canada/Switzerland : International
Computer Science Conventions.

McLean, C., A. Jones, T. Lee, and F. Riddick. 2002. An
Architecture for a Generic Data-Driven Machine Shop
Simulator. In Proceedings of the 2002 Winter
Simulation Conference, ed. E. Yucesan, C. Chen, J. L.
Snowdon, and J. M. Charnes, 1108-1116. Piscataway,
New Jersey: Institute of Electrical and Electronics
Engineers.

McLean, C., T. Lee, G. Shao, F. Riddick, and S. Leong.
2003. Shop Data Model And Interface Specification.

Draft NISTIR. Gaithersburg, Maryland: National
Institute of Standards and Technology.

Object Management Group (OMG). 2003. Unified
Modeling Language [online]. Available online via
<http://www.omg.org/uml/> [accessed June
27, 2003].

World Wide Web Consortium (W3C). 2000. Extensible
Markup Language (XML) 1.0 (second edition)
[online]. Available online via
<http://www.w3.org/TR/REC-xml.html>
[accessed June 27, 2003].

van der Vlist, E. 2002. XML Schema. Sebastopol, CA.:
O’Reilly& Associates, Inc.

AUTHOR BIOGRAPHIES

Y. TINA LEE is a computer scientist in the Manufacturing
Simulation and Modeling Group at NIST. She joined NIST
in 1986. Most recently, she has been working on the design
and development of interface information models to
support the Software Engineering Institute (SEI)
Technology Insertion Demonstration and Evaluation
(TIDE) project. Previously she worked at the Contel
Federal Systems and at the Sperry Corporation. She
received her BS in Mathematics from Providence College
and MS in Applied Science from the College of William
and Mary. Her e-mail address is
<leet@cme.nist.gov>.

CHARLES MCLEAN is a computer scientist and
Program Manager of the Manufacturing Simulation and
Visualization Program at NIST. He also leads the
Manufacturing Simulation and Modeling Group. He has
managed research programs in manufacturing simulation,
engineer
ing tool integration, product data standards, and
manufacturing automation at NIST since 1982. He has
authored more than 50 technical papers on topics in these
areas. He is on the Executive Board of the Winter
Simulation Conference and the Editorial Board of the
International Journal of Production, Planning, and Control.
He is formerly the Vice Chairman of the International
Federation on Information Processing (IFIP) Working
Group on Production Management Systems (WG 5.7). He
is also the NIST representative to the Department of
Defense’s Advanced Manufacturing Enterprise Subpanel.
He holds an MS in Information Engineering from the
University of Illinois at Chicago and a BA from Cornell
University. His e-mail address is
<mclean@cme.nist.gov>.

GUODONG SHAO is a computer scientist with the
Intelligent Automation Inc., and a guest researcher in the
Manufacturing Simulation and Modeling Group at NIST.
He has participated in research relating to FMS, CIMS, and

Lee, McLean and Shao

manufacturing simulation integration for many years. He
holds a Master's Degree from the University of Maryland,
College Park. He is a Ph.D. student in the Graphics

Laboratory at George Mason University. His e-mail
address is <gshao@cme.nist.gov>.

mailto:mclean@cme.nist.gov

Lee, McLean and Shao

Routing Sheet

Operation Sheet

Machine Program

Bill of Materials
has

has

Order

Job

Task

Part Process Plan

Customer

Supplier

Inventory

places

receives

purchases

stores

decomposes into

decomposes into

defined by

provides

produced by
has components

defined by

defines
production

process

specifiies

has

may have

may have

defines the high
level process plan

defines
station operation

controls machine

maintenance-definitions

calendars

setup-definitions

-type[1]
-identifier[1]
-number[1]
-name[0..1]
-description[0..1]
-REFERENCE-KEYS[0..1]
-REVISIONS[0..1]
-UNITS-OF-MEASUREMENT[0..1]

shop-data layout

bills-of-materials

operation-definitions

resources

skill-definitions

partsinventory

process-plans

work

time-sheets

organizations

references

probability-distributions

procurements

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

1

0..1

schedules

0..1

Figure 2: Top Level of the Shop Data Model

Figure 1: Concept for the Machine Shop Data Model

Lee, McLean and Shao

-type[1] : String
-identifier[1] : int
-number[1] : String
-name[0..1] : String
-description[0..1] : String
-REFERENCE-KEYS[0..1] : REFERENCE-KEYS
-REVISIONS[0..1] : REVISIONS

order

-CUSTOMERS[1] : CUSTOMERS
-priority-rating[0..1] : String
-DUE-DATES[1] : DUE-DATES
-ORDER-ITEMS[0..1] : ORDER-ITEMS
-PRECEDENT-CONSTRAINTS[0..1] : PRECEDENT-CONSTRAINTS
-RESOURCES-REQUIRED[0..1] : RESOURCES-REQUIRED
-COST-SUMMARY[0..1] : COST-SUMMARY

order-definition

0..1

-type[1] : String
-identifier[1] : int
-number[1] : String
-name[0..1] : String
-description[0..1] : String
-REFERENCE-KEYS[0..1] : REFERENCE-KEYS
-REVISIONS[0..1] : REVISIONS

orders

1 1..*

-WORK-SCHEDULED-PROGRESS[0..1] : WORK-SCHEDULED-PROGRESS
-WORK-ACTUAL-PROGRESS[0..1] : WORK-ACTUAL-PROGRESS

order-status

1

0..1

contains

defined by

has

Figure 3: UML Model of the Orders Object

	INTRODUCTION
	CONCEPT FOR THE DATA MODEL
	SPECIFICATION OF INFORMATION MODEL
	UML Modeling
	XML Specification

	CONCLUSIONS AND FUTURE WORK
	AUTHOR BIOGRAPHIES

