
PII: SoolO-4485(96)00047-4

Towards multiprocessor feature
c recognition

William C Regli, Satyandra K Gupta* and Dana S Nauf

The availability of low-cost computational power is enabling
the development of increasingly sophisticated CAD software.
Automation of design and manufacturing activities poses many
difficult computational problems-significant among them is
how to develop interactive systems that enable designers to
explore and experiment with alternative ideas. As more
downstream manufacturing activities are considered during
the design phase, computational costs become problematic.
Creating working software-based solutions requires a sophis-
ticated allocation of computational resources in order to
perform realistic design analyses and generate feedback.

This paper presents our initial efforts to employ multi-
processor algorithms to recognize machining features from
solid models of parts with large numbers of features and many
geometric and topological entities. Our goal is to outline how
improvements in computation time can be obtained by
migrating existing software tools to multiprocessor architec-
tures. An implementation of our approach is discussed.
Published by Elsevier Science Ltd

Keywords: distributed computing, feature-based modelling,
feature recognition, multiprocessor solid modelhg

The availability of low-cost computational power is
enabling the development of increasingly sophisticated
CAD software. Software tools designed to reduce time-
consuming build-test-redesign iterations are becoming
essential for increasing engineering quality and produc-
tivity. Examples include tools for finite element analysis,
mechanism analysis, simulation, and rapid prototyping.
Such tools have become crucial components for research
in collaborative engineering and engineering design.

Automation of the design process and construction of
such tools, however, pose many difficult computational
problems. To realize the advantages of collaborative
engineering, more downstream engineering activities are
considered during the design phase. As design is an
interactive process, developing techniques to manage
computational costs better is critical in systems that
enable designers to explore and experiment with
alternative ideas during the design stage. Achieving
reasonable levels of interactivity between design and

National Institute of Standards and Technology, Manufacturing
Systems Integration Division, Building 220, Room A-127,
Gaithersburg, MD 20899, USA
’ Rapid Manufacturing Laboratory, The Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA 15213, USA
t Department of Computer Science, Institute for Advanced Computer
Studies and Institute for Systems Research, University of Maryland,
College Park, MD 20742, USA
Paper received: 29 May 1995. Revised: 3 May 1996

-

37

downstream activities (such as analysis, process plan-
ning, and simulation) requires an increasingly sophisti-
cated allocation of computational resources in order to
perform design analyses and generate feedback.

It is becoming increasingly evident that one necessary
component of an automated design analysis tool is a
subsystem for recognizing manufacturing features
directly from a CAD or solid model. This problem has
been the focus of extensive research aver the last decade.
Feature recognition is used for a variety of applications,
including the generation of process plansss,t4st5, transla-
tion between design and manufacturing features, and
generation of redesign suggestions5,6. What has also
become evident is that feature recognition, for realistic
classes of parts with multiple and interacting feature
interpretations, requires extensive geometric reasoning
and is computationally expensive. Hence, generating the
features from a part is a computational bottleneck within
an integrated design system.

In this paper we present our initial efforts toward
developing a methodology for recognizing a class of
machining features using multiprocessor algorithms on a
distributed system. Feature recognition has been
approached using a variety of techniques, some of
which are easier to parallelize than others. In previous
work2’, we described serial trace-based algorithms for
finding feature instances from solid model data. A trace
represents the information in the solid model of the part
produced by an instance of a feature.

The techniques presented in this paper demonstrate
the feasibility of migrating existing serial feature
recognition systems to take advantage of multiprocessor
computing technologies. We report results indicating
that trace-based feature recognition methodologies are
particularly well suited for parallelization. The basic
steps in our approach are:

(1) Tusk initialization. Initialization is performed at four
levels: (1) the types of features to be recognized;
(2) the types of trace information used to construct
the feature instances; (3) the decomposition of the
geometry and topology of the traces; and (4) the
simplification of the part geometry to reduce the costs
to solid modelling operations.

(2) Task distribution. The problem is divided using the
task decomposition-isolating independent portions
of the recognition problem and identifying a suitable
computational resource for solving it.

