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Abstract

Athough AI planning techniques can potentially be
useful in several manufacturing domains, this po-
tential remains largely unrealized. Many of the is-
sues important to manufacturing engineers have not
seemed interesting to AI researchers-but in order
to adapt AI planning techniques to manufacturing,
it is important to address these issues in a realistic
and robust manner. Furthermore, by investigating
these issues, AI researchers may be able to discover
principles that are relevant for AI planning in gen-
eral.

Xs an example, in this paper we describe the tech-
niques for manufacturing-operation planning used in
IMACS (Interactive Manufacturability Analysis and
Critiquing System). We compare and contrast them
with the techniques used in classical AI planning sys-
tems, and point out that some of the techniques used
in IMACS may also be useful in other kinds of plan-
ning problems.

1 Introduction

XI planning techniques can potentially be useful in
several manufacturing domains. However, with the
exception of manufacturing scheduling, previous ap-
plications of AI planning technology to manufactur-
ing (cf. [7]) generally have had little impact on man-
ufacturing practices [17, 29, 341,  and manufacturing
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engineers have tended to view AI approaches as im-
practical for real manufacturing problems.

One reason for this difficulty is the differences
in how AI planning researchers and manufacturing
planning researchers view the world. For example,
the first author’s work on manufacturing planning
(e.g., [27, 21, 22. 28, 15, 16, 14, 13, 12, 3, 31))  has
significantly influenced his research on AI planning
(e.g., [9, 41, 10, 6, 5. 20, 4]),  and vice versa. How-
ever, this influence is not particularly evident in the
publications themselves, because they were written
to address two different audiences, who have differ-
ent ideas of what the important problems are and
how they should be solved:

l AI planning researchers usually want to solve
general conceptual problems, and are less in-
terested in problem-dependent details. Thus,
the AI approach to manufacturing planning
has typically been to create an abstract prob-
lem representation that omits unimportant de-
tails, and then look for ways to solve the ab-
stract problem. However, from the viewpoint
of the manufacturing engineer, these “unimpor-
tant details” can often be essential parts of the
problem. This leads manufacturing engineers to
view AI planning techniques as impractical for
solving the problems they really want to solve.

l In manufacturing planning research, the goal
is to solve a particular manufacturing problem.
Manufacturing engineers present their research
results within the context of this problem-and
whether or how the approach might general-
ize to other planning domains is usually not
discussed, because it is not their primary con-
cern. From the standpoint of AI researchers,
this makes it difIicult to see what the under-
lying conceptual problems are, or whether the
approach embodies a general idea that can be
applied to other problems. Thus, AI planning
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CAD models of the part P and stock S
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Figure 1: Basic approach used in IMACS.

researchers have tended to view manufacturing
planning as a problem domain in which there
are no general principles and approaches-just
ad-hoc, domain-specific programs.

Some of the issues that arise manufacturing plan-
ning are similar to issues that have been investi-
gated by AI planning researchers, and others are dis-
tinctly different. For the former, it may be possible
to adapt existing AI planning techniques-and for
the latter, it may be possible to develop new plan-
ning techniques that are useful for AI planning in
general. However, one of the difficulties is that AI
researchers are not aware what the interesting gener-
alizations are. and which techniques from AI might
best be applied to realistic manufacturing problems.
In order to develop XI planning techniques that have
a greater impact on manufacturing tasks such as
process planning, AI planning researchers will need
a better understanding of manufacturing concerns,
and how they compare with issues of interest in AI
planning.

In this paper we attempt to provide a step in
this direction, by describing the planning techniques
used in IMACS (Interactive Manufacturability Xnal-
ysis and Critiquing System), a computer system for
helping designers produce designs that are easier to
manufacture. IMACS analyzes the manufacturabil-
ity of proposed designs for parts to be machined in
a three-axis vertical machining center, by generat-
ing and evaluating operation plans for the proposed
design as shown in Figure 1. This paper compares
and contrasts IMACS’s planning techniques to some
of the techniques used in XI planning, and describes
some planning techniques used in IMACS that may

also be useful in other planning domains.

