
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

AN ARCHITECTURE FOR A GENERIC DATA-DRIVEN MACHINE SHOP SIMULATOR

Charles McLean
 Al Jones
 Tina Lee

 Frank Riddick

Manufacturing Systems Integration Division
National Institute of Standards and Technology

Gaithersburg, MD 20899-8260, U.S.A.

ABSTRACT

Standard interfaces could help reduce the costs associated
with simulation model construction and data exchange
between simulation and other software applications -- and
thus make simulation technology more affordable and
accessible to a wide range of potential industrial users.
Currently, small machine shops do not typically use
simulation technology because of various difficulties and
obstacles associated with model development and data
translation. This paper provides an overview of work
currently underway at the National Institute of Standards
and Technology (NIST) to develop a software architecture,
standard data interfaces, and a prototype generic machine
shop simulator that can be readily, reconfigured for use by
a large number of small machine shops. It also reviews
prior work in this area and describes future work.

1 INTRODUCTION

In most cases, the effort required to develop a meaningful
simulation for a small machine shop exceeds the resources
available. Small shops typically do not have staff with
appropriate technical qualifications required to develop
custom simulations of their operations. If in-house staff or
external consultants are available, shop management is
often unwilling to invest the time, effort, and funding
required for simulation modeling activities. Part of the
reason is that model development is often complex and
costly. This is due in part to the fact that commercial
simulation software packages do not provide turn-key, i.e.,
ready-to-use, models for simulating job shop operations.
 Furthermore, simulators are not designed to use
traditional shop data in its native format, so models and
data import routines usually must be developed from
scratch. If simulation software vendors were to try to
develop generic job simulation models, they are still faced
with the problem that there are no standard formats for

much of the data required to run the models. Thus, if
someone wanted to input a specific shop’s data into one of
these hypothetical simulators, custom data translators
would still need to be developed at possibly considerable
expense.

1.1 Project Overview

The objective of our project and the research described in
this paper is to develop a software architecture, standard
data interfaces, and a prototype generic machine shop
simulator that can be readily reconfigured for use by a
large number of small machine shops. The software
architecture is being defined using the Unified Modeling
Language (UML) and Microsoft Visio. The data interface
specifications are being developed using the Extensible
Markup Language (XML) and Microsoft XML Notepad.
The prototype simulator is based on Microsoft Visual
Basic extensions to a commercial simulation package,
Rockwell Automation’s Arena.
 The project described in this paper is a part of the
NIST Systems Integration for Manufacturing Applications
(SIMA) Program and the Software Engineering Institute’s
(SEI) Technology Insertion, Demonstration, and
Evaluation (TIDE) Program. The TIDE Program is
sponsored by the Department of Defense and Software
Engineering Institute. TIDE is currently engaged in a
number of other projects with various small manufacturers
in the Pittsburgh, Pennsylvania area. The technical work is
being carried out as a collaboration between NIST, SEI,
Carnegie Mellon University, Duquesne University, the
iTAC Corporation, and the Kurt J. Lesker Company. It is
expected that results from this project will be published at
its conclusion as a tool kit for small businesses in CD-
ROM format.
 The Kurt J. Lesker Company (KJLC) is an
international manufacturer and distributor of vacuum
products and systems to the research and industrial vacuum

McLean, Jones, Lee, and Riddick

markets. KJLC manufactures complete, automatically
controlled vacuum systems with special emphasis on
custom-designed, thin film deposition systems for research
in alloys, semiconductors, superconductors, optical and
opto-electronics. A small machine shop is contained within
the KJLC manufacturing facility. KJLC’s machine shop
operation has been used to help define the requirements for
simulation modeling and data interface specification
activities described in this paper. Their facility will also be
used as a pilot site for testing and evaluation of the
simulation models, neutral data interfaces, and other
software developed under this TIDE project. For more
information on KJLC, see www.lesker.com.

1.2 Related Work

The problems involved in developing and maintaining
simulation models using commercial tools are well known.
A number of approaches have been proposed to develop
models that can be used to generate executable
simulations, easily or automatically. Several are described
in the following sections.

1.2.1 Graphical Approaches

There are many graphical approaches that produce
network-type models that generate simulations. Three such
approaches are discussed: IDEF3 (where IDEF is defined
as the Integrated Computer Aided Manufacturing, or
ICAM, DEFinition 3 method), Petri Nets, and Message-
based Part State Graphs (MPSG).