(3) Synthesis of results. The results obtained by each
separate processor are combined into a global
solution. This solution set can then be passed on to

Chuang and Henderson’ explore graph-based pattern
matching techniques to classify feature patterns based on
geometric and topological information from the part.
Efforts at Carnegie Mellon Universit$3’28 have employed
graph grammars for finding features in models of injection
moulded parts. Recently, Corney and Clark4 have
employed graph-based algorithms to find general
feature classes from 2$-dimensional parts.

Gadh and Prinz’ were the first to describe techniques
for combating the combinatorial costs of handling
complex industrial parts (i.e. those with thousands of
topological entities). They point out that, in such cases,
traditional knowledge-based, decomposition, and pattem-
matching techniques are computationally impractical
because the fundamental algorithms (i.e. frame-based
reasoning or subgraph pattern matching) are inherently
exponential. Gadh and Prinz’s method is to abstract an
approximation of the geometric and topological infor-
mation in a solid model and find shape features in the
approximation. Their approach employs a differential
depth filter to reduce the number of topological entities.
A second pass maps the topological entities onto
structures called ‘loops’. In their work, features are
defined using the higher-level loops as opposed to being
defined as patterns in the boundary representation’s
geometry and topology. This approach significantly
reduces the number of entities that need to be searched
to build feature instances. While this kind of approach
holds much promise for addressing combinatorial
problems, it does not address how to extend the
techniques to better handle interacting features and
non-linear (non-faceted) solid models.

Fields and Anderson9 present an approach to feature
recognition that overcomes some of the representation
and efficiency problems common in previous work.
Unlike pattern-based or decomposition-based recogni-
tion methodologies, they categorize sets of faces on the
surface of the part into classes of general machining
features: protrusions, depressions, and passages. The
shapes within each class, while sharing many operational
similarities, may vary in geometry and topology. For
each of their feature classes, they present a linear-time
algorithm for identifying features.

Trace-based feature recognition

Most relevant to the work in this paper are the recent

(a)

trace-based feature recognition methodologies. Funda-
mentally, a trace-based approach to feature recognition
attempts to reconstruct feature instances from the
information that they contribute to the final geometric
model of the product.

The work of Marefat and Kashyap’ presented an early
trace-based technique. They expanded on the work of
Joshi and Chang’*, augmenting it with hypothesis testing
techniques. In Marefat and Kashyap’s method, informa-
tion from the solid model is used to generate hypotheses
about the existence of features. These hypotheses are
tested to see if they give rise to valid feature instances.

Vandenbrande and Requicha33 were the first to
formalize trace-based (or hint-based) techniques for
constructing features from information in a solid
model. In the work of Vandenbrande, the traces are
used to fill ‘feature frames’ in a frame-based reasoning
system. After filling frames with the trace information
present in the part, the system classifies the partial frames
and attempts to complete information for producing
promising frames using a variety of geometric reasoning
and computational geometry techniques. This work has
recently been enhanced and extended by Han and
Requicha14’“.

Regli et al.” present an approach for guaranteeing
completeness of a recognition algorithm, i.e. it describes
how one can define a class of features and verify that a
particular approach was capable of producing all
features in that class. They present feature recognition
as an algorithmic problem in which traces are found by
traversing the geometry and topology of the part and
then used to construct feature instances. They formally
describe the behaviour of their algorithm and calculate a
general measure of its complexity. This approach has
been employed for automated design analysisI and
automated redesignsS6.

Many aspects of the feature recognition problem are
still open and active areas of research. Among these are:
recognizing and representing interacting features33,
incremental recognition of features during feature-
based design*s~i4~is, modelling alternative feature inter-
pretations and completeness21~27, and reasoning about
the manufacturability of feature+.

APPROACH TO FEATURE RECOGNITION

In this section we outline a basic trace-based feature

Towards multiprocessor feature recognition: W C Regli et al.