2 Operation Plahning in IMACS

This section describes the techniques IMACS uses to
generate and evaluate operation plans. Each subsec-
tion discusses one of the steps in Figure 1.

2.1 Step 1: Finding Machining Features

A part, P, is the final component created by execut-
ing a set of machining operations on a piece of stock,
S. For example, Figure 2 shows a design for a socket
which we will call PO,  and Figure 3 shows the stock
Su from which PO is to be produced. The annota-
tions in Figure 2 are tolerance specifications that tell
how much variation from the nominal geometry is
allowable in any physical realization of P. As input,
IMACS takes solid models of P and S, along with
tolerance specifications for P.

An operation plan is a sequence of machining op-
erations capable of to creating P from S. A work-
piece is the intermediate object produced by starting
with S and performing zero or more machining op-
erations. A machining feature is a portion of the
workpiece affected by a machining operation. The
machining operations IMACS currently considers are
end milling, side milling, face milling and drilling.

A primary feature is a machining feature whose
intersection with the stock S is as large as possible,
and whose intersection with the space outside the
stock S is as small as possible. Figure 4 shows ex-
amples of primary and non-primary features; for a
detailed definition the reader is referred to [13].  As
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described in [ll, 32], the reason why we are inter-
ested in primary features is that in every operation
plan we will have any interest in considering, each
machining operation will create either a primary fea-
ture or a truncation of a primary feature. Thus. pri-
mary features can be used to derive every machining

.aration that IMACS will ever want to consider.
r’ is the set of all primary features for P and S.

ACS generates F automatically from the solid
models of P and S, using an algorithm described
in (31, 121.  For example, there are 22 primary fea-
tures for the socket PO, as shown in Figure 5. Since
the features in T can overlap, not all of them will
always be needed in order create P from S. For ex-
ample, in Figure 5, we would not need to machine
both s3 and s4 in order to create PO.

2.2 Step 2: Generating FBMs

A Feature Based Model (FBM) is any irredundant
subset of features F E T such that P can be pro-
duced from S by removing the features in F. For
example, here are two FBMs for the socket PO, com-
posed of features from Figure 5:

FBMl = (~2, ~4, s6, s8, s9, ~10,
hl, h3, h5, h7, h9, hll, h12);

FBM2 = {sl,s3,  s5, s i ,  s9,  s10,

hl, h3, h5, hi’, h9, hll, h12).

As described in [13, 321, each operation plan 0 of
interest to us corresponds to an FBM, in the sense
that each machining operation in 0 will create either
a feature in F or a truncation of a feature in F.

Since each FBM is a subset of 3, FBMs  can be
generated using set-covering techniques. However,
we usually will not want to generate all of these
FBMs. For a given part and stock, there can be
exponentially many FBMs-for example, from the
22 primary features shown in Figure 5 one cau form
512 FBMs for the socket PO. In general, only a few
of the FBMs will lead to good operation plans.

As described in [14,13], IMACS avoids enumerat-
ing all of the FBMs  by doing a depth-first branch-
and-bound search: as shown in Figure 1, FBMs axe
generated one at a time and are pruned if they ap-
pear unpromising. For example, IMACS generates
only 16 of the 512 FBMs for the socket Pi.

2.3 Step 3: Generating Operation Plans

Each FBM can lead to several operation plans, of
which some are better than others. Thus, to gener-
ate operation plans from a given FBM, IMACS again
does a depth-first branch-and-bound search. The
search procedure incorporates the following steps:

Find precedence constraints. Due to var-
ious types of interactions (accessibility, setup,
etc.) among the features in an FBM F, the
features of F cannot be machined in any ar-
bitrary order. Instead, these interactions intro-
duce precedence constraints requiring that some
features of F be machined before or after other
features. For example, in Figure 6, the hole hl
must be machined before the slot s9 in order
to achieve reasonable machining tolerances and
avoid tool breakage.

