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Abstract 
Manufacturing enterprise decisions can be classified into 
four groups: business decisions, design decisions, 
engineering decisions, and production decisions.  
Numerous physical and software simulation techniques 
have been used to evaluate specific decisions by predicting 
their impact on the system as measured by one or more 
performance measures.  In this paper, we focus on 
production decisions, where discrete-event-simulation 
models perform that evaluation.  We argue that such an 
evaluation is limited in time and scope, and does not 
capture the potential impact of these decisions on the 
whole enterprise.  We propose integrating these discrete-
event models with system dynamic models and we show 
the potential benefits of such an integration using an 
example of semiconductor enterprise.  
 
1. INTRODUCTION 
 
Numerous decisions are made in manufacturing enterprises 
everyday.  These decisions, which have a huge impact on 
profitability and survivability, can be classified into four 
groups: business decisions, design decisions, engineering 
decisions, and production decisions.  In this paper, we 
focus on production decisions and how they relate to 
business decisions within an extended supply chain 
enterprise.  A large number of techniques from the fields of 
operations research, artificial intelligence, and simulation, 
have been proposed in the literature for making these 
decisions.  These techniques evaluate specific decisions by 
predicting their impact as quantified in one or more 
performance measures. 

Operations research (OR) techniques are highly 
mathematical in nature and usually attempt to find the 
optimal decision based on the given performance measures 
and  constraints.     Some  examples  include  mathematical 
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programming, forecasting, inventory control, graph theory, 
and queuing theory.    These techniques are based on sound 
mathematical theories, but they often require simplifying 
assumptions that limit their applicability.  

Artificial intelligence (AI) techniques include 
knowledge-based heuristics, neural networks, and genetic 
algorithms.  These techniques have been widely used in 
conjunction with or instead of OR techniques for three 
main reasons. First, they allow qualitative as well as 
quantities information in the decision evaluation.  Second, 
they can model complex relationship among factors that 
influence that evaluation.  Third, they can generate 
complex heuristics that incorporate those relationships.  
There are, however, two serious disadvantages:  they can 
be difficult to build, verify, and maintain; and, they 
generate only feasible, and sometimes poor solutions.  

During the last 10 to 15 years, simulation has become 
one of the most popular techniques for evaluating the 
impact of manufacturing decisions.  Sometimes it is used 
alone; sometimes it is used in conjunction with an OR or 
an AI technique.  Many types of simulation techniques are 
used including physical, Monte Carlo, process, discrete 
event, and system dynamics.  For production decisions, 
discrete-event simulation (DES) is by far the most popular 
of these techniques.    At varying levels of detail, DES 
models typically capture the flow of materials, the flow of 
information, the flow of jobs, the utilization of resources, 
the short-term impacts of time delays, and a variety of 
user-defined performance measures.  

 
1.1 Performance, robustness, and stability 
 
These performance measures, which are predictions of 
future behavior, are then used to choose the best among the 
alternative decisions.  The decision corresponding to the 
best prediction is usually selected.  Our view is that 



making a decision solely on the basis of evaluating future 
performance is not enough.  Two additional issues should 
be addressed: robustness and stability.  Robustness is 
related to the likelihood that the predicted performance will 
be realized given the uncertain evolution of the production 
system. Stability is related to the impacts of production 
delays and feedback on the performance of the enterprise.   

In this paper, we focus on stability.  The issue of 
stability is of critical importance in complex systems where 
the structural relationships among sub-systems can have a    
non-linear impact of the evolution of the overall system. In 
such systems, a small deviation from the optimal decision 
point can cause disproportionately large changes in the 
system performance. Moreover, it is difficult to determine 
correct control actions to change the system performance 
due to the higher-order non-linear interactions among 
several interconnected components of the system. Several 
studies of complex non-linear systems have shown the 
presence of non-stationary or even chaotic behavior in 
different operational regions of these systems (Li 1975, 
Ditto 1990, Deshmukh 1998). DES models allow us to 
evaluate the system performance for a specific value of 
decision variables or a control policy. However, they do 
not allow us to determine the stability of the system in the 
region or neighborhood of the control policy or decision 
variable values being evaluated.  Hence, it would be 
desirable to develop modeling tools that work in 
conjunction with DES to allow us to evaluate the stability 
of an enterprise system in different operational regions. 
 