1.2.1.1 IDEF3

The IDEF3 Process Description Capture Method provides
a mechanism for collecting and documenting processes,
see www.idef.com/idef3.html. IDEF3 models the
behavioral aspects of an existing or proposed system by
capturing process knowledge, which is structured within
the context of a scenario. This knowledge includes,
temporal information, precedence relationships, and
causality associations connected with enterprise processes.
The resulting IDEF3 descriptions provide a structured
knowledge base for constructing analytical, design, and
simulation models.
 There are two IDEF3 description modes: process flow
and object state transition. A process flow description
captures knowledge of "how things work" in an
organization, e.g., the description of what happens to a part
as it flows through a sequence of manufacturing processes.
The object state transition network description summarizes
the allowable transitions an object may undergo throughout
a particular process. Both the Process Flow Description
and Object State Transition Description contain units of
information that make up the system description. These

model entities, as they are called, form the basic units of an
IDEF3 description.

1.2.1.2 Petri Nets

A Petri net is a graphical and mathematical modeling tool
consisting of places, transitions, and arcs that connect them
see pdv.cs.tu-berlin.de/~azi/petri.html.
Input arcs connect places with transitions, while output
arcs start at a transition and end at a place. Places can
contain tokens; the number (and type if the tokens are
distinguishable) of tokens in each place constitute the
current system. Transitions are active components, which
can fire and change the state of the system. Transitions are
only allowed to fire if they are enabled, which means that
all the preconditions for the activity must be fulfilled.
When the transition fires, it removes tokens from its input
places and adds some at all of its output places. The
number of tokens removed/added depends on the
cardinality of each arc.
 Petri nets are a promising tool for describing and
studying systems that are characterized as being
concurrent, asynchronous, distributed, parallel, non-
deterministic, and/or stochastic. As a graphical tool, Petri
nets can be used as a visual-communication aid similar to
flow charts, block diagrams, and networks. In addition,
tokens are used in these nets to simulate the dynamic and
concurrent activities of systems. As a mathematical tool, it
is possible to set up state equations, algebraic equations,
and other mathematical models governing the behavior of
systems. To study performance and dependability issues of
systems it is necessary to include a timing concept into the
model. There are several possibilities to do this for a Petri
net; however, the most common way is to associate a firing
delay with each transition. This delay specifies the time
that the transition has to be enabled, before it can actually
fire. If the delay is a random distribution function, the
resulting net class is called stochastic Petri net.

1.2.1.3 Message-based Part State Graphs (MPSG)

A message-based part state graph (MPSG) is a formal
model of the execution portion of shop floor controllers,
see tamcam.tamu.edu/mpsg/WEBMPSG.htm.
MPSGs were designed specifically to serve as the input to
an automatic, code-generation system for shop floor
controllers. These controllers can be combined into a
variety of control architectures. The MPSG model
represents the distributed shop floor controllers as
communicating finite state machines. As such, an MPSG
formally defines the protocol that the controller accepts. In
order to have an operational controller, however, this
execution module must be combined with a planner and
scheduler which perform the decision-making functions.

McLean, Jones, Lee, and Riddick

 MPSGs were originally used to model and coordinate
activities among pieces of equipment on the shop floor.
Son (2000) extended this notion to the shop level of the
control system. He also developed a technique to
automatically generate a shop simulation that could be
used for planning and scheduling, as well as execution.

1.2.2 Simulation Generators

Mathewson (1984) was one of the first researchers to
discuss the use of program generators for simulation
models. He defined a program generator as a routine that
accepts a simple descriptive input of the system to be
modeled and produces a correct simulation model as
output. The descriptive model was created using entity
cycle diagrams. The building blocks for these diagrams
include queues, activities, events, and flags. The actual
generator, called DRAFT, contained an input controller to
parse the diagrams, a model analyzer, translator, compiler,
and executor. This approach works well for systems
analysis -- it can easily give system parameters such as
throughput and delay. However, it was not designed to
provide information about specific entities that flow
through that system.
 A number of domain-specific generators have been
developed in recent years. The one described in Aytung
and Dogan (1998) is typical of many such generators. This
particular one is for a dual-card Kanban system. The
authors present a framework for defining the systems and a
generator for producing the simulation. The building block
for the framework is the work center definition together
with a number of rules for implementing the various
operating decisions. Two separate files are generated: a
model file, which is based on the framework, and an
experimental file, which contains the experimental
condition under which the model is run.