Generate total orderings. If the precedence
constraints contradict each other (i.e., if there
is no total ordering consistent with them), then
we consider F to be unmachinable. Otherwise,
IMACS generates the total orderings on F con-
sistent with the precedence constraints. .

Truncate features. Each total ordering will
require a different set of modifications to the fea-
tures in F, so that the machining operations will
not spend a lot of time trying to remove metal
that was already removed in previous machin-
ing operations. As an example, several of the
features shown in Figure 6(a) were produced by
truncating the corresponding features in FBMl.

Identify Unpromising FBMs. Once the fea-
tures have been truncated, IMACS will discard
an FBM if it contains features whose dimen-
sions and tolerances appear unreasonable. Ex-
amples would include a hole-drilling operation
having too large a length-to-diameter ratio; a
recess-boring operation having too large a ratio
of outer diameter to inner diameter; two con-
centric hole-drilling operations with tight con-
centricity tolerance and opposite approach di-
rections.

Analyze Fixturability. IMACS does not
yet do fixturability analysis in any detailed
manner-but in order to discard unpromising
FBMs, it does some elementary fixturability-
based pruning, based on the assumption that
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(a) features to be machined

(b) ordering constraints
----_-----_____-____,

setup 3

(c) process details
Feature Feature Tool diam Feed Number Pass length
name type (mm)
s4 end-milling 50

t6m/min) of passes (mm)
2 225

s8 end-milling 50 166 2 225 ,
s2 end-milling 50 166 2 225 .
s6 end-milling 50 166 2 225
h7 drilling 20 244 1 106
h9 drilling 20 244 1 106
h l l drilling 30 203 1 39
h12 drilling 30 203 1 39
hl drilling 75 108 1 172.5
h3 drilling 20 244 1 56
h5 drilling 20 244 1 56
s9 end-milling 50 166 1 250
SlO end-milline: 40 207 3 240

Figure 6: An operation plan derived from FBMl. This plan is the least costly one for making the socket
PO-

Table 1: Estimated production time for the operation plan of
Operation Time (min) Operation Time (min)

driLl hl 2.3 mill s2 5.0
drill h3 0.3 mill s4 5.0
drill h5 0.3 mill s6 5.0
drill h7 0.6 mill s8 5.0
drill h9 0.6 mill s9 4.0
drill h l l 0.3 mill SlO 4.2
drill h12 0.3 3 setups 6.0

Total Time: 39 minutes

Figure 6.
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a flat-jaw vise is the only available lixturing
device. We are currently developing more so-
phisticated fixturability analysis techniques for
IMACS; this will be described in a forthcoming
paper.

l Relax redundant constraints. Once the
truncated features have been produced, sev-
eral of the resulting FBMs may have identi-
cal features but different precedence constraints.
When this occurs, the precedence constraints
that differ can be removed, translating the to-
tal orders into partial orders. For example, Fig-
ure 6(b) shows the partial order for the FBM of
Figure 6(a).

l Incorporate finishing operations. For faces
with tight surface finishes or tolerances, IMACS
adds finishing operations. with precedence con-
straints so that each finishing operation comes
after the corresponding roughing operation.
Currently, one finishing operation per face is al-
lowed.

l Determine setups. On a three-axis vertical
machining center, features cannot be machined
in the same setup unless they have the same
approach direction. This and the partial order-
ing constraints can be used to determine which
features can be machined in the same setup, as
shown in Figure 6(b).

l Determine process details. To select
cutting parameters for the machining opera-
tions, IMACS uses the recommendations of
the Machinability Data Center’s handbook [23].
The maximum recommended cutting parame-
ters are used, rather than attempting to select
optimal cutting parameters; thus IMACS’s  esti-
mates involve considerable approximation.

