
1. Introduction

In the context of software, what is traditionally
called “integration” is the engineering process that cre-
ates or improves information flows between informa-
tion systems designed for different purposes. What
actually flows between the systems is data, but what is
critical to the business process is that all of the right
data flows in the right form for the receiving system,
and that the receiving system and the people who use it
interpret the data correctly.

The term “conceptual integrity” was popularized in
Ref. [1] to refer to a kind of consistency in system
architecture that allows the system to become a cohe-
sive, sensible whole. A similar kind of conceptual
integrity is required for the result of data integration to
be cohesive and sensible. Compromised conceptual
integrity results in “semantic faults,” which are com-
monly blamed for latent integration bugs.

Most technical approaches to data integration fall
squarely into one of two categories. There is the “glob-
al schema” category, where every schema is mapped

into a common reference schema, and there is the direct
translation category, where schemata are mapped
directly to one another in a point-to-point fashion. Each
category has widely recognized advantages and disad-
vantages. Among these is the efficiency argument in
favor of standardization (i.e., having a standard global
schema): to link n different systems directly requires
n2 – n one-directional mappings, but to link them via a
global schema requires only 2n.

It is sometimes claimed that direct translation allows
for better conceptual integrity on a technical level
(ignoring the human factors of dealing with n2 – n dif-
ferent translations) because one can translate only what
is necessary for communication and ignore anything
that is conflicting but irrelevant. However, after discus-
sion of this point in the Automated Methods for
Integrating Systems [2] project, it was realized that
such a translation implies a certain “integration
schema” which, regardless of whether it is written
down or only in the mind of the integrator, is neverthe-
less equivalent in its impact on conceptual integrity to
having used a global schema.

Volume 108, Number 5, September-October 2003
Journal of Research of the National Institute of Standards and Technology

395

[J. Res. Natl. Inst. Stand. Technol. 108, 395-402 (2003)]

A Logical Model of Conceptual Integrity in
Data Integration

Volume 108 Number 5 September-October 2003

David Flater

National Institute of Standards
and Technology,
Gaithersburg, MD 20899-8264

david.flater@nist.gov

Conceptual integrity is required for the
result of data integration to be cohesive
and sensible. Compromised conceptual
integrity results in “semantic faults,”
which are commonly blamed for latent
integration bugs. A logical model of con-
ceptual integrity in data integration and a
simple example application are presented.
Unlike constructive models that attempt to
prevent semantic faults, this model allows
both correct and incorrect integrations to
be described. Imperfect legacy systems

can therefore be modeled, allowing a more
formal analysis of their flaws and the pos-
sible remedies.

Key words: abstraction; data; integration;
logic; semantics.

Accepted: November 4, 2003

Available online: http://www.nist.gov/jres

With that perspective, it should be possible to create
an abstract model of conceptual integrity that is inde-
pendent of the technical approach that is chosen for
data integration. This paper documents such a model.
The goal is not to provide another method for maintain-
ing conceptual integrity, but to provide a logical model
of conceptual integrity itself, capable of describing
both correct and incorrect integrations resulting from
whichever methodology is employed.

2. Related Work

Reference [3] contains a model that is similar in
approach yet foundationally different from the one in
this paper. Modal logic and logical properties are used
to build a detailed model of identity, and the ramifica-
tions for correct and incorrect subsumption relation-
ships are examined. Possible analogies to Ref. [3] are
discussed in Sec. 7.

An alternate view on the issues discussed in this
paper can be found in work having to do with context
logic, which traces back to McCarthy [4,5]. A concise
discussion of the application of context logic to infor-
mation integration is given in Ref. [6]; see also the
“Integrating Databases” example in Ref. [7], multicon-
text (MC) systems as described in Ref. [8], and the
context-based schema analysis in Ref. [9]. The relation-
ship between the view of this paper and the context
logic view is explored in more detail in Sec. 8.