1.2.3 Data Driven Approaches

Pidd (1992) provides guidelines for developing data-
driven, generic simulations. Pidd defines generic to mean
that the model is designed to apply to a "range of systems
with structural similarities." He defines a model to be data-
driven if "any instance of a system may be fully specified
to the model without any need for programming." This
broad definition would imply that most models developed
using commercial tools are data-driven. Pidd provides an
architecture for a data-driven simulator that relies heavily
on various libraries and a model configurator. This model
configurator corresponds to the various templates or
graphical user interface provided by most commercial
tools. He recommends a separate file to store the data that
is used to drive the model.
 While it is a step in the right direction, Pidd's approach
does not go far enough. The user must still be quite

familiar with a specific commercial tool to build a usable
model. Researchers at NIST have been developing an
approach, which is the focus of this paper, that extends
Pidd's notion of library. An initial NIST approach -- see
Son et al (2002) for some early results – attempted to build
a formal representation for all data needed to run the
simulation. This data could then be stored in a database
completely separate from the simulation. There are two
major advantages of this approach. First, it is easy to
modify the data when changes in the systems occur.
Second, it minimizes the interactions the user has with the
underlying simulation language.

1.2.4 A New Hybrid Approach

Our new hybrid approach, as described in this paper,
creates a fairly comprehensive shop data model and
exchange file format for data-driven simulation. It also
separates simulation functionality into modules in a new
way.
 The shop data model currently encompasses a
significant portion of the data required to actually run a
real machine shop, not just simulate its operation. Links
are also provided in the data format to reference data
maintained in files that use other standards. This approach,
i.e., based on a unified data format, was taken to ensure
data consistency between the real shop and the simulated
shop. It eliminates the need to abstract or simplify real
shop data for the purposes of creating a simulation –
resulting in the elimination of a major step that is usually
required in the simulation modeling process. Of course, our
current data structure definition is much larger than the one
developed by Son that was mentioned in the previous
subsection.

Another major difference between our current
approach and the past approaches of others is to isolate
most of the complex shop data processing from the
traditional discrete event simulation engine. The
sequencing of a hierarchy of orders, jobs, and tasks is
handled by a machine shop emulator software module. The
emulator also handles resource allocation (equipment,
employees, tools, fixtures, inventory) and other functions,
see Section 3.3. The emulator is separate but linked to the
traditional discrete event simulator. The discrete event
processor is responsible for managing the flow of objects
through generic event queues and state changes.

Conceptually the system may be thought of as two sets
of linked Petri nets. Each Petri net is responsible for
governing a portion of the simulation problem -- one set of
nets for managing the discrete event logic, the other for
managing the shop data processing logic. A reassignable
set of generic, proxy work items and resources are
manipulated by the discrete event simulator. Proxies are
reassignable representations of shop emulator objects, i.e.,
actual work items and resources. Proxy work items flow

McLean, Jones, Lee, and Riddick

through and between generic queues and await timeouts
(computed by the shop emulator). Proxy resources undergo
generic state changes and await similar timeouts. Emulator
shop objects are temporarily linked to proxy work items or
resources, as appropriate. Proxy objects may be released
when their processing by the discrete event simulator ends.

The creation of proxy work items and selection of
their next queue is determined by the machine shop
emulator. Two examples of generic queues are: 1) work
items awaiting a shift change, or 2) work items awaiting a
machine breakdown. Further discussion of the intricacies
of this approach is beyond the scope of this paper.

2 REQUIREMENTS DEFINITION

Requirements for this TIDE Project were developed over a
period of several months and specified using the Unified
Modeling Language (UML). Conceptual models for major
data structures were also defined using UML techniques.
The most significant project requirement was to integrate
and implement a manufacturing execution system, a
production scheduling system, and a simulation system to
satisfy the operational needs of the KJLC machine shop. It
was expected that modifications to all three systems would
be necessary.