2.4 Step 4: Operation Plan Evaluation

Designers give design tolerance specifications to
specify how far the design can vary from its nom-
inal geometry. To verify whether a given operation
plan will satisfy the design tolerances, IMACS must
estimate what tolerances the operations can achieve.
Cnlike typical approaches for computer-aided toler-
ance charting (which are computationally very in-
tensive, and only consider limited types of tolerances

[18,26]),  IMACS evaluates the manufacturability as-
pects of a wide variety of tolerances without getting
into optimization aspects; our approach is described
in [13]. For example, the operation plan shown in
Figure 6 satisfies the tolerances shown in Figure 2.
Thus, it is an acceptable operation plan for making
PO from So.

The total time of a machining operation consists of
two components: the cutting time (when the tool is
actually engaged in machining), and the non-cutting
time (including the tool-change time, setup time,
etc.). Methods have been developed for estimat-
ing the fixed and variable costs of machining oper-
ations; our formulas for estimating these costs are
based on standard handbooks related to machining
economics, such as [39, 381.  As an example, Table 1
shows the estimated production time for the opera-
tion plan of Figure 6.

3 Comparison with AI Planning

Two of the most popular approaches to AI planning
are STRIPS-style planning’ [8, 2, 1, 9, 25, 24, 42,
30, 61 and hierarchical task-network (HTN) plan-
ning [33, 35, 37, 36, 40, 19, 5, 41. In both cases,
the planner typically starts with some initial state
that is represented as a collection of logical atoms.
In STRIPS-style planning, the objective is to pro-
duce a state that satisfies a goal condition expressed
as a collection of logical atoms, and the planner pro-
duces the plan by reasoning about the preconditions
and effects of STRIPS-style planning operators. In
HTN planning, the objective is expressed as a set of
tusks to be performed and constraints on how they
are to be performed, and the planner produces the
plan using methods that specify ways to decompose
tasks into operators and other tasks, and clitics that
point out problems in the plan decomposition.

Below, we compare and contrast the techniques
used in IMACS to the techniques used in STRIPS-
style planning and HTN planning.

l The overall goal. In manufacturing planning,
the goal to be achieved is represented by a de-
sign specification such as the one in Figure 2.
In XI planning systems, the goal is typically

‘By this, we mean planning systems that use STRIPS-style
operators (with no decompositions), ignoring algorithmic dif-
ferences among them that are not relevant to the current work.
This includes partial-order planners such as ABTWEAK [42]
and UCPOP [30].
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something that must be achieved exactly-but
in planning a sequence of machining operations,
it is physically impossible to produce the etact
nominal geometry of the design. Thus, the ob-
jective is to find any plan that can produce an
approximation of the design geometry that sat-
isfies various design tolerances, such as those
shown in Figure 2.

Goal modification. AI planning systems typ-
ically treat the goal as a fixed entity. However,
IMACS is intended to operate as part of a “de-
sign loop” such as the one shown in Figure 7,
in which the designer proposes a design, uses
IMACS to evaluate its manufacturability, and
modifies the design accordingly. In the current
implementation of IMACS, the design modifica-
tions are proposed only by the designer, but in
[3] we discuss ways to extend IMACS to au-
tomatically make suggestions to the designer
about ways to modify the design that will im-
prove its manufacturability while satisfying the
designer’s objectives. From an XI perspective,
this would correspond to changing the goal to
make it easier to achieve.

Finding subgoals. In principle, design spec-
ifications such as the one in Figure 2 could be
expressed as collections of logical atoms: for ex-
ample, each face, edge, and vertex in the CAD
model could be represented by a different atom.
However, this would not be very useful. In order
to make use of the design specifications, IMACS
does feature extraction in order to transform
them into something quite different: a set of
machining features such as those shown in Fig-
ure 5.