Figure 1 An example of traces left by drilling features: (a) trace I: cylindrical surface; (b) trace 2: conical surfaces

39

Towards multiprocessor feature recognition: W C Regli et al.

of manufacturing it. A feature-based model is a set of
feature instances that models a single, unique interpreta-
tion of the part. The feature recognition problem can be
defined as follows: given a collection of machining
features J? = {Ml, M,, . . . , Mj}, a part P, and a piece of
stock S, find the set 9 of instances of feature types from
,U recognized from P and S. The feature set 9 is a finite
set of features the set being composed of the union of the
alternative feature-based models for the part*‘.

Trace-based recognition of features

A truce represents the information in the solid model
of the part produced by an instance of a feature. The
basic components of a trace-based feature recognizer
are the following:

(1) A finite set J# of feature types. In the context of this
paper, J’/ is made up of the simple feature domain
defined earlier.

(2) Each feature type M in JZY has associated with it a
finite set of trace types rMJ, tM2,. . . , tMr. Trace types
are developed below in this subsection.

(3) For each trace type I,+,;, there is a procedure P’,;()
such that 8,,, () constructs, from instances of the
traces and the solid model of the part and stock
material, instances of features of type M capable of
producing the trace I,,,;.

Note that a feature type M might have several different
types of traces associated with it; also a feature instancef
might leave several different traces on the model of the
part. Conversely, a trace type might produce one or more
feature instances (e.g. the cylindrical surface of a through
hole can be considered as two different drilling features,
one in each direction along the axis of the cylinder). In
this work we are focusing on feature traces that can be
identified on the boundary of the part (i.e. traces left
in (f) n b(P) where b(P) is the boundary of P).

An outline for a generic algorithm for trace-based
recognition of features can be presented as follows:

(1) Input a collection of feature types J’, a solid model
for the part P, and a solid model for the initial stock
material S.

(2) From P and S, identify the set Y of all potential
traces present.

There are several ways in which the traces can be
identified (for example, previous research has included
hypothesis testing*’ and frame-based reasoning
approaches33). The traces in this paper can be identified
by examining the topology in the boundary representa-
tion of A.

(3) For each potential trace t in Y-do: If t matches a tMi,
call the procedure 9(t,) and construct (if possible)
feature instances, fi , f2 , . . . ,fn, of type M. Add these
to the set 5 of all feature instances.

Detailed presentation of trace-to-feature algorithms is
beyond the scope of this paper. Interested readers are
referred to related work which contains detailed
examples of such algorithms’2~‘4~27~33 for all of the
above~traces.

Example trace types
For illustrative purposes, the task of recognizing basic
drilling and end-milling features can be accomplished
using the following traces types:

1. Drilling features.
Trace 1. Any convex cylindrical surface s, in the delta

volume created by the side surface of a drill during a
drilling operation.
Rationale: This trace type is used to build instances of
drilling features when a portion of their side surface
remains on the boundary of the delta volume. An
example of this trace is illustrated in Figure la.

Trace 2. A convex conical surface sr in the delta volume
created by the side surface of conical tip of a drilling
tool.
Rationale: This trace type is used to build an instance
of a drilling feature when only a portion of its ending
tip surface remains on the boundary of the delta
volume. An example of this trace is illustrated in
Figure lb.

2. End-milling features.
Truce I. A planar surface sp in the delta volume created

by the cutting tip of an end-mill. This trace is used to
build instances of end-milling features when only a
portion of their bottom surfaces are present on the
boundary of the delta volume.
Rationale: This trace type is used to determine the
profile of end-milling features. Given an edge
el = (2r’,u2) of the planar surface sr, orientations
and locations for potential milling features can be
obtained from other edges* e2 = (v3,u4) in the delta
volume for which the vertices vl, v2, v3, v4 are coplanar.
An example of end-milling trace 1 is given in Figure 3~.

The following two traces are used to build instances of
end-milling features when only a portion of their side
surfaces are present on the boundary of the delta volume.
In these cases, the end-milling features may extend
completely through the stock material. Examples of such
features include through pockets and profiles.

Trace 2. A cylindrical surface in the delta volume as a
surface created by the side cutting surface of an end-
mill. An example of end-milling trace 2 is given in
Figure 3b.
Rationale: The profile of a milling feature might
comprise curved edges, for example, the comer radii
created when a round tool machines a convex comer.
This trace type uses these curved surfaces to determine
the orientation of potential through features.