2.1 Why Use UML?

A prerequisite for performing a thorough examination of
the operations of a job shop is developing a model of the
shop. The model is a description of the manufacturing
related entities in the shop and the activities that are to be
applied to those entities. The model should support the
specification of the characteristics of the manufacturing
entities, the relationships between the entities, and the
production activities that manipulate the entities. It should
support descriptions of the shop from different viewpoints.
This quality is needed to ensure that information that is
important to the shop floor manager can be specified while
also having a place to specify information important to the
machine operator and the maintenance engineer.
Furthermore, it should be possible to specify different parts
of the model at different levels of rigor, and to increase the
thoroughness of parts of the model as new insights into the
shop’s operations are gained. Finally, other modeling
approaches are tied to a specific methodology, and none of
these methodologies were designed with any consideration
to their appropriateness for describing job shop of
manufacturing operations.
 UML was chosen to create the model of the job shop.
See Alhir (1998) for a technical presentation of UML, or
Schmuller (2002) for a more tutorial approach. In addition
to supporting the requirements specified in the previous
paragraph, it has several other advantages. It is a
recognized standard for structured and object-oriented

modeling. Inexpensive tools are available to support
creating the models. It is a visual language based on simple
visual constructs such as boxes and lines. It supports the
encoding of large amounts of information in each diagram.
Moreover, while the different diagram types allow
different aspects or viewpoints of a system to be modeled
separately, it is straightforward to show the relationships
between constructs in different diagrams.

2.2 Machine Shop UML Diagrams

Most of our work has focused on creating the following
types of UML diagrams: use cases, static data structures,
sequence diagrams, and state/activity diagrams.

Generic use case diagrams were created to identify the
various actors and the roles that they had in a generic
manufacturing facility, such as the one found at KJLC. In
use case diagrams, a stick figure is used to represent an
actor, an ellipse is used to identify a use case (a system
function or capability), a box defines the overall system
boundary, and connecting lines indicate communications
link or interactions between actor and the use cases. Lower
level use case diagrams were also created that decomposed
the high level manufacturing facility use case. The other
use cases were:

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

manage work force
manage customer orders
design products
estimate orders
plan production
acquire goods and services
manufacture products
manage inventory
maintain facilities and equipment
model and analyze operations
define simulation study parameters.

The last use case represents a lower level of depth in the
hierarchical decomposition. It was defined because of our
interest and project objectives that are focused on
simulation modeling.
 Due to the limited space available in this paper, we
have chosen not to include use case examples as figures.
Since our focus is machine shop simulation, the last two
use cases from above are briefly summarized below.
 “Model and analyze operations” includes the
following actors: simulation analyst, plant/shop
management, shop supervisors, project managers, and
production staff. Lower level use cases include:

define modeling objectives
develop models
code simulations
test code
validate code and models
define study parameters

McLean, Jones, Lee, and Riddick

•
•
•

•
•
•
•
•
•
•
•

capture study data
run simulations
evaluate results.

The “Define simulation study parameters” was further
broken down into the sub-cases that might typically be
relevant to a machine shop operation, namely: Specify
study parameters for:

capital equipment
scheduling
inventory
work force
tooling
layout
process
maintenance.

Obviously each of the other use cases could also be
decomposed further, but that was beyond the scope of our
project.
 UML static structure diagrams were used to create a
high level conceptual definition for many of the data types
that would be needed to support the “Manufacturing
facility” use case. The static structure diagrams identify
each of the major data types, their attributes, enumeration
of value constraints for data attributes, and the
relationships between major types. Diagrams were created
for parts and bill of materials, group technology codes,
customer data, internal organizational structure, production
management data (orders, jobs, tasks, and schedules),
process plans, manufacturing resources, equipment setup
matrices, employees, skill definitions, calendars and shift
schedules, inventory, simulation metrics, and statistical
distributions. Since these data types will be discussed in
more detail in a later section of this paper, their UML
representation will not be presented here.

3 INTERFACES AND ARCHITECTURE

After completing the initial set of UML use case and static
structure data models, the focus of our effort shifted to the
development of a skeletal XML file format for machine
shop data. Parallel work has been underway to create
software prototypes that validate the proposed architecture
was indeed feasible. In this section, we discuss our
rationale for using XML for the neutral file, the machine
shop data file format, the architecture of the machine shop
simulator, and prototyping activities to date.