1.2 The Use of System Dynamics Simulations 

 
System Dynamics has been used to model interactions and 
flows between different elements of number of complex 
systems (Sterman 2000) since Forrester's work pioneering 
work on urban dynamics (Forrester 1958). System 
dynamics (SD) models use a set of finite difference or 
differential equations to capture interactions between 
different sub-systems and the impacts of delays.  Hence, 
SD models, by design, are aggregate models that are based 
on overall rates rather than specific events occurring in the 
system. However, SD models are ideal for understanding 
the dynamics of the system in different operating regimes. 
In this paper, we present a hybrid modeling methodology 
that uses this feature of SD models in conjunction with the 
ability of DES models to represent sub-system details and 
driving events to evaluate enterprise models from 
performance and stability perspectives.  
 
1.3 Outline of Paper 
 
In section 2, we provide some background information on 
discrete event simulation, system dynamics simulation, and 
distributed simulation.  In section 3, we discuss the 
example, an integrated simulation of a semiconductor 
enterprise.  In section 4, we summarize our views. 

2. BACKGROUND 
 
In this section, we provide some background on the use of 
discrete-event simulation, system dynamic simulations, 
and distributed simulations in manufacturing. 

 
2.1 Discrete Event Simulation in Production Decisions 
 
In most manufacturing simulations, time is a major 
independent variable.  Other variables included in the 
simulation are state variables, which describe what is 
happening in the process or system as functions of time.  
Continuous simulation models are used for state variables 
that change continuously with respect to time.  Typically, 
continuous simulation models involve mathematical and 
differential equations that give relationships for the rates of 
change of the state variables with time.    

In the discrete-event-simulation (DES) approach, state 
variables change only at event times.  Examples of state 
variables include the number of jobs waiting in the queue 
in front of a machine, the status of each machine on the 
shop floor, and the location of each job in the factory.  
DES models are mainly flow models that track the flow of 
entities through the factory.  The tracking is done using 
times at which the various events occur.  The task of the 
modeler is to determine the state variables that capture the 
behavior of the system, events that can change the values 
of those variables, and the logic associated with each 
event.  Executing the logic associated with each event in a 
time-ordered sequence produces a simulation of the 
system.  As each event occurs and expires, it is removed 
from the sequence, called an event list, and the next event 
is activated.  This continues until all the events have 
occurred.  Statistics are gathered throughout the simulation 
and reported with performance measures (average delays, 
down time, and throughputs to name a few.  Different 
probability distributions can be associated with each 
process to simulate variations.  

The DES approach has been applied to decisions in 
design, scheduling, and planning related to production 
applications  (Law 1991, O’Reilly 1999). The simulation 
models that are used to make or evaluate these decisions 
generally represent the flow of materials to and from 
processing machines and the operations of machines 
themselves.  Design simulations focus on long-term 
questions regarding plant design and continuous 
improvement.  Before building a new facility, the designer 
must decide on the processing machines, storage devices, 
and transportation systems to buy, and the proper physical 
layout.  Building the facility on the computer using DES 
model, before equipment purchased and construction 
begun, can save millions of dollars.  By buying only the 
needed equipment and ensuring that the facility can 
produce at the anticipated demand rate, the designer can 
minimize risk and capital expenditures (Cardarelli 1995, 
O’Reilly 1999, Peters 1997). Once a facility is in 



its origins in the control-engineering work of Jay Forrester 
(Forrester 1958, 1971). Peter Senge (Senge 1994) views 
system dynamics as a conceptual approach to facilitate the 
understanding of complex problems. Its central concept is 
that all the objects in a system interact through causal 
relationships.  These relationships come about through 
feedback loops, where a change in one variable affects 
other variables over time; these variables, in turn, affect the 
original variable, and so on.  System dynamics asserts that 
these relationships form a complex underlying structure for 
any system. This structure may be empirically or 
theoretically discovered.  It is through this discovery that 
the causal relationships become clear and predictions of the 
future behavior of the system become possible. 

operation, DES models can be used to evaluate system 
improvements.  A system engineer can analyze the impact 
of facility changes like adding new equipment, reducing 
work-in-process buffers, and so on.  He can also identify 
potential problems and correct them using a DES model.  