Truce 3. A planar surface in the delta volume, considered
as a face created by the side cutting surface of an end-
mill during the same machining operation. Figure 3c
shows an example of milling trace 2.
Rationale: For some instances of through milling
features, all that may remain are walls. This trace type
begins with a single planar wall and, by considering
other planar surfaces in the delta volume, obtains
orientations for potential through milling features
from the normal vectors; i.e. two non-parallel planar
surfaces can be used to determine the .orientation of

*Note that in the solid model of the delta volume, the edges q and e2
might be non-linear curves, e.gY they could be elliptical.

Towards multiprocessor feature recognition: W C Regli et al.

&&A Fealure Types

.

II t2 Ik I1 I2 1,

Ml Ml M-1 M4 M4 M4
Trace Types

a
Trsce Dccomposidon

a
Model Simplification

Figure 6 Divide-and-conquer parallelization based on feature types and trace types

feature instance f in different ways using different traces.
There are two possible approaches to handling this
redundancy. One method is to delete duplicate features
while building the final feature set 9. A second
approach, and the one that we will employ, is to identify
the traces capable of producing equivalent feature
instances and handle them together on the same
processor, removing duplicates as they are found. This
introduces another level of parallelization by dividing the
set of traces found into independent subsets. In this way
redundancies are addressed at the level at which they
occur, thus simplifying the task of building the final
feature set 9.

Parallelizing feature recognition produces other, less
obvious benefits. In particular, a large portion of the
costs in a feature recognition system are due to the
complexity of geometric computations and geometric
reasoning. When isolating independent problem sub-
tasks, one can make geometric and topological simpli-
fications that identify the information in the original part
needed to build and verify the feature instances. In this
way, many of the subproblems may require only a
fraction of the information present in the solid models of
the original part and stock.

Distributed methodology

For the example domain of the previous section, our
approach is to have a central computing resource act as a
server to set up the problem and transmit subtasks to
client machines distributed on the network, as illustrated
in Figure 5. Each of the individual client processors is
given an independent portion of the particular global
feature recognition problem.

A distributed algorithm
Recalling the serial trace-based algorithm of subsection
‘Traced-based recognition of features’, we present an
outline for a multiprocessor trace-based feature recogni-
tion algorithm. There are two main components to this
system: a parent algorithm and a child algorithm. Note
that these algorithms partition the problem at several
levels, as shown in Figure 6. The parent algorithm is as

follows:

Parent algorithm
(1) Input a collection of feature types A, a solid model

for the part P, and a solid model for the initial stock
material S. Initialize the set 9 of recognized features,
f = 0.

(2) For each feature type A4 in &, fork a new process*
on a free resource (i.e. a CPU or machine) and do
(a) For each trace type tMi for feature type M do

(i) Find the set T,4 of traces of type rMi present
in the CAD model of the part P.

(ii) Use the set T,,, to divide the problem into
independent subtasks, ri, r2,, . . . , T.

(iii) for each 7; do
(A) Decompose the part P using the TV-

result P’. Trace decomposition is dis-
cussed in more detail later.

(B) Fork a new process on a free resource to
call the child recognition algorithm on

(iv) Let :I: be the set of features returned by the
child. ’

(3) S= = fl u vr&~,.
(4) Return 9.

The child algorithm constructs, when possible, feature
instances from the traces. It is executed over the available
processors as follows:

Child algorithm
(1) Input a feature type M, a trace type tMi, a set of

instances of TIMi of trace tMi, and solid models for the
part P’, and the stock material S.

(2) Simpfifv the solid model of the part P’lresult P”.
Model simplification is discussed later.

(3) Call P(tMi) to build feature set Fr,.

*To fork a process is to start a separate task running within a
multitasking operating system. In current practice on multiprocessor
systems this can also be accomplished by starting a thread”,3’. A thread
can be thought of as an independent subprocess that can be executed on
its own separate CPU, if one is available.