3.1 Why Use XML?

UML is a good choice for creating a model of the shop, but
it is only a modeling language and not an implementation
language. When related collections of information needs to
be exchanged between the software applications that are a
part of the shop, a different approach needs to be taken.
The Extensible Markup Language (XML) is used to define

the exchange formats for the information that was modeled
using UML.
 XML is a standard supported by the World Wide Web
(W3C) standards body, see www.w3.org. It supports the
development of structured, hierarchical data entities that
contain a high level of semantic content, that is both
human and machine interpretable, see DuCharme (1999) or
Goldfarb (2002). Inexpensive tools are available to support
creating and manipulating XML data. It is usually
straightforward to translate data modeled in UML into
XML.
 Also, there are several supporting standards from the
W3C that make working with XML easier. These include
Document Object Management (DOM) for manipulating
XML documents, XML Schema for defining the format of
XML documents, and Extensible Style-sheet Language
(XSL) for translating XML documents to other formats.
Finally, XML is a textual format, as opposed to a binary
format that would require special application support.
Being a textual format facilitates XML's use with the
integration mechanisms commonly available in existing
commercial off-the-shelf (COTS) software applications
(file import/export, sockets, pipes, etc.).

A number of software tools are available at little or no
cost for working with XML structures. XML data files
may be opened and viewed using Microsoft Internet
Explorer (IE). XML structures may be edited and
populated with data using Microsoft XML Notepad. A free
beta release of XML Notepad may be downloaded from
the Microsoft website, www.microsoft.com.

3.2 Machine Shop Data Model in XML

Although a complete exposition of the Machine Shop Data
Model is beyond the scope of this paper, the XML file
structure will be briefly introduced. See Figure 1 for an
illustration of the top level of the XML machine shop data
file definition. The image was created as a screen capture
using the IE browser. The plus (+) signs indicate where
there are one or more levels of substructure that may be
expanded by clicking on the item. The minus (-) signs
indicate where a level of structure has been expanded and
clicking will close the substructure. A listing of the fully
expanded skeletal file structure at all levels is
approximately 60 pages in length.
 The major elements of the top level of the XML
structure are briefly described below.
 Revisions is found repeatedly at many levels of the
data structure. It provides a mechanism for identifying
versions of subsets of the data, revision dates, and the
creator of the data.
 Units of Measurement specifies the units used in the
file for various quantities such as length, weight, currency,
speed, etc.

McLean, Jones, Lee, and Riddick

 Departmental Structure defines the departments
within the organization, their relations to each other, the
positions and employees in each department.
 Calendars identifies the shift schedules that are in
effect for a period of time, breaks, holidays.
 Skill Definitions lists the skills that an employee may
possess and the levels of proficiency associated with those
skills. Skills are referenced in employee resource
requirements contained in process plans.
 Operation Definitions specifies the types of operations
that may be performed at a particular station or group of
stations in the shop.
 Resources describes all the resources that may be
assigned to tasks in the shop, their status, and scheduled

assignments to work items. The resource types available in
the machine shop environment include: stations and
equipment, cranes, employees, tools and tool sets, fixtures
and fixture sets. Standard setups are also defined.

Figure 1: Top Levels Of Machine Shop Data in XML

 Layout defines the location of reference points within
the shop, area boundaries, paths, resource, and part objects.
It contains reference pointers to external graphics files that
use appropriate graphics standards to further define these
elements.
 Parts provides elements for part specifications, group
technology codes, customers and suppliers; as well as links
to bill of materials, process plans, drawings, part models,
and other references.
 Bill Of Materials Group cross-references the parts
and quantities required in a hierarchical bill-of-materials.
 Inventory identifies the instances and locations for
part, materials, tool, and fixture inventory.
 Process Plans defines the routing sheets, operation
sheets, and equipment programs that are associated with
production and support activities. Routing and operation
sheets correspond to the job and task level in the work
hierarchy. The plans define the steps, precedence
constraints between steps, and resources associated with
the production of parts and performance of support
activities.
 Work specifies the hierarchy of work items to be
processed within the shop, i.e., orders, jobs, and tasks.
Precedence constraints defined in process plans are
mapped to associated work items. Scheduling data and
resource assignments for each work item are maintained in
the structure, as well as other data. Jobs and tasks are
cross-referenced to each other as well as routing and
operation sheets respectively.
 Purchase Orders identifies the internal and external
purchase orders that have been created to satisfy part
inventory requirements.
 Organization Directory is used to maintain
organizational data and contact information on customers
and suppliers. Part, order, and purchase order data is cross-
referenced to organizations and contacts in this directory.
 References identifies external digital files and paper
documents that support and further define the data
elements contained within the shop data structure.
 Probability Distributions defines distributions that are
used to vary processing times, breakdown and repair times,
availability of resources, etc. Distributions may be
referenced from elsewhere in the structure, e.g., equipment
resources maintenance data.