By far the most common use of DES models is for 
operational decisions such as planning and scheduling. 
Planning decisions include capacity planning, production 
planning, and process planning.    Capacity planning 
simulations evaluate the impact of changing product mix or 
demand.  Production planning simulations evaluate the 
impact of various aggregation schemes and their associated 
material-order policies.     The planner can use a DES 
model to test material reorder points and delivery 
procedures to manage inventory buffers.  Process planning 
simulations evaluate assignments of jobs to machines and 
routings for those jobs through the shop. Scheduling 
simulations seeks solutions to daily issues including on-
time order completion, priority changes, and unexpected 
changes in resource availability.  DES helps a system 
engineer detect potential scheduling problems through the 
review of the resource and schedule performance during 
the scheduling interval (shift, day, or week).  The new 
alternative policies are then executed and performances of 
alternatives are compared.  This process is repeated until a 
feasible and desired schedule is achieved (Jeong 1998, 
Kim 1998, Lin 2001, Min 2002, Vaidyanthan  1998).   

The creation of a complete dynamic model of a system 
requires the identification of the causal relationships that 
form the system’s feedback loops (Forrester 1971, Sterman 
2000). Feedback loops can be either negative or positive. A 
negative feedback loop is a series of causal relationships 
that tend to move behavior towards a goal. In contrast, a 
positive feedback loop is self-reinforcing. It amplifies 
disturbances in the system to create high variations in 
behavior. Causal loop diagrams are important tools for 
representing the feedback structure of systems. A causal 
loop diagram consists of variables connected by arrows 
denoting the causal influence among the variables. The 
important feedback loops are also identified and displayed 
in the diagram (Figure 1).  From the preceding brief discussion, we can see that 

DES is a widely used and increasingly popular method for 
studying the design and operations of manufacturing 
systems.  In fact, DES is often the only type of 
investigation possible.  There are three main reasons.  First, 
DES has the ability to describe the most complex 
manufacturing systems and to include stochastic elements, 
which cannot be described easily by mathematical or 
analytical models.  Second, DES allows one to track the 
status of individual entities and resources in the facility and 
estimate numerous performance measures associated with 
those entities under a wide range of projected operating 
conditions.  Third, alternative facility designs or operation 
policies for a facility can be compared via DES to see 
which best meets a specified performance goal.  
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However, DES does have some drawbacks. DES relies 
on statistics.  One can only establish correlations among 
variables and performance measures using statistical 
models; causality must be inferred.  Although critical to 
effective decision-making, understanding the difference 
between correlation and causality is not always intuitively 
easy.  Consequently, erroneous causal inferences based on 
correlations can occur.  Also, DES models are often 
expensive and time-consuming to develop. 

Figure 1. Causal Loop Diagrams 
 
From these causal loops, we can develop a stock-and-

flow graphical structure (Figure 2). Stocks are 
accumulations of information or materials that characterize 
the state of the system. They generate the information upon 
which decisions and actions are based.  They also create 
delays by accumulating the difference between the inflow 
and outflow of a process. Flows are rates that are added to 

 
2.2 System Dynamic Simulation  
 
As noted above, system dynamics is a method for studying 
the dynamics of the real-world systems around us.  It has 



or subtracted from a stock. This graphical description of 
the system based on stocks and flows can be mapped into a 
mathematical description of the system.   
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Figure 2. Stock and Flow Diagrams 
 

2.2.1 System Dynamics and Supply Chains 
 
System Dynamics has been used extensively to model the 
behavior of supply chains. Its uses range from the analysis 
of various strategic and operational policies to the actual 
design of the supply chain and its logistics. Jay Forrester 
(1971), who pioneered the modeling of supply chains using 
system dynamics, described them using flows of 
information, orders, materials, money, human resources, 
and capital equipment. In a recent paper, (Angerhofer and 
Angelides 2000), the authors argue the use of System 
Dynamics Modeling in Supply chain Management has only 
recently re-emerged after a lengthy slack period. They 
further argue that there are three main uses: theory 
building, problem solving, and improved modeling.  

According to (Ackerman et al., 1999), research in 
theory building includes the uses of system dynamics to 
study the interrelationships among the different elements 
of a supply chain system.  Towill uses systems dynamics 
as a methodology to solve difficult problems such 
inventory oscillations, supply chain re-engineering, and 
supply chain design (Towill, 1996). In (Naim and Towill, 
1994), the authors use system dynamics as a simulation 
tool to model the dynamics of the supply chain.  
 
