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ABSTRACT 
The complexity of a semiconductor fabrication system 
is high because of complicated product flows, uncertain 
operation times, variable yields, changing products, and 
evolving technologies. Effective scheduling, which 
attempts (1) to predict accurately the start and 
completion times, and (2) to regulate the work-in-
process inventory levels, can be quite challenging in 
this environment.  The challenge grows when there are 
multiple performance objectives that vary over time.  In 
this paper, we describe a competitive, neural-network-
based approach that runs in real-time and at 
predetermined, fixed, time intervals. At each such 
interval, the network uses the current performance 
objectives and the current system status to generate a 
new schedule.  We also describe briefly the simulation 
approach we used to train the network.  Finally, we 
discuss our current efforts to include robustness 
computations in the decision-making and to use this 
approach as part of a real-time controller for the system. 
Keywords: neural networks; real-time control; 
robustness; scheduling; wafer fabrication 
 

1. INTRODUCTION 
Scheduling of semiconductor wafer fabrication (fab) 
systems is complicated because of certain 
distinguishing characteristics such as re-entrant product 
flows, high uncertainties in operations, and rapidly 
changing products and technologies.  It is thus a 
significant challenge to develop effective scheduling 
methods that can successfully control early and late 
completion of a task, work in process inventory, and 
frequent production changeovers.   

In this paper, we describe a flexible scheduling tool 
for the fab operator, who can use it to react to various 
system changes in near real-time.  This tool chooses 
rules to schedule the processing of wafer lots on 
machines and their movements, via automated material 
handling systems, into and out of temporary work-in-
process storage facilities.  Rule selection is complicated 
because the system configuration changes frequently 

and the system goal varies among two or more 
performance criteria.   

To address this situation, we chose    a competitive 
neural network, which has been shown to perform well 
when selecting decision rules for multiple decision 
variables to satisfy multiple objectives.  In addition, a 
competitive neural network can classify all the 
information obtained from a simulation model and 
produce scheduling knowledge.  Thus, it can help users 
extract decision rules for multiple decision variables to 
achieve the desired system objective in a real time.  

 
2. ISSUES IN THE SCHEDULING OF WAFER 

FABRICATION 
Of the characteristics mentioned above, re-entrant 
product flow (RPF) has the biggest impact on 
production planning and scheduling of wafer 
fabrication.  RPF means that wafers at different stages 
of their fab life must compete with each other for the 
same machines.  The result is that wafers tend to spend 
a larger amount of their fab life waiting for machines, 
rather than being processed.   

This waiting contributes to long and unstable cycle 
time. Other contributing factors include long net 
processing times, system uncertainties, and delays 
caused by batch processing and machine setups.  Net 
total processing times are fairly long because each 
wafer requires over 200 operations at a number of 
workstations.  

System uncertainties include machine failures, 
process yield, and rework.  Machines sometimes fail to 
operate within their design specifications.  Duenyas et 
al. (1994) indicate the machine availability ranges from 
60% to 75%.  This disrupts the flow of materials and 
causes the cycle time to increase and fluctuate.  Wafers 
are inspected several times in the process.  Those that 
fail inspection are either removed or sent back to an 
earlier operation for rework.  This increases both the 
mean and variance of the cycle time.    

Batch sizes differ by wafer type and process.  
Therefore, one batch of wafers often waits for another 
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one to form the right batch size for the next operation.  
In addition, setup times are required when a machine 
changes a tool from one type of wafers to another or 
from one layer to another.  Taken together, all of these 
conditions imply that cycle time has high variability. 

Previous researchers have developed numerous 
fab-scheduling strategies. Two rule-based strategies 
have been widely used in both practice and academia:  
dispatching and input-control.  Dispatching rules select   
the particular wafer lot to be scheduled whenever a 
processing machine becomes available.  Input-control 
rules decide the type, the amount, the time, and the 
point-of-release whenever new wafer lots enter into the 
fab.  Wein (1988) pointed out that input-control 
strategies can impact performance more than the 
dispatching policies. However, later Lu et al. (1994), 
Kumar (1994), and Li et al. (1996) showed that a good 
dispatching policy could also improve the performance.  

Therefore, it is natural to hypothesize that 
significant improvements could be achieved by 
combining the two.  However, there is still very little 
research focusing on combining them under various 
situations and finding their interactions and effects.  
Also, no one has shown that a single input-control 
strategy combined with a single dispatching strategy 
consistently dominates others in all situations.  
Therefore, we believe that it is more meaningful to 
identify a combination of policies that give good 
performance under a range of situations.   