Logic-based approaches to schema integration, e.g.,
Refs. [10] and [11], are constructive methods intended
to maintain conceptual integrity; i.e., they assume that
one works within the method when integrating schema-
ta and that the intensional definitions constructed by the
modeler are complete and logically sufficient. A loss of
conceptual integrity within the model would be indicat-
ed by the presence of a logical contradiction, which
would render any subsequent logical inferences mean-
ingless. Consequently, these logic-based approaches to
schema integration are not ideal for describing and ana-
lyzing potentially imperfect integrations resulting from
other methodologies.

The views of class and abstraction in this paper par-
tially reflect ideas appearing in Ref. [12].

3. Logical Notation

Belief and time are critical to integration. Integration
is performed at a point in time and from a point of view.
Appropriately, this paper uses symbols from temporal

modal logic as well as a “doxastic” modal (pertaining
to belief).

The following descriptions are quoted from Ref. [13].
It is necessary that …
It is possible that …

G It will always be the case that …
F It will be the case that …
H It has always been the case that …
P It was the case that …
Bx x believes that …

∧, ∨, and ~ are the conjunction, disjunction, and
negation operators of classical logic. ≡ represents logi-
cal equivalence; i.e., the left hand side and the right
hand side necessarily have the same truth values.

Let p, q, and r represent arbitrary logical sentences.
The modals and relate to each other as follows.

(1)

(2)

(3)

(4)

The temporal modals have similar relations.

(5)

(6)

A distinction is made between material implication,
represented by the symbol ⊃, and strict implication,
represented by →.

Material implication is the truth-functional connec-
tive of classical logic.

(7)

Strict implication expresses the stronger statement
that the consequent necessarily follows from the
antecedent (i.e., is logically entailed or true by defini-
tion) [14].

(8)

Strict implication must not be confused with relevant
implication as used in relevance logics [15] or other-
wise conflated with “relevance.” Relevance is not
required. It is acceptable (albeit unhelpful) that a tautol-
ogy (a necessarily true sentence) is strictly implied by
any sentence whatsoever.

Volume 108, Number 5, September-October 2003
Journal of Research of the National Institute of Standards and Technology

396

,

,

◊

◊

p p

p p

p p

p p

≡ ◊

◊ ≡

≡ ◊

◊ ≡

, ∼ ∼

∼,∼

,∼ ∼

∼ ∼,

F G

P H

p p

p p

≡

≡

∼ ∼

∼ ∼

p q p q⊃ ≡ ∨∼

()p q p q→ ≡ ⊃,

(9)

The need to distinguish between material implication
and strict implication arises here because of time. As
new individuals are created, strict implications that are
true remain true, but the truth values of material impli-
cations can change. For example: over time, more peo-
ple will be born; by definition, they will all be mortal
(i.e., being a person strictly implies mortality); howev-
er, the fact that all people live on Earth might not
remain true (even though “being a person materially
implies living on Earth” holds at the present time). If
the universe of discourse were static, the distinction
would be moot: if an implication happened to be true
for the universe as it was, then it would suffice for all
discussions about that universe.

The reader is encouraged to consult Refs. [13], [14],
and [16] regarding the spectrum of modal and temporal
logics that are distinguished by the axioms accepted.
Reference [16] identifies a series of systems that build
on the following axioms (paraphrased):
(SL = Sentential Logic) Every theorem of classic sen-
tential logic is a theorem.
(MP = Modus Ponens) If p is a theorem, and p ⊃ q is a
theorem, then q is a theorem.
(Nec = “rule of necessitation”) If p is a theorem, then

p is a theorem.

The above axioms are accepted here. System T is
formed by adding the following two axioms, which are
also accepted here.

(10)

(11)

It follows that

(12)

In addition, the following axioms are accepted.
(N.B., since these are theorems, then by the rule of
necessitation and the definition of strict implication,
their counterparts using strict implication are also theo-
rems.)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

4. Model

4.1 Foundation

A schema is a set of identified collections or group-
ings. Those collections would be called classes in an
object-oriented system, tables in a relational system,
concepts in a knowledge-based system, etc. For read-
ability, the word “class” will be used for a collection or
grouping, and the word “individual” will be used for
that which is grouped (instance, tuple, etc.).

Let α, β, γ, and δ range over classes, let a range over
individuals, and let A range over properties. A Boolean
model of properties is assumed. Aa is true if and only if
individual a has the property A. Define A to be the
negation of A.