2.2.2 Mathematical Tractability 
 
System dynamics models, as noted in the preceding 
section, are based on control engineering and feedback 

systems. Therefore, they can be reduced, conceptually, to a 
single, global, differential equation 
 

dX/dt  =  A X + b 
 
where X is the state at time t.  These models, which can be 
linear or non-liner, can include random variables and other 
elements representing uncertainty and fuzzyness. For 
example, eigenvalue analysis and their elasticities can be 
used to validate the mapping between the causal models 
and the stock-and-flow diagrams.  Non-linearities can be 
verified using state equations and phase diagrams. Other 
schemes with reference to stability, oscillatory and chaotic 
behavior, optimization (bounded, non-linear, and 
stochastic), and complexity measurements can be 
addressed with a system dynamics model.  

 
2.3 Distributed Simulation in Manufacturing 
 
Recently, the idea of using a distributed simulation to 
model aspects of manufacturing has gained favor.   In 
(Riddick 2000), the authors discuss three types of 
distributed simulation. First, there is a single conceptual 
manufacturing simulation comprised of multiple individual 
simulations that are executing independently and 
interacting with each other.   For example, simulations of 
individual members of a supply chain could interact to 
form a simulation of the entire supply chain.  Second, there 
could be a distributed computing environment comprised 
of manufacturing software applications running and 
interacting with one or more simulations.  For example, a 
scheduling application may submit potential scheduling 
rules to a simulator for evaluation.  Third, there could be a 
single conceptual simulation system comprised of multiple, 
functional modules that together form what today is 
commonly a single simulation system. Such an 
environment may include model building tools, simulation 
engines, display systems, and output analysis software. 

In this paper, we focus on the first type: multiple 
simulations integrated into a single conceptual model of 
some manufacturing system.  The basis for most 
implementations of this is the high level architecture. 
 
2.3.1 High Level Architecture 
 
The High Level Architecture (HLA) was developed to 
provide a consistent approach and rules for integrating 
distributed, heterogeneous, defense simulations (Kuhl 
1999).  The HLA has been approved as an IEEE standard 
(http://standards.ieee.org/) and it has adopted as the facility 
for distributed simulation systems by the Object 
Management Group (http://simsig.omg.org/). 

The Run Time Infrastructure (RTI) software, which 
implements the rules and specifications of HLA, provides 
methods, which can be called and used by individual 
simulation federates.  RTI’s interfaces can integrate   

http://standards.ieee.org/
http://simsig.omg.org/


federates, but implementation is quite complex.  To 
address this problem, the Distributed Manufacturing 
Simulation (DMS) Adaptor was developed (Riddick 2000).  
 
2.3.2 Examples in Manufacturing 
 
The Intelligent Manufacturing Systems (IMS) MISSION 
project (Mission 1998) proposed construction of a 
distributed, heterogeneous, supply-chain simulation that 
integrated existing factory-level simulations (Riddick 
2000).  Three main benefits of this approach, over the 
traditional monolithic approach, were given.  First, 
important partner details -- such as WIP, job status, 
machine status, and capacity -- are hard to secure in a 
single, monolithic model.  They, however, can be obtained 
from individual models easily.  This improves the accuracy 
of the overall results.  Second, partners can hide any 
proprietary data within their individual simulations and 
still provide enough information for the supply-chain 
simulation.  Third, partners do not have to do any extra 
work to answer demand questions posed by the OEM; they 
simply run their own, up-to-date simulations and forward 
the results over the Internet.   

In (Venkateswaran 2002), the authors constructed and 
demonstrated this type of supply-chain simulation based on 
the HLA, the DMS Adaptor, and a supply-chain scenario 
presented in (Umeda 1998). In (Fujii 2000), the authors 
presented a similar approach for constructing a factory 
simulation integrating distributed and precise cell-level 
simulations, in which data propriety is not relevant. 

Considerable research has been conducted for the 
synchronization of events executed concurrently on 
different computing processes, ensuring that events are 
processed in the correct time-stepped order (Chandy 1979, 
Jefferson 1982).  Based on this earlier work, several 
researchers applied and discussed them for the context of 
manufacturing simulations.  Fujii (Fujii 2000) presented 
the time bucket synchronization mechanism, and 
Ramakrishnan (Ramakrishnan 2002) presented a master-
event calendar mechanism; Misra (Misra 2003) presented a 
neural-network-based, adaptive-time-synchronization 
mechanism for the integration of supply chain simulations, 
where the best mechanism is identifed dynamically based 
on federation conditions. 
 