In addition, the main emphasis of much prior work 
on scheduling has been on static systems with a single 
objective at a time.  As noted above, wafer fabrication 
is complex, dynamic, and highly stochastic.  Satisfying 
the multiple objectives might be more important than 
only optimally meeting a single objective.  In this 
study, we propose an effective approach based on a 
competitive neural network technique for multi-
objective and multi-decision scheduling problems in 
semiconductor wafer fabrication.   
 

3. SIMULATION MODEL AND SOLUTION 
METHODOLOGY 

3.1 Simulation Model 
The semiconductor fab is divided into a number of bays 
(aisles) that contain a number of similar or identical 
processing equipment.  This configuration creates a 
large amount of material flow between bays – this is 
necessary since product flow is highly re-entrant.  The 
transport operations are classified into inter-bay and 
intra-bay. Inter-bay lot transfers are carried out using an 
overhead monorail system and stockers.  The overhead 
monorails transfer wafer lots using vehicles and are 
linked with automated stockers, which are furnished 
with a device for the lot exchanges with vehicles.  The 
stockers guarantee the continuous control of lot 
positions and reduce the chance of wafer 
contamination.  Operators within a bay perform 

intrabay lot transfers between the input-output port of a 
stocker and workstations for specific process steps or 
deposits of wafer lot to a stocker.  Figure 1 shows the 
layout of the LG semiconductor fab. 
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Figure 1. Semiconductor wafer fab model 
 

There are 24 multiserver stations which consist of 
several identical machines in the simulation model of 
the semiconductor fab.  We assume that all visits by all 
lots to a specific station have the same processing time 
distribution, and the lot size is 12 wafers per lot and is 
held constant through the study.  The process flow of 
wafer lots is presented in table 1, where the number 
refers to the workstation.  In table 1, each lot flows 
through the photolithography expose station 
(workstation 14) 12 times.  Workstation 14 consists of 
GCA steppers and is considered as the extreme 
bottleneck, which is utilized much more than any other 
workstation.  The operation of workstation 14 is 
referred to as a critical operation in this study.  Our 
simulation model consists of two opposite directional 
overhead monorails and ten stockers for transportation 
and intermediate storage of wafer lots.  Each monorail 
contains ten vehicles with a speed of .36 m/s for 
interbay lot transfers.  A bay utilizes one or two 
stockers and also can share a stocker with an adjacent 
bay.  The size of each stocker is varied and dependent 
on the workloads of corresponding bays. 
 
Table 1.  Process flow 

Enter-1-2-13-14-23-15-20-22-23-22-23-22-17-13-14-15-23-16-24-
23-22-17-1-8-4-22-22-1-2-8-13-14-18-23-15-16-23-18-22-1-1-13-
14-23-15-16-24-23-22-17-1-2-8-9-21-22-1-4-22-22-1-2-13-14-23-
15-16-24-24-23-22-17-24-1-2-7-1-3-22-13-15-23-22-22-22-17-13-
14-18-23-15-16-20-23-1-17-1-1-3-13-14-16-24-23-22-17-9-21-1-
3-13-14-15-23-15-16-24-23-22-17-1-3-10-22-12-6-22-6-1-1-4-10-
19-23-1-10-13-14-16-21-12-13-14-18-23-15-15-15-16-19-23-22-
17-11-13-14-15-21-23-5-Exit 

 
3.2 Methodology  
Our approach integrates a discrete-event simulation and 
a competitive neural network. This provides a basis for 
a multi-objective scheduler that controls the behavior of 
part flows to accomplish multiple objectives by 
generating the appropriate decision rules on the entire  
number of decision variables.  Moreover, the fab 
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scheduler has the ability to respond in near real-time -- 
the scheduler suggests good decision rules in a few 
seconds whenever the fab manager or operator inputs 
the proper information.   That information includes the 
detailed definition of decision variables, associated 
decision rules, and evaluation.  These are described 
presently.   

there is more than one waiting wafer lot for the machine 
in stockers, the machine has to select one wafer lot to 
be processed next.  The associated decision rules are the 
same as those of selection of wafer lots by critical 
machines. 
(4) Selection of a wafer lot by a stocker 
After finishing an operation in a bay or being 
transferred from another bay for the next operation, a 
wafer lot is temporarily stored at a corresponding 
stocker.  However, if the corresponding stocker is full, a 
wafer lot has to wait until a storage position is 
available.  When a stocker has an empty storage 
position and there is more than one waiting wafer lot, 
the stocker has to decide which wafer lot to store next.   