(20)

(21)

(22)

Define N(α) as the set of properties that are neces-
sary for membership in α.

(23)

Define O(α) as the set of properties that are possible
for (consistent with) membership in α.

(24)

It is assumed that one will abstain from defining
classes that are necessarily empty (also known as
“incoherent” classes).

These more intuitive theorems about N and O then
follow:

(25)

(26)

Volume 108, Number 5, September-October 2003
Journal of Research of the National Institute of Standards and Technology

397

()q p q→ →,

,
() is defined as .p p◊ ◊ ∼,∼

() ()p q p q

p p

⊃ ⊃ ⊃

⊃

, , ,

,

p p⊃ ◊

G F

H P

GP

p p

p p

p p

⊃

⊃

⊃

HF

G H

G() (G G)

H() (H H)

p p

p p p

p q p q

p q p q

⊃

⊃ ∧

⊃ ⊃ ⊃

⊃ ⊃ ⊃

, , ,

()

Aa Aa

Aa Aa

Aa Aa

≡

∨

∧

∼

∼

N()A a Aa∈ α ≡ ∈ α →

O() ()A a Aa∈ α ≡ ◊ ∈ α ∧

N()

N() N()

a A Aa

A A

∈ α ∧ ∈ α →

∈ α → ∉ α

(27)

(28)

(29)

(30)

It is possible for both a property and its negation to
appear in O, with neither appearing in N.

As with and , it would suffice to have only N or
only O, but having both allows for more intuitive for-
mulations.

Importantly, it is assumed that membership in class-
es is primitive. N contains properties that are necessary
for membership in a class [as stated in Eq. (25), mem-
bership in a class does strictly imply that the individual
has the necessary properties], but they are not logically
sufficient to determine the membership. Classes are not
necessarily characterized by a set of properties: in gen-
eral, A ∈ N(α) ⊃ Aa does not strictly imply a ∈ α.
Ideally, the “intent” of a class would be reflected by the
properties in N, but the extent (its membership) is what
is assumed to be known.

4.2 Subsumption

N and O display a symmetry with respect to sub-
sumption.

(31)

(32)

It follows from Eqs. (30) and (32) that a property that
is necessary in a subclass must be consistent with the
superclass:

(33)

It is not always obvious that defining a subclass has
ramifications for the meaning of the superclass, but it is
true nonetheless. If someone defines a subclass Six-
Legged-Dog, and the subclass is not necessarily empty,
it follows that having six legs is consistent with being a
dog. This may greatly surprise the person who defined
Dog originally, but such is the kind of detail that one
needs to know in order to perform a correct integration.

4.3 Conceptual Integrity

Let S and T represent different schemata (e.g., the
data models implemented in two separate software sys-
tems). S and T do not share individuals or classes; how-
ever, they are discussed in terms of the same properties,
all of which are within the same logical context.

For α of S and β of T, the simplest form of integra-
tion is a partial “instance map” from members of α to
members of β. Let M(a) for a ∈ α represent the analog
of a (its image under M, if such exists) in β. To main-
tain conceptual integrity, the following condition must
hold for all A:

(34)

To paraphrase: if an individual with a given property
is mapped to an analog in β, then that property must be
consistent with membership in β. It is not necessary
that the analog possess that property if the negation of
that property is also in O(β); nor is it necessary that
every individual in α have an analog.

5. On Abstraction

Data models as we know them are abstractions, and
so are the mental models of the people who construct
them. By definition, an abstraction of a thing or event
is not identical to the thing or event itself and does not
have all of its properties. Moreover, any documented
model is at best an approximate expression of a mental
model [17], and different data modelers think about dif-
ferent properties even when they believe that they are
modeling the same thing. These differences can lead to
a wide variety of conflicts [9,18,19].

Every thing or event has an unbounded set of prop-
erties. A data modeler tries to settle on a finite set of
properties that suffices for a particular application. But
when two applications are integrated, the properties
that were captured in documented models may no
longer suffice.