2.3.3 Object-Oriented Architectures and the World 
Wide Web 
 
Fishwick (Fishwick 1996) explores a wide range of issues 
in the use of World Wide Web for simulation study, 
including client-server arrangements for increasing 
processing power, dissemination of simulation models and 
results, publication, education, and training. In (Cuburt 
1997), the authors presented MOOSE (Multimodeling 
Object-Oriented Simulation Environment) based on the 
OOPM (Object-oriented Physical Modeling) described in  

(Fishwick 1997). MOOSE allows users to create 
multimodels in a graphical manner, thereby exploiting 
model types with which they are already comfortable.  Its 
model repository leads to a prototype that allows modelers 
to treat models as interchangeable units.  Delen  (Delen 
1998) proposed an integrated modeling and analysis 
generator environment (IMAGE) that supports the 
managerial decision-making process. Son (Son 2003) 
proposed component-based simulation, which would speed 
Internet-based simulation services. 

The Object-Oriented Architectures have a significant 
impact on the development of simulations.  Entities in a 
system can be represented by individual classes.  Such a 
representation, in turn, facilitates the distribution of the 
simulation models on different processors and the design 
of parallel simulation experiments.  In addition, a key 
feature of the World Wide Web for running a distributed 
simulation is the transparency of network heterogeneity 
(Ferscha 1997), where interoperability of different 
networks is achieved through well-defined, standardized 
protocols such as HTTP and CGI.  Both the Object-
Oriented Architectures and the World Wide Web will have 
provided significant impact in distributed simulation. 
 
3.  A PRELIMINARY STUDY 
 
Our preliminary study investigated the potential of 
combining the DES and SD in modeling a manufacturing 
enterprise.  This enterprise has two plants: a semiconductor 
fabrication plant (FAB) and the sealer plant. Strategic 
decisions of resource allocation are made at the top 
management levels. We are interested in the allocation of 
financial resources to the plants.  These decisions and all 
relevant information are modeled by the SD approach. 
Capital can be allocated to each plant according to three 
rules:  proportional to net income, proportional to 
revenues, and proportional to profit margins. 

The operations at the plants are modeled using DES. 
In addition, reinvestment decisions, such as buying new 
machines, hiring new people, improving existing facilities, 
will be validated and evaluated in the DES models. 
Feedback in terms of productivity and cost information and 
other measures will be given to the SD model. SD will 
react as appropriate to adjust the investment decisions 
considering the feedback information and the allocation 
rules. The cycle continues until the best allocation of 
resources is obtained. Studying the interaction between the 
strategic planning and the shop floor activity is the core of 
this work. Distributing the simulation, by integrating the 
SD model with DES model is starting point.  
 
3.1 The SD Model 
 
The principal objective is to study the dynamics of creating 
corporate growth with a positive economic value-added 



(EVA) in perpetuity. So far, no company has overcome the 
forces limiting corporate growth and making it vulnerable 
to ultimate merger, acquisition, or failure. The model 
incorporates the corporate strategic level that decides the 
percentage of re-investment from the total profits and what 
portion of that re-investment will be allocated to each 
plant. In addition, the model captures the impacts of the 
decisions of the plant managers on how to invest the 
financial resources provided by corporate. The plant 
managers can buy more machines, increment/decrease the 
workforce, start R&D Projects (to increase sales and 
sustain the current product), and implement enhancement 
productivity projects such as six-sigma. The model also 
models the supply chain of each plant, the decisions about 
the price of the different products and compiles the costs 
and revenues from each plant in order to generate the 
earnings before interest and taxes.  

total revenues of the corporation).  
 
3. Proportional to Earnings. The re-investment 
amount allocated to a plant will be based on the 
proportional size of its EBIT (with respect to the total 
EBIT of the corporation). 

 
3.2 The DES Model of the Fab 
 
The considered fab, which contains 24 workstations, is 
based on the work of (Wein 1988).  With the exception of 
workstations 13 and 14, which have 2 and 3 identical 
machines respectively, each workstation has a single 
machine. The fab uses a single processing technology that 
requires 172 total operations at the 24 workstations. In this 
study we assumed only one type of wafer, so the 
processing sequence is the same for all orders.  

Causal loops were developed and transformed in 
differential equations. Figure 3 shows one of the causal 
loops developed.   