43

Towards multiprocessor feature recognition: W C Regli et al.

possibly by the same operation. End-milling features
with multiple traces (e.g. a bottom surface divided
into multiple subfaces) can be isolated and identified.
For the part in Figure 7u, this results in the grouping
of traces shown in Figure 7d.

(3) Decomposition for end-milling trace 2. Group cyhnd-
rical surfaces with equivalent axes.
Rationale: This groups all potential comer radii
and curved walls for end-milling features with the
same machining orientation. For the part in
Figure 7a, this results in the grouping of traces
shown in Figure 7e.

(4) Decomposition for end-milling trace 3. Group planar
surfaces with normals perpendicular to a common
vector; i.e. for each grouping there is a vector v such
that, for all surfaces si and sj in the grouping, normal
(S;) - V = IlOlTKil(Sj) - V = 0.
Rationale: This groups traces for end-milled features
based on machining orientation; hence through
features that can be machined in the same orienta-
tion are placed in the same group. For the part in
Figure 7a, this results in the grouping of traces shown
in Figure 7J

The above decomposition groups those traces from the
part which might produce equivalent feature instances.
In this way, redundancies can be eliminated at the
subprocess level and later recombination of results can
be facilitated.

Part simplification
The objective of part simplification is to reduce the
amount of data that must be considered by each
processor to a minimum amount sufficient to construct
feature instances from the traces it has been given. The
goal is to reduce the cost of operations during feature
recognition. For example, one can reduce the number of
geometric and topological entities while still retaining the
information required to construct feature instances from
the particular trace. In this way, geometry which does
not affect the feature trace under consideration can be
eliminated.

This section describes Step 2 of the Child Algorithm, in
which the solid models of the part and stock are
simphfied based on the trace information and feature
types. In each case, the geometry and topology of the
model for the part P is modified to P’ as follows:

.(1) Simplification based on drilling trace 1. Given a
cylindrical surface c in the delta volume of radius r,
P’ contains all the portions of P that lie within r of
the axis of c.
Rationale: This simplification retains enough infor-
mation to check for interference between the cutting
tool and the final part. To check for interference
between the workpiece and the machine tool, this
radius may be enlarged depending on the size of the
tool assemblies available in the particular set of
manufacturing resources.

6)

(b) Cc) (e) (f)
Figure 7. An example part and its trace decomposition. The arrows in each figure denote the orientation vector v, for the features that might have
created these traces: (a) an example part; (b) drilling trace 1; (c) drilling trace 2; (d) milling trace I; (e) milling trace 2; (f) milling trace 3

45

Towards multiprocessor feature recognition: W C Regli et al.

from the entire part, and the processing required in
this case might be costly.

Figure 9 shows an example part and four illustrations
of part simplification for end-milling trace 1. In the
figure, the planar faces are being considered as traces
indicating potential bottom surfaces of several end-
milled features; vector v denotes the orientation of the
potential feature. In each case, the trace information is
used to eliminate the portion of the part lying below the
trace (in the direction -v)-information that does not
get considered when building a feature instance in
direction v. Note that in making this rudimentary
simplification the number of geometric and topological
entities to be considered is greatly reduced.

Potential for computational improvement

We can expect the speedup to be no more than a factor of
K, where K is the number of processors available. In
reality, the task decompositon to set up parallelization
incurs some added cost, as does the recombination of
results at the end. These additions are negligible,
however, when compared with the costs incurred to
perform the recognition process on the subproblems.

Within a trace-based methodology, the overall com-
plexity of recognition depends on two factors: the
difficulty in generating the set Y of potential traces,
and the complexity of the methods for generating feature
instances from traces.

A rough upper bound on the size of .Y can be
computed from the model of the part and the types of
traces by counting the number of geometric and
topological entities. The complexity of the feature
construction routines is more difficult to assess and is
where the majority of the computational costs occur.
Much of this cost is due to geometric queries and
reasoning used to find the parameters of feature
instances. While there is no authoritative reference on
the general complexity of solid modelling operations
such as Booleans, sweeps, and the like, indications are
that these operations account for the majority of the
computational cost during feature recognition”. The
complexity of Boolean operations appears to lie between
O(n2) and O(n’) or O(n’) time, depending on the
particular configuration of geometric entities and many
implementation-specific details.