Consider the acquisition by a leading manufacturer
of 100 % recycled content corrugated boxes of a rela-
tively obscure company that makes biodegradable bub-
ble wrap. The box company has a technically superior
customer database, but the bubble wrap company has
some specialized applications integrated with its own
database that would be expensive to change. So it is

Volume 108, Number 5, September-October 2003
Journal of Research of the National Institute of Standards and Technology

398

O()

O() N()

O() N()

N() O() O()

a Aa A

A A

A A

A A A

∈ α ∧ → ∈ α

∈ α → ∉ α

∉ α → ∈ α

∈ α → ∈ α ∧ ∉ α

, ◊

() N() N()

() O() O()

a a A A

a a A A

∈ γ → ∈ δ ∧ ∈ δ → ∈ γ

∈ γ → ∈ δ ∧ ∈ γ → ∈ δ

() N() O()a a A A∈ γ → ∈ δ ∧ ∈ γ → ∈ δ

M() O()a a Aa A∈ α ∧ ∈β ∧ ⊃ ∈ β

decided to use the box company’s database as the pri-
mary one and just replicate the data in the other data-
base for the sake of the specialized applications. This
seems to work, and environmentally conscientious
mail-order operations the world over rejoice that they
can now obtain boxes and bubble wrap through the far-
reaching distribution network of the former box compa-
ny. Then disaster strikes. The box company’s best cus-
tomer, the John Q. Fictional Company of Hanover, calls
to complain that the bubble wrap they ordered never
arrived. Investigation reveals that the order in question
was shipped to the John Q. Fictional Company of
Anchorage, a new customer who had simply ordered a
small number of corrugated boxes. It turns out that one
of the bubble wrap applications was written to key by
company name, so it retrieved the wrong John Q.
Fictional Company from the merged database and
propagated the error.

It is important to understand that the box company’s
database was not “wrong” to allow two companies to
use the same name. Prior to the integration, it made no
difference. The box company’s applications did not rely
on names being unique. Neither was it “wrong” for the
bubble wrap application to key by company name.
Prior to the integration, company names were unique
within the bubble wrap customer base. The problem
was created by the integration.

Abstractions themselves have abstractions, and these
are not immune to integration faults. For example, a
common abstraction of time-of-day (itself an abstrac-
tion) constrains seconds to range between 0 and 59. An
artifact that embodied this assumption might integrate
successfully with many applications and operate for
years without failure. However, cognizant data model-
ers are aware that an extra second—a “leap
second”—is occasionally inserted into the Coordinated
Universal Time (UTC) time scale to keep it within
±0.9 s of the Universal Time (UT1) astronomical time
scale [20]. The time-of-day corresponding to the leap
second is represented as 23:59:60. So if the artifact that
constrains seconds to the range 0 to 59 is integrated
with any that propagate leap seconds, it might fail all of
a sudden one New Year’s.

For any given abstraction, it is possible to construct
an integration scenario in which a failure will occur
because of some property that was not explicitly mod-
eled. The need for the abstractions of S (e.g., customer
name according to the box company) to take an explic-
it stance with respect to properties that are relevant in T
(e.g., uniquely identifying a customer) only arises
when integration is attempted. Yet by virtue of numer-
ous undocumented and/or un-thought-about implemen-

tation details, any realizations of these abstractions in
engineered artifacts such as software implicitly take
stances with respect to all properties. Simplistically,
one could say that when confronted with new proper-
ties, either they work or they don’t.

6. Semantic Faults

“Semantic fault” is an informal term that can now be
understood formally to mean a violation of the condi-
tion expressed in Eq. (34).

This section demonstrates how the semantic fault
stories of Sec. 5 can be formalized. However, it is not
necessarily the case that all semantic faults would
emerge in exactly the same way.

Logical statements below describe the behaviors of
the engineered artifacts as built unless preceded by the
doxastic qualifier Bi (signifying a belief of the integra-
tor, i).

Consider the following:

(35)

(36)

(37)

The integrator builds a complete mapping from α to
β,

(38)

and the integrated system functions normally. Now
assume that at some future time, individual x will be
born such that

(39)

Assuming that a ∈ α ⊃ M(a) ∈ β remains true, con-
ceptual integrity, Eq. (34), will then demand

(40)

which is not guaranteed. If the behavior of the engi-
neered artifact is instead described by A ∈ N(β), then
G(A ∉ O(β)); the condition of Eq. (34) will be violated,
and there will be a semantic fault.