 

Re-Investment
Allocated to Fab

Plant

Re-Investment
Allocated to Sealer

Plant

Corporate Total
Profit

Re-Investment
Fab

Performance Sealer
Performance

Profit from Fab
Plant Profit from

Sealer Plant

+ +

+

+

+

+
+

+

+

-

 

The Fab DES can be used to evaluate the impact of 
changes in demand and various decisions regarding the 
expenditures of additional financial resources. The DES 
outputs production rates, capacity projections, work-in-
process information, and configuration data such as 
number of machines and workers.  At the current capacity 
configuration and demand levels, the Fab can complete 
89.5% of released orders, which corresponds to a 
production rate of 0.00056 lots/hr.  However, machine 
utilization varies from 70% to 30%.   

Wafers are released into the Fab in lots of 24 wafers, 
according to an exponential distribution with 42 hrs mean 
interarrival time. Lots are processed at each workstation 
according to FIFO service discipline. Processing times are 
modeled by a Gamma distribution (shape parameter of 2). 
Processing times are assumed to include setup times and 
transfer times between stations, and rework if needed. No 
limits on WIP capacity are assumed between workstations. 
However, machines are subject to failure and this is 
modeled by a Gamma distribution (shape parameter of 
0.5). Values for mean processing times (MPT) per lot at 
each machine, mean time between failure (MTBF), and 
mean time to repair (MTTR) are taken from (Wein 1988).    

Figure 3: Example of Causal Loops Developed  
 

The two inner loops are both positive, while the outer loop 
is negative. Currently, the model has 10 differential 
equations and more than 50 auxiliary variables.  

Figure 4 shows a part of the stock-and-flow model 
related to the Fab plant, and the decisions from the plant 
managers, and the results of the DES analysis of those 
decisions.  

Market analysis has shown that the firm should expect 
and be ready for a considerable increase in demand, 
somewhere between 10% and 25%.  The DES model 
showed that a 10% increase in demand would lead to a 
7.8% reduction in completed orders, a 17.86% reduction in 
the production rate, and an increase in WIP of 33.33%.  So, 
the plant cannot meet even the smallest projected increase 
in demand.  Its only action is to expand capacity by getting 
more machines and more people. 

The corporate strategy is to re-invest 55% of the 
earnings before interest and taxes (EBIT). The other 45% 
corresponds to taxes, interests, and dividends. The 
allocation of this re-investment can follow three different 
policies: 

 
1. Proportional to Average Return. The re-investment 
amount allocated to a plant will be based on the 
proportional size of its average return. 

Once the SD simulation decides how much additional 
financial resource to provide the Fab, the Fab manager will 
decide how to allocate those resources to new machines 
and new people.  The DES then computes the throughput 
and cost data, which are fed back to the SD where long- 
term earnings are estimated.  

 
2. Proportional to Revenues. The re-investment 
amount allocated to a plant will be based on the 
proportional size of its revenues (with respect to the  
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Figure 5.  Simulated EBIT (Corporate) 
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Figure 6. Simulated EBIT (Fab) 
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Figure 7. Simulated EBIT (Sealer) 

 
3.3 Summary of Results 
 
The integration of system dynamics and discrete-event 
simulation allowed us to simulate different hierarchical 
levels of the modern enterprise. The system developed was 
simulated with three different investment policies at the 
corporate level. The plant managers were able to balance 
between increased capacity, sustaining product 

improvement, and productivity projects. Figures 5, 6, and 7 
have the results for three different investment policies. 
 
4. SUMMARY 
 
We have shown the potential merit of integrating system 
dynamics (SD) simulation models with discrete-event 
(DES) simulation models to evaluate the impact of local 
production decisions on the entire enterprise.  The SD 
simulations capture long-term effects of these decisions.  
They also provide a more detailed analysis of the future 
stability of the enterprise.  
     The integration of SD and DES can provide a good 
framework for Enterprise Simulation.  This framework can 
enable simulations at multiple resolutions in space and 
time. This will enhance the current modeling of the modern 
enterprise which is dominated by managerial hierarchies in 
which high corporate managers set objectives to their plant 
managers who, in turn, try to satisfy them by setting 
objectives and tasks to their personnel. Unfortunately, so 
far, the current enterprise simulation frameworks cannot 
mirror the hierarchical aspects of the enterprise and 
provide good answers to the decomposition of tasks and 
alignment of objectives at different levels. 

  
Product Disclaimer 
Commercial software products are identified in this paper. 
These products were used for demonstrations purposes 
only.  This does not imply approval or endorsement by 
NIST nor that these products are necessarily the best 
available for the purpose. 
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Figure 4. Partial System Dynamics Model 
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