The fact that these basic solid modelling routines are at
least quadratic in the size of the model implies that small
reductions in the number of entities in the model
translate into large reductions in computational cost.

In the next section, we provide rough estimates of both
the speedup factor and the reduction in the number of
geometric and topological entities achieved by our
approach.

IMPLEMENTATION AND RESULTS

A proof-of-concept implementation of this distributed
feature recognition methodology, dubbed F-Rex, has
been done in c++ using version 3.0.1 of the AT&T c++
compiler from SUN Microsystems running on net-
worked SUN SPARC Stations. F-Rex employs version
1 S. 1 -of Spatial Technologies’ ACISO .solid modelling

system and version 3.14 of the NIH c++ Class Library
developed at the National Institutes of Health. Addi-
tional tools include Ithaca Software’s HOOPSO Gra-
phics System and the Tcl/Tk embeddable command
language and user interface toolkit from the University
of California at Berkeley.

F-Rex is the feature recognition subsystem for
IMACS, an interactive manufacturability analysis tool
under development at the University of Maryland’s
Institute for Systems Research. One of the fundamental
goals of IMACS is to provide interactive feedback and
redesign suggestions to the user. Multiprocessor algo-
rithms have provided IMACS with a means of handling
computational bottlenecks.

F-Rex runs on a cluster of SUN workstations;
processes communicate over the Internet using UNIX-
based and TCP/IP-protocol-based network software
utilities and shared disk storage. The geometric compu-
tations required for task initialization are implemented
with direct c++ calls to the ACIS kernel; distributed
processes are invoked using UNIX remote shell
commands; and the resulting feature set is generated by
examining the features produced by each processor and
eliminating redundancies.

The data for the examples below have been collected
using six processors, one SPARC Station model 10, one
model 2, and 4 IPX models. In this version of the
implementation, when the number of tasks is greater
than 6, the tasks are distributed evenly over the available
processors.

These timing results represent the elapsed clock and
CPU times and are not absolute measures of the intrinsic
difficulty of the feature recognition problem-this
example domain is not directly comparable to those of
other feature recognition efforts. Further, there are
hidden costs in the implementation not directly related
to the recognition of feature templates (such as feature
accessibility analysis) and these algorithms and their
implementation can certainly be improved. The results
are intended to provide a rough indication of the time-lag
experienced by the user of the system. More significant
than any precise calculation of elapsed time is the
speedup factor between the serial and parallelized
algorithms. Measurements of elapsed CPU time are
summarized in Table 1.

Example 1

The example part in Figure IOa, taken from Reference
33, contains 21 part faces. Vandenbrande and Requicha33
report identifying 7 features (3 slots, 3 open pockets, and
a step) in 2.5 min on a SUN 4/360. The OOFF system33
handles a wide variety of machining features and process
planning constraints; hence it is not directly comparable

Table 1 Estimated elapsed CPU times for each example

Example Serial (s) Distributed set-up (s) Recognition (s)

1 5 4 0 . 9 6 9.8
2 116 3.5 43.1
3 127 1.2 6.4
4 >I800 75 700
5 >I800 - 19.5 701.5

47

Towards multiprocessor feature recognition: W C Regli et al.

many cylindrical curved surfaces and that few of the
feature instances interact; also note that the decomposi-
tion techniques handle all of the drilling features on the
same processor.

Example 5

The example part in Figure 9 is a shuttle intended to
move along a guideway, with many of the feature
instances added to reduce weight. The solid model of this
part contains 281 faces. In serial, F-Rex takes over 1 h to
find more than 100 feature instances. When running
distributedly, F-Rex took 2min to set up the task
decomposition and approximately 32min to find the
features-a speedup of approximately 2x (200%). In
this case, simplification resulted in a 43% reduction in
the number of geometric and topological entities that
had to be considered. Note that in this example nearly
every feature interacts with every other feature and that
calculation of accessibility volumes for feature instances
is rather complex.