With the bindings shown in Table 1, the above mod-
els the examples described in Sec. 5. In the first exam-
ple, individual x is the customer name “John Q.
Fictional, Inc.;” conceptual integrity fails because that

Volume 108, Number 5, September-October 2003
Journal of Research of the National Institute of Standards and Technology

399

O()

Bi() BiG() Bi(O())

A

a Aa

a Aa a Aa A

∈ β

∈α ⊃

∈α → ∨ ∈α ⊃ ∨ ∈ β

M()a a∈ α ⊃ ∈β

F(x x)A∈ α ∧

F(O())A ∈ β

name is associated with more than one customer, which
is inconsistent with the customer name class as project-
ed from the bubble wrap application. In the second
example, individual x is the time-of-day value
23:59:60; conceptual integrity fails because that time-
of-day has seconds outside the range 0...59, which is
inconsistent with the time-of-day class as represented
in the failing application.

7. Analogies to Ref. [3]

Reference [3] defines essential, rigid, non-rigid, and
anti-rigid as properties of properties. The definitions
are made in terms of properties, individuals, and
instances of properties (i.e., individuals that have that
property). Classes as such are subsumed by properties
that completely characterize them.
• A property is essential to an individual if and only if

it necessarily holds for that individual at every possi-
ble time in every possible world.

• A property is rigid if and only if, necessarily, it is
essential to all of its instances.

• A property is non-rigid if and only if it is not rigid.
• A property is anti-rigid if and only if it is not essen-

tial to any of its instances.
The concern whether a property is essential to an

individual is different from the concern whether a prop-
erty is necessary for membership in a class. These two
concerns may become inextricable when classes are
defined intensionally (when the possession of a given
set of properties strictly implies class membership), but
they do not when class membership is primitive. This
divergence makes it difficult to construct valid analo-
gies between the content of this paper and that of Ref.
[3], despite apparent similarities.

Returning to the definitions of Sec. 4.1, one could
draw limited, perhaps strained, analogies. Given a class
α and a property A, one could say that A is rigid with-
in α if A ∈ N(α), non-rigid if A ∈ O(α). But class-cen-
tered analogs to essential and anti-rigid would require
an intensional viewpoint.

8. Relationship to Context Logic

In works about context logic it is common to use the
notation ist(c, p) to signify that proposition p is true in
the context c [5]. That convention is adopted here.

Context is broadly interpreted and can be used in lieu
of many specialized modals. One can identify contexts
corresponding to spans of time, a particular person’s
beliefs, etc.

In the case of data integration, it is natural to identi-
fy contexts corresponding to the schemata being inte-
grated and then make assertions about what is true of
various classes in those contexts. For example, if C1 is
the context of a leap seconds cognizant time service, C2

is the context of some application, and τ is “the” time-
of-day class, then one would write the following, or
something equivalent:

(41)

(42)

“The” time-of-day class is an abstraction inherited
from a common context, such as a global schema. Its
specializations in contexts C1 and C2 disagree with
respect to the predicate SecondsMayExceed59. If the
reference to a common context is eliminated, then there
is no basis for discussion of whether the classes in C1

and C2 are compatible.
The model presented in this paper does not require

that classes from a common context be made explicit. It
does rely on the assumption that properties have equiv-
alent meanings in the contexts of the systems being
integrated. However, this is analogous to the assump-
tion that predicates such as SecondsMayExceed59 have
the same meaning in multiple contexts.

Of course, there is nothing to prevent one from mak-
ing logical statements about predicates in different con-
texts; e.g.,

(43)

Volume 108, Number 5, September-October 2003
Journal of Research of the National Institute of Standards and Technology

400

Table 1. Bindings for Sec. 5 examples

Boxes Time

α Customer name as projected from box company’s database Time-of-day as delivered by leap seconds cognizant time service
β Customer name as projected from bubble wrap application Time-of-day as represented in some application
A Associated with exactly one customer Has seconds in range 0...59
A Not associated with exactly one customer Does not have seconds in range 0...59

()

()

1

2

ist C , SecondsMayExceed59(

ist C , SecondsMayExceed59(

τ)

τ)∼

2ist(C , ValidTimestamp() Seconds() 60)a a⊃ <

But the problem repeats itself. Unless Seconds has a
common interpretation, nothing has been gained by
contextualizing ValidTimestamp.