3.2.1 Decision variables and decision rules 
Currently, there are five decision variables. Their 
definition associated rules are given as follows.  
(1) Input control 
Input-control decision variable determines the time and 
quantity of raw wafer lots to release into the wafer fab.  
The associated input-control rules release new lots into 
the fab whenever the workload level of critical 
machines falls below a given threshold, which changes 
over time.  The workload level is determined by the 
sum of remaining processing times at the critical 
machines for all lots in the fab.  The following 
associated rules determine the critical value.   

1. FRFS (First Request First Serve): The stocker 
selects the wafer lot that requests it first. 

2. IBF (In Bay First): The stocker selects a wafer 
lot that is waiting in a bay (output buffer of 
machines) for the stocker.  This rule is to avoid 
the deadlock of a machine where holding an 
output buffer of a machine blocks the process 
of a next job.  If multiple wafer lots are 
waiting for the stocker in a bay, FRFS is 
applied to select a lot among them. 

1. SIWL (Small Increase in Workload): The 
threshold is set to a 5% increase of the current 
workload of the critical workstation. 

2. SDWR (Small Decrease in Workload): The 
threshold is set to a 5% decrease of the current 
workload level of the critical workstation. 

3. LRS (Lowest Remaining Spaces In Stocker): 
The stocker selects a wafer lot in the other 
stocker that has the lowest remaining storage 
spaces. This rule is to balance the utilization of 
stockers.  If multiple wafer lots are waiting for 
the stocker in the other stocker, FCFS is 
applied to select a lot among them. 

3. SWR (Same Workload): The threshold is set 
to the current workload level of the critical 
workstation. 

4. LIWR (Large Increase in Workload): The 
threshold is set to a 10% increase of the 
current workload level of the critical 
workstation. 

4. EDD (Earliest Due Date): Same definition is 
used as in (2). 

5. SRPT (Shortest Remaining Processing Time): 
Same definition is used as in (2). 

5. LDWR (Large Decrease in Workload): The 
threshold is set to a 10% decrease of the 
current workload level of the critical 
workstation.  

6. CR (Critical Ratio): Same definition is used as 
in (2). 

(5) Selection of a wafer lot by a vehicle on a monorail  (2) Selection of  a critical machine (input buffer) 
When a vehicle on the monorail finishes its task and 
more than one wafer lot requests a vehicle, it has to 
decide which part will be transported next.  The 
associated decision rules are as follows. 

If an input buffer of a critical machine is empty and 
more than one wafer lot is waiting for the machine in 
stockers, the machine has to select which wafer lot to 
be processed next.  The associated decision rules are  

1. FRFS (First Request First Serve) 1. FCFS (First Come First Serve): A wafer lot 
that comes first is processed next. 2. LRS (Lowest Remaining Spaces In Stocker) 

3. EDD (Earliest Due Date) 2. SRPT (Shortest Remaining Processing Time): 
A wafer lot that has the shortest remaining 
processing time is processed next. 

4. SRPT (Shortest Remaining Processing Time) 
5. CR (Critical Ratio) 

3.2.2 Evaluation Criteria 3.  EDD (Earliest Due Date): A wafer lot that has 
the earliest due date is processed next. In a semiconductor manufacturing fab, changing the 

scheduling rules in real time will have an effect on both 
system status and performance measure.  There are 
multiple criteria that can be used in evaluating a given 
rule.  These criteria are mainly based on completion 
times, due-dates, inventory level, and machine 
utilization. One of the measures we use is projected 
flow time.  Projected flow time is defined as follows. 