Discussion of results

These preliminary results confirm that performance
gains can be made through effective parallelization of
algorithms. One issue is how to systematically identify
a priori how to produce effective decompositions (i.e.
some classes of features might prove more amenable to
this approach). In general, however, it is difficult to assess
what a typical decomposition and its speedup factor will
be.

We believe that the considerable variation in our
experiments between parallel and serial speedup is due to
three primary factors. First, the complexity and
particular shape of the parts themselves. The example
part in Figure 10a has only one curved surface, while that
in Figure 9 contains many dozens. A more general
analysis of speedup factors would require testing the
software against a set of benchmark parts of varying
degrees of complexity, e.g. parts with many features,
parts with difficult surfaces, parts with both.

The second factor in these variations is the environment
for the experiments, which were conducted on a busy net-
work of heterogeneous multiuser machines. The data were
collected under everyday operating conditions and is
intended as part of our demonstration of the feasibility of
the technique. Because it was not feasible to create con-
trolled experimental conditions, the data are only presented
as a general indication of the technique’s potential.

The third factor contributing to the variability among
examples (and among feature recognition systems in
general) is the treatment of feature accessibility for
machining. In the system used as a basis for the approach
in this paper2’, each machining feature has associated
with it an accessibility volume which approximates the
non-cutting portion of the cutting tool and tool assembly
(an example from Reference 26 is shown in Figure 12).
Testing each feature to ensure that the accessibility
volume does not interfere with the final part requires
a considerable amount of geometric computation-
computation which varies greatly depending on the
shape of the individual part.

.

We believe that parallelized trace-based feature recog-
nition is highly suitable for parts in which the feature
instances themselves are relatively simple, but numerous.
It is not as well suited to problems where the feature
instances themselves have very complex geometric
configurations.

CONCLUSIONS

The focus of this research was to demonstrate the
feasibility of using multiprocessor architectures to enable
large increases in computational power for geometrically
intensive CAD problems. As collaborative engineering
pushes more downstream manufacturing issues into the
design phase, the need to build effective and interactive
CAD software systems requires an increasingly sophisti-
cated allocation of computational resources.

The contributions described in this paper include our
initial work toward an approach for performing trace-
based feature recognition using a multiprocessor
architecture. We present a commonly addressed collec-
tion of features and illustrate how to identify a task

t H2
(b) “‘r,.,

Figure 12 An illustration of a tool assembly and accessibility volume for drilling features. Testing accessibility conditions adds significantly to the cost
of recognizing features for certain types of parts: (a) a drilling tool assembly, from Reference 29; (b) drillingTeature h and accessibility volume act(h)

49

Towards multiprocessor feature recognition: W C Regli et a/.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

Department of Statistics and Computer Science, West Virguna
Umversity, April 1993.
Laakko, T. and Mgntyll, M., Feature modelling by mcrcmental
feature recognition. Compurer-Aided Design, 1993, 25(S), 479-492.
Marefat. M. and Kashyap, R. L., Geometric reasonmg for
recognition of three-dimensional object features. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 1990,12(IO),
949-965.
Narayanaswami, C. and Franklin, W. R., Determination of mass
properties of polygonal csg obJects m parallel. In Sytnposrum on
Solid Modeling Foundattons and CAD/CAM Applications, ed. J.
Rosstgnac and J. Turner, Austin, TX, June 1991. ACM
SIGGRAPH, ACM Press, 1991, pp. 255-267.
Pnnlla, J. M., Finger, S. and Prinz, F. B., Shape feature
description using an augmented topology graph grammar. In
Proceedtngs NSF Engineering Destgn Research Conference.
Nattonal Science Foundation, 1989, pp. 285-300.
Powell, M. L., Kleimna, S. R.. Barton, S., Shah, D., Stein, D. and
Weeks. M., Sunos 5.0 multithead architecture. Techmcal Report
SunSoft, 2550 Garcta Avenue, Mountain View, CA 94043, 1991.
Prabhakar, S. and Henderson. M. R.. Automatic form-feature
recognition usmg neural-network-based techniques on boundary
representations of sohd models. Computer-Atded Design, 1992,
24(7), 381-393.
Regli. W. C.. Geometric algorithms for recogmtion of features
from solid models. PhD Thesis, The University of Maryland.
Collage Park. MD, 1995.
Regli. W. C., Gupta, S. K. and Nau. D. S., Extracting alternative
machining features: An algorithmtc approach. Research in
Engtneertng Destgn, 1995, 7(3), I73- 192.
Safier. S. A. and Finger, S., Parsmg features in solid geometric
models. European Conference on Artificial Intelligence. 1990.
Sandvik Coromant Catalog CMP90-R94.2, 1994.
Stnp, D. and Karasick, M., Solid modeling on a massively parallel
processor. International Journal of Supercomputrng Applications.
1992,6(Z), 175-192.
SunSoft, Multithreaded Programming Guide. Sun Microsystems,
2550 Garcia Avenue, Mountain View, CA 94043. 1994.
Umar, A.. Distributed Computing: A Practical Synthesrs. Prentice-
Hall, Englewood Cliffs, NJ, 1993.
Vandenbrande, J. H. and Requicha, A. A. G., Spatial reasoning
for the automatic recognition of machinable features in solid
models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1993, 15(12), 1269-1285.