3.3 Simulator Architecture

The architecture for the generic machine shop simulator is
divided into the following component elements:

Neutral shop data file •
• XML data processor

McLean, Jones, Lee, and Riddick

•
•
•
•

•
•
•

•

•

•
•

System supervisor and reporting the availability of resources: stations, equipment,
tools, fixtures, cranes, employees, and inventory Machine shop emulator
the allocation of resources to tasks Discrete event simulator
the selection of statistical distributions to be
applied to various processes and events.

User interface system.
Each of the major modules of the architecture are briefly
described below. The Emulator module is being implemented in Microsoft

Visual Basic and the Rockwell Automation Arena’s
SIMAN programming language.

 Neutral Shop Data File - This interface file,
introduced above, is key to understanding the entire
concept of the generic machine shop simulator. The file
provides a mechanism for configuring the shop model and
sharing data between simulation and other shop software
applications. In the TIDE Project, other software
applications are primarily the manufacturing execution and
scheduling systems, although integration with other
applications is envisioned in the future. XML is used to
encode the data in the file.

 Discrete Event Simulator – This module contains the
commercial simulation software system, generic modeling
elements (e.g., queues, resources, timers), and an interface
to the Machine Shop Emulator. Among other functions, it
is responsible for providing master clock functions, event
queues and queue management, randomization functions
based on embedded statistical distribution generators, and
accumulating statistical data on resource state changes and
work items. The file contains not only executable or computable

data to be processed by the simulation, but also descriptive
text that is intended only for human interpretation. It also
contains a network of cross-reference links between the
various types of data required to plan and manage
operations within the shop. It supports references to other
external computer files and/or paper documents that
provide more appropriate mechanisms or standards for
encoding or representing data, e.g., part drawings. Subsets
of individual data types, i.e., substructures, may be created,
stored, and/or exchanged using the file.

 The Discrete Event Simulator sequences arrays of
generic resources and work items that act as proxies for the
“real” shop data objects contained within the Emulator.
The proxy objects are timed and sequenced through
generic queues and state changes that represent key events
and state changes in the real shop, as reflected in the
Emulator’s data structures. The sequencing process is
driven by the data constraints on associated work-item and
resource objects within the Machine Shop Emulator. This
separation of responsibility between the Discrete Event
Simulator and the Machine Shop Emulator allows the shop
configuration to be changed within the Emulator without
requiring custom, manual software modifications to the
Discrete Event Simulator module.

 XML Data Processor – This module is a library of
routines that handle the import and export of data in the
prescribed XML format of the neutral shop data file. The
primary function of the module is to read the neutral shop
data file in XML and translate the data into and out of the
internal Visual Basic object structure of the Machine Shop
Emulator module. It is also responsible for creating XML
output files. A set of library subroutines that provide some
of the functionality of this module are available as
downloads from Microsoft as part of their implementation
of W3C DOM specification.

 Rockwell Automation’s Arena is being used as the
Discrete Event Simulator. For more on simulation
modeling with Arena, see Kelton et al (2001).
 User Interface System – This module provides
capabilities for creating and modifying shop data files,
managing the display screens for configuring the system
and observing simulation runs, debugging, and displaying
results. It also is responsible for the generation of custom
reports of simulation results.

Simulation Supervisor – This module is responsible
for configuring the Machine Shop Emulator at
initialization from data contained within the Neutral Shop
Data File and coordinating the execution of the various
modules during a simulation run; and outputs simulation
reports.