4. CR (Critical Ratio): A wafer lot that has the 
smallest critical ratio is processed next.  The 
critical ratio is calculated as follows: 

 Critical Ratio = (Due date – Current time – 
Remaining processing time) / (Due date – 
Current time)    

(3) Selection of  a non-critical machine (input buffer) 
If an input buffer of a non-critical machine is empty and 
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Where tc is the completion time of a wafer lot 
ti is starting time of ith production interval 
ta is arrival time of a wafer lot 
Tp is the total processing time of a wafer lot 
Rp is the remaining processing time of a wafer 
lot at ti 

Table 2 shows the other evaluation criteria of this study.  
Decision rules for decision variables are based on 
system status in the beginning of each production 
interval and achieve the desired system performance at 
the end of each production interval. 
Table 2 Evaluation criteria 

System performance criteria System status criteria 
- Mean of projected flow time 
- Standard deviation of projected 
flow time 
- Number of tardy jobs 
 
 

- Total work in process  
- Total workload of critical 
machines 
- Average number of remaining 

operations of    each wafer lot 

- Mean slack time  
- Mean remaining processing 

time 

3.2.3 Development of a scheduler 
As noted above, we used a competitive neural network 
(CNN) to perform the scheduling.  At the beginning of 
each production interval, we would like to use the CNN 
to tell us which decision rules to select for the five 
decision variables listed above.  Furthermore, we would 
make this selection to optimize the current performance 
measures, a subset of measures listed in Table 2.  To do 
this, we need to train the CNN.     

We had no real training data, so we generated a set 
from a simulation of the target semiconductor fab.  The 
simulation, which consisted of a lengthy sequence of 
short production intervals t1, …,ti, ...,tn, was designed to 
evaluate all combinations of decision rules against 
various combinations of performance measures.  Given 
the current system status and performance measures at 
the end of interval ti-1, a decision rule for each 
dispatching decision variable for the current production 
interval ti was selected randomly.  After interval ti ends, 
the initial system status, the updated systems status, the 
updated performance measures, and the selected 
decision rules are recorded.   This procedure continues 
until the simulation terminates.  All of this data is fed 
into the CNN as an input vector for training.  

Following data collection phase, the CNN 
classifies the simulation output data into instances.  
Each instance contains the initial system status, the 
decisions rules selected, and the performance outcomes. 
Figure 2 shows the framework of data. In stage 1, all 
instances with similar system status are assigned to the 
same class.  In stage 2, each instance in a class of stage 
1 is assigned to a subclass with similar performance 
measures from training the CNN-P.  Therefore, a final 
class obtained from stage 2 consists of classified 

instances with similar system status and performance 
measures, together with the decision rules that 
generated those measures  (Min, 2002).   otherwise                
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Figure 2. Framework of data classification 
 

When the time comes for the operator to make a 
new schedule, another CNN is used to match the real 
systems status and the real performance measures to 
those instance classes generated from the training data.       
After this step, the scheduler can obtain the matching   
decision rules for decision variables for the next 
production interval.  
 

4. EXPERIMENTAL RESULTS 
4.1. Experimental Design 
We compared our approach, which we labeled Method 
1, against two other methods. Method 2 is controlled by 
the best rule chosen, based on five simulation runs 
conducted at the beginning of a production interval, 
among five randomly selected decision rules for 
decision variables. Method 3 is regulated by fixed 
decision rules for decision variables at the start of each 
production interval.  The simulation of fixed decision 
rules for decision variables uses decision rules [31111]: 
SWR for input control, FCFS for selection of a wafer 
lot by a critical machine, FCFS for selection of wafer 
lots by a non-critical machine, FRFS for selection of a 
wafer lot by a stocker, and FRFS for selection of a 
wafer lot by a vehicle on a monorail.  These fixed 
decision rules are used conventionally   in a real 
semiconductor manufacturing industries.   

To demonstrate the effectiveness of Method 1, we 
ran fifteen experimental simulation tests.  In each test, 
all three methods were implemented with the same 
initial status conditions, desired performance measures, 
and operational parameters.   
4.2. Result and Analysis 
From each simulation run, we collect the difference 
between desired value and actual values for each 
method.  Table 3 shows normalized values of each 
performance criterion between zero and one, using 
maximum and minimum values of each performance 
criterion.  For example, for the mean of projected flow 

 4



time, the maximum value is 255 and minimum value 
was 5 among columns |M1-D|, |M2-D| and |M3-D.  
Then each normalized value is calculated as (p-5)/(255-
5), where p is a value among columns |M1-D|, |M2-D| 
and |M3-D|. Similar calculations are performed for 
normalization of the other performance measures - 
standard deviation of projected flow time and number 
of tardy jobs.  Using normalized values of each 
criterion of performance measure, we obtain overall 
performance values, which are the average of 
normalized values of three performance criteria for 
each method, that is, the three performance criteria are 
equally weighted.  For example, for test t1, overall 
performance of |M1-D| is calculated as 
(0.008+0.0593+0.278)/3 = 0.115. 