William Regli is a National Research
Council Postdoctoral Research Associate
in the National Institute of Standardr and
Technology’s Manufacturing Systems
Integration Division. His research inter-
ests include integration of distributed
manufacturing systems, Internet technol-
ogy, and computer-integrated design and
manufacturing.

Dr Regli receiveda BS in Mathematics
and Computer Science from Saint Jose-

ph’s University in Philadelphia in 1989 and a PhD in Computer
Sciencefrom the University of Marylandat College Park in 1995. He
is the recipient of the University of MarylandS Institute for Systems
Research Outstanding Graduate Student Award (1994-1995). NIST
Special Service Award (1995). and General Electric Corporation
Teaching Incentive Grant (1994-1995), among other awn& He is a
member of ACM, ASME. IEEE, AAAI, and Sigma Xi and on the
editorial board of the journal IEEE Internet Computing. Dr Regli
has authored or co-authored more than 40 technical publications.
Copies of recent papers are available at http:/lelib.cme.niFt.gov/
msidsta~/william.regli.html.

I
Satyandra K Gupta is a research scientist
m the Robottcs Institute at Carnegie
Mellon University. His research interests
rnclude design for manufacturability,
computer-atded process planning,
automated redesign, and concurrent
engineering.

Dr Gupta received a BE in Mechanical

&

Engineering from University of Roorkee

‘h
in 1988. He recetved an MTech m
Production Engrneertng from Indian

f a--. . I L Institute of Technology, Delhi in 1990.
He recerved a PhD tn Mechanical Engtneering from University
of Maryland in 1994, where he has been supported by a Graduate
School Fellowship and an Institute for Systems Research
Graduate Fellowship. Awards received by Dr Gupta include a
Gold Medal for first rank in BE (1988). a Gold Medal for the
best BE Project, the ISR Outstanding Systems Engrneertng
Graduate Student award (1993-94). and a Best Paper Award
in ASME’s Computers in Engrneering Conference (1994).

I Dana S Nau is a orofessor at the
University of Marylan’dl bt the Depart-
ment of Computer Science and the
institute for Systems Research. He is
also an afiliate professor in the Institute
for Advanced Computer Studies
-(UMIACS) and the Department of
Mechanical Engineering. His research
interests include AI planning and search-
ing, and computer- integrated design and
manufacturing.

Dr Nau received his PhD in Computer Science from Duke
University in 1979, where he was an NSF graduate fellow. He has
more than I50 technical publications: copies of recent papers are
available at http:~~www.cs.umd.edulusers/nau. He has received an
NSF Presidential Young Investigator award (1984-89). the ISR
Outstanding Systems Engineering Faculty award (1993-94). and
several ‘best paper’ awards. In 1996 he was named a Fellow of the
AAAI (American Association for Artificial Intelligence).

51