Ultimately, to make comparisons between two con-
texts, it is necessary to have some common vocabulary
with which to conduct the discussion. The problem can
be moved around but cannot be eliminated. As always,
“there is no silver bullet” [1], but a change in viewpoint
can sometimes help. The goal is to move the problem to
where it causes the least amount of damage.

9. Conclusion

A logical model of conceptual integrity in data inte-
gration and a simple example application have been
presented. Unlike constructive models that attempt to
prevent semantic faults, this model allows both correct
and incorrect integrations to be described. Imperfect
legacy systems can therefore be modeled, allowing a
more formal analysis of their flaws and the possible
remedies.

Future work to extend the model could focus on bet-
ter treatment of several issues that were glossed over or
minimized.
• The important temporal dimension of conceptual

integrity could be explored in more detail and mod-
eled more precisely.

• The abstractions implicit in the act of integration
(pieces of an implicit “integration schema”) could be
analyzed. A partial mapping from members of α to
members of β suggests an abstraction from α and β
that describes that part of the population that is “inter-
esting” for the integration. A variant of formal con-
cept analysis [21] may be applicable, as may current-
ly evolving work on describing relations between
ontologies [22].

• “Fuzzy” properties (i.e., where Aa is neither entirely
true nor false, or is not known with certainty to be
true—the different interpretations have different ram-
ifications) could be explored. Additional analysis is
needed to determine whether they add value. An infi-
nite set of Boolean properties may render fuzzy prop-
erties redundant: if Aa is only “sort of” true, then it
may be possible to derive a narrower “sub-property”
that is fully true and another one that is fully false. On
the other hand, it would be ill-advised to accept
philosophical vague properties [23,24], which defy
objective evaluation.

Acknowledgments

The author thanks all those whose reviews and sug-
gestions have improved this paper, including Edward
Barkmeyer, Conrad Bock, Peter Denno, Allison
Barnard Feeney, Simon Frechette, Michael Grüninger,
Nenad Ivezic, Sharon Kemmerer, Donald Libes, Leo
Obrst, Steve Ray, Michelle Steves, and Evan Wallace.

10. References

[1] F. P. Brooks, Jr., The Mythical Man-Month: Essays on Software
Engineering, 20th anniversary edition, Addison-Wesley (1995).

[2] E. J. Barkmeyer, A. B. Feeney, P. Denno, D. W. Flater, D. E.
Libes, M. P. Steves, and E. K. Wallace, Concepts for
Automating Systems Integration, NISTIR 6928, National
Institute of Standards and Technology (2003).

[3] N. Guarino and C. Welty, Identity and Subsumption, LADSEB-
CNR Internal Report 01/2001, August 7, 2001. Available at
http://www.ladseb.pd.cnr.it/infor/Ontology/Papers/Identity&
Subsumption.pdf.

[4] J. McCarthy, Generality in artificial intelligence, Commun.
ACM 30 (12), 1030-1035 (1987). Also available at
http://citeseer.nj.nec.com/mccarthy87generality.html.

[5] J. McCarthy and S. Buvac, Formalizing context (expanded
notes), in Working Papers of the AAAI Fall Symposium on
Context in Knowledge Representation and Natural Language
(1997) pp. 99-135. Also available in A. Aliseda, R. J. van
Glabbeek, and D. Westerståhl, eds., Computing Natural
Language, CSLI Lecture Notes 81, Stanford University (1998),
pp. 13-50, and at http://citeseer.nj.nec.com/mccarthy97formal-
izing.html.

[6] A. Farquhar, A. Dappert, R. Fikes, and W. Pratt, Integrating
information sources using context logic, in Proceedings of
the AAAI Spring Symposium on Information Gathering from
Distributed Heterogeneous Environments (1995). Also avail-
able as technical report KSL-95-12, Knowledge Systems
Laboratory, Stanford University (1995) and at
http://citeseer.nj.nec.com/farquhar95integrating.html.