In table 3, the average overall performance of 
method 1 is improved by 45% of the average overall 
performance of method 2 and 77% of the average 
overall performance of method 3.   
 
Table 3.  Normalized difference between actual and 
performance measures 

 
To compare the overall performance of method 1 

with that of method 2 and that of method 3, we used 
Dunnet’s one- tailed t test.  The results indicate that the 
overall performance of method 1 is significantly 
superior to that of method 2 and to that of method 3 at 
the 99% confidence level (Min, 2002).  
 

5. CONCLUSIONS AND FUTURE WORK 
Preliminary experimental results strongly indicate that 
our approach can produce schedules that predict good 
performance.  Our current research focuses on three 
questions: 
1) How likely is it that this prediction will be achieved 
in the real fabrication system? 
2) What impact will this schedule have on the rest of 
the manufacturing system? 
3) What new capability is required to make this 
scheduler part of a real-time controller? 

The first question is equivalent to determining the 
robustness of the generated schedule.  The typical 
approach to robustness uses discrete event simulations 
to estimate the impact that random variables - including 

arrival times, service times, and random events such as 
priority jobs and machine breakdowns - has on the 
stated performance measure(s).  We plan to augment 
these simulations with an analysis of the impact that 
underlying network structures, both physical and 
informational, have on the performance measure(s).  

The second question is equivalent to determining 
the stability of the entire manufacturing system, should 
that schedule be implemented.   Little prior research 
exists that provides insight in how to answer this 
question.  We plan to develop an extensive system 
dynamics simulation that (1) incorporates variables and 
flows exogenous to the scheduling system, such as raw 
materials, work-in-process inventory, and production 
plans and (2) looks at the feedback loops created by 
scheduling outputs on those variables.  

To be part of a real-time controller we must be able 
to execute the scheduler whenever a new job enters the 
system or the system performance degrades to an 
unacceptable level. Only minor modifications are 
required to integrate it with the production planning 
system, which controls the release of new jobs.  As for 
performance degradation, Since the scheduler already 
incorporates the current system status, we need only 
include a monitoring function.  This function will track 
the actual versus the predicted performance and 
determine when the difference exceeds a predetermined 
threshold.    

Mean of projected flow time Standard deviation of 
projected flow time 

Number of tardy jobs Applied decision rules  

D M1 M2 M3 D M1 M2 M3 D M1 M2 M3 M1 M2 M3 
t1 1630 1637 1568 1529 82 75 135 85 80 132 64 36 44461 22424 31111 
t2 1506 1542 1599 1667 102 153 102 107 95 75 99 169 54334 21113 31111 
t3 1378 1349 1293 1535 125 138 149 83 63 43 7 24 13152 12242 31111 
t4 1551 1562 1507 1621 115 141 120 126 4 4 52 137 12435 32243 31111 
t5 1608 1582 1590 1679 112 92 65 120 0 7 10 180 32425 42445 31111 
t6 1432 1459 1462 1687 80 161 198 108 25 31 37 193 33432 52321 31111 
t7 1505 1446 1492 1665 191 192 196 122 17 14 4 204 31462 21133 31111 
t8 1420 1387 1463 1529 101 91 76 85 11 6 12 36 32263 33414 31111 
t9 1503 1535 1637 1511 154 132 75 89 49 51 132 31 13244 11331 31111 
t10 1438 1415 1451 1401 130 139 102 97 15 21 9 5 14321 43144 31111 
t11 1638 1643 1566 1560 88 73 105 89 75 127 53 41 21354 31254 31111 
t12 1320 1335 1397 1455 120 126 113 68 17 3 7 4 24433 42143 31111 
t13 1578 1530 1564 1602 78 67 96 91 3 8 54 82 52322 21133 31111 
t14 1629 1650 1607 1755 134 139 101 114 39 23 59 97 24155 43153 31111 
t15 1505 1461 1657 1449 101 86 89 71 3 0 9 0 44341 32425 31111 

(D= desired values by an user, M1 = actual value (simulation output) by Method 1, M2 = actual value   
(simulation output) by Method 2, M3 = actual value (simulation output) by Method 3) 
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