Since the machining features correspond one-
for-one to machining operations that will cre-
ate them, feature extraction can be thought of
as finding subgoals to achieve. In AI planners,
subgoals normally arise during plan construc-
tion, because they are specified in task decom-
positions or occur as preconditions of planning
operators. However, the set of primary features
F found by IMACS corresponds to all of the
subgoals it will care to consider-and IMACS
finds these subgoals during the feature extrac-
tion step, before it ever tries to construct a plan.

Alternative sets of subgoals. Since 7 cor-

responds to the set of all possible subgoals that
might occur during planning, each FBM F E F
corresponds to a collection of subgoals that is
sufficient to produce the final goal. In principle,
it would be possible to combine the features in
7 into a goal formula like those used in classical
AI planners, but this formula would be a dis-
junct of conjuncts of the form Fr V Fz V . . . V F,,
where each FBM Fi c T is taken to represent
the conjunctive goal of creating alI features in
Fi. Since there can be an exponential number
of FBMs, representing this goal formula explic-
itly would require exponential time and space in
the worst case. Rather than constructing this
formula explicitly, IMACS uses a branch-and-
bound approach to generate the FBMs one at a
time, pruning the unpromising ones before they
are fully generated.

Resolving goal interactions. Each feature
in an FBM corresponds to a machining opera-
tion, so the entire FBM corresponds to a par-
tially ordered plan. If the interactions among
these features cannot be resolved by creating
precedence constraints, then IMACS discards
the plan. There would be no point in adding
additional operators to the plan, because these
operators would just create redundant features.

Subgoal modification. During planning,
IMACS sometimes truncates some of the fea-
tures, so that the resulting operation plans
won’t end up spending too much time machin-
ing air. Truncating the features corresponds
to modifying the subgoals in such a manner
that the ultimate goal will still be achieved-
something that usually does not occur in tradi-
tional AI planners.

Finding optimal plans. Most AI planning
systems stop as soon as they have found a plan
that achieves the goal-but IMACS looks for
the least costly plan capable of producing the
design. Thus, IM’ACS uses a branch-and-bound
search to continue generating and evaluating
plans until it is evident that none of the re-
maining plans will be any better than the best
one seen so far. In order to do this efficiently,
IMACS prunes a plan whenever various cost
computations make it evident that the plan is
unpromising.
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4 Conclusions

In deveIoping IMACS, we did not care whether or
not we were using AI planning techniques; the goal
was to find a useful solution to a real manufacturing
problem. Thus. although there are some similarities
between the techniques used in IMACS and those
used in classical AI planning systems, there are also
some significant differences. Some of these differ-
ences can be generalized in ways that may be useful
in other domains as well.

One example is IMACS’s  use of primary features
and feature-based models. Each primary feature
corresponds to a subgoal to be achieved-and (ex-
cept for finishing operations. which are handled sep-
arately), the set 7 of all primary features includes
all subgoals that might ever be relevant for achieving
the overall goal. This simplifies the task of resolv-
ing goal interactions, in the following manner. Each
FBM F E 3 is a set of subgoals whose achievement
is sufficient to achieve the overall goal, and if it con-
tains a goal interaction that cannot be resolved by
introducing precedence constraints. then there is no
point in introducing new operators into the plan. If
a promising plan exists for achieving the overall goal,
then it can instead be found among the other FBMs.
Thus if IMACS cannot resolve goal interactions in an
FBM by introducing precedence constraints, it dis-
cards the FBM and tries another one.

In [ 1 l] we point out that this approach is use-
ful not only in producing operation plans for ma-
chined parts, but also in other manufacturing do-
mains. The same kind of approach should be useful
in other planning problems regardless of whether or
not they are manufacturing problems, provided that
they are problems for which one can enumerate in
advance all of the goals or tasks that one might need

to achieve.
In order to develop realistic and robust approaches

to manufacturing planning, it is important to ad-
dress some of the details of manufacturing that AI
researchers have typically ignored. The development
of IMACS illustrates that it is possible to do this in
a principled manner. Furthermore, some of the prin-
ciples that are developed in this way may be relevant
for planning in general.
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