[7] R. V. Guha, Contexts: a formalization and some applications,
doctoral dissertation, Stanford University (1991). Also avail-
able at http://www-formal.stanford.edu/buvac/guha-thesis.ps.

[8] C. Ghidini and F. Giunchiglia, Local models semantics, or
contextual reasoning = locality + compatibility, Artificial
Intelligence 127 (2), 221-259 (2001). Also available at
http://dit.unitn.it/~fausto/ps/GG97b.ps.

[9] V. Kashyap and A. Sheth, Semantic and schematic similarities
between database objects: a context-based approach, Very
Large Databases J. 5 (4), 276-304 (1996). Also available at
http://lsdis.cs.uga.edu/lib/download/KS95b.pdf.

[10] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian, On
the logical foundations of schema integration and evolution
in heterogeneous database systems, in Lecture Notes in
Computer Science #760, Proceedings of the 3rd International
Conference on Deductive and Object-oriented Databases
(DOOD ‘93), S. Ceri, K. Tanaka, and S. Tser, eds.,
Springer-Verlag (1993) pp. 81-100. Also available at
http://citeseer.nj.nec.com/lakshmanan93logical.html.

[11] P. Johannesson, A logic based approach to schema integration,
in Proceedings of the 10th International Conference on

Volume 108, Number 5, September-October 2003
Journal of Research of the National Institute of Standards and Technology

401

∨

Entity-Relationship Approach, T. Teorey, ed., North-Holland
(1991) pp. 280-292. Also available at http://www.
dsv.su.se/~pajo/abstracts/er91.html.

[12] A. Korzybski, Science and Sanity: An Introduction to Non-
Aristotelian Systems and General Semantics, 5th edition,
Institute of General Semantics (1994).

[13] E. N. Zalta, ed., Stanford Encyclopedia of Philosophy,
http://plato.stanford.edu/ (2003).

[14] H. Kahane, Logic and Philosophy, 5th edition, Wadsworth
Publishing Company, Belmont, California (1986).

[15] A. R. Anderson, N. D. Belnap, and J. M. Dunn, Entailment: The
Logic of Relevance and Necessity, Princeton University Press,
Princeton, New Jersey (1992).

[16] G. Hardegree, Introduction to Modal Logics, http://www-
unix.oit.umass.edu/~gmhwww/511/text.htm (2003).

[17] N. Guarino and A. Persidis, OntoWeb Deliverable 3.5:
Evaluation Framework for Content Standards,
http://ontoweb.aifb.uni-karlsruhe.de/Members/ruben/
Deliverable%203.5 (2003).

[18] W. Kim, I. Choi, S. Gala, and M. Scheevel, On resolving
schematic heterogeneity in multidatabase systems, Distributed
Parallel Databases 1, 251-279 (1993).

[19] C. Naiman and A. Ouksel, A classification of semantic conflicts
in heterogeneous database systems, J. Organizational Comput.
5 (2), 167-193 (1995).

[20] Leap second and UT1-UTC information, NIST Time Scale Data
Archive, http://www.boulder.nist.gov/timefreq/pubs/bulletin/
leapsecond.htm (2003).

[21] B. Ganter and R. Wille, Formal Concept Analysis:
Mathematical Foundations, Springer-Verlag, Berlin,
Heidelberg, and New York (1999).

[22] Standard Upper Ontology Information Flow Framework, starter
document, IEEE P1600.1 Standard Upper Ontology Working
Group, http://suo.ieee.org/IFF/ (2003).

[23] T. Williamson, Vagueness, Routledge, London and New York
(1996).

[24] R. Keefe and P. Smith, eds., Vagueness: A Reader, MIT Press,
Cambridge, Massachusetts (1999).

About the author: David Flater is a Computer
Scientist in the Manufacturing Systems Integration
Division of the NIST Manufacturing Engineering
Laboratory. The National Institute of Standards and
Technology is an agency of the Technology
Administration, U.S. Department of Commerce.

Volume 108, Number 5, September-October 2003
Journal of Research of the National Institute of Standards and Technology

402