3.4 Prototype Development

Prototypes that have been built to date include:
Machine Shop Emulator – This module is responsible

for managing the emulation of the operation of the
machine shop and manipulating required data. This
includes, but is not limited to, managing:

Shop Data Editor – A graphical user interface was
developed using various controls within Visual Basic™ to
simplify data entry and population of the internal object
structure and XML-based data exchange file. Development
of the data editor is continuing to support the input of data
for the entire machine shop data model.

the production calendar and shift schedule
the execution of orders, jobs, and tasks

Machine Shop Emulator – Various prototypes were
created to validate that the architectural concepts could be
implemented in Rockwell Automation’s Arena. The
prototypes were used to determine that resources could be
dynamically-created based on externally-defined data,

the enforcement of precedence constraints in
process plan routing and operation sheets
the sequencing of steps in the operation sheet
associated with an individual task

McLean, Jones, Lee, and Riddick

custom state definitions could be applied to resources,
resources could be pushed through state changes
programmatically from an external module, statistics could
be properly collected on generic dynamically-created
resources, and routing of work items could be externally
defined and controlled. Some of the logic required for the
Machine Shop Emulator had been validated in a previous
project using the Promodel simulator.

XML data processor – A prototype was developed to
import and export scheduling data using Microsoft’s XML
DOM library. It also transferred data into internal Visual
Basic object structures. The prototype verified the structure
of software that processes the XML files.

4 CONCLUSIONS AND FUTURE WORK

Simulation software vendors are well aware of the fact that
simulation technology is underutilized by manufacturing
industry. An innovative architecture for a generic machine
shop simulator was presented in this paper as one step
towards solving this problem. New simulators, based upon
this architecture, could simplify the modeling process and
improve simulation accessibility for one industrial sector.

Our near term work is focused on constructing a
prototype simulator based on this architecture using COTS
software. We are also working with KJLC to populate the
neutral data file with actual industrial data. Finally, we
expect to integrate and test the prototype simulator and test
data files with the other TIDE software applications.

A key factor in increasing the utility of the simulation
is the establishment of standard data formats. This paper
also presented a neutral data format for representing and
exchanging machine shop data in XML. In the more distant
future, our work will focus on expanding the data file
format to incorporate additional data types, including a
more sophisticated plant layout data model. We are
working with the industrial team that developed the
Simulation Data Exchange (SDX) plant layout format. We
expect to adapt and integrate the SDX format with our
shop data model. Our ultimate objective in this area is to
promote the establishment of a standard data interface for
manufacturing simulators based upon this work.

As the generic shop simulator becomes operational
and standard simulation data formats are adopted, we see
the possibility of new uses for simulation technology. One
such use is the dynamic testing and evaluation of other
manufacturing software applications. Currently, due to the
lack of interface standards and testing systems, it is
virtually impossible to adequately test new manufacturing
software applications. Simulation technology, by enabling
the implementation of virtual production facilities, can be
an important new tool in the software testing arena.

REFERENCES

Alhir, S. 1998. UML in a Nutshell. Cambridge: O’Reilly &
Associates.

Aytung, H. and Dogan, C. 1998. A Framework and a
Simulation Generator for Kanban-controlled
Manufacturing Systems, Computers in Engineering.
34(2): 237-350,

DuCharme, B. 1999. XML: The Annotated Specification.
Upper Saddle River, New Jersey: Prentice Hall.

Goldfarb, C. 2002. XML Handbook. Upper Saddle River,
New Jersey: Prentice Hall.

Kelton, D., Sadowski, R., and Sadowski, D. 2001.
Simulation With Arena. New York: McGraw-Hill.

Mathewson, S. 1984. The Application of Program
Generator Software and Its extensions to Discrete
Event Simulation Modeling. IIE Transactions. 16(1):
3-18.

Pidd, M. 1992. Guidelines for the Design of Data Driven
Generic Simulators for Specific Domains.
SIMULATION. 59(4): 237-243.

Schmuller, J. 2002. Sams Teach Yourself: UML in 24
Hours. Indianapolis: Sams.

Son, Y. 2000. Simulation-based Shop Floor Control:
Automatic Model Generation and Control Interface.
Doctoral Dissertation, Department of Industrial and
Manufacturing Engineering, Penn State University,
University Park, Pennsylvania.

Son, Y., Jones, A., and Wysk, R. 2002. Component-based
Simulation Modeling from Neutral Libraries.
Computers in Industry. In review.

ACKNOWLEDGMENT

Mention of commercial products in this paper does not
imply approval or endorsement of any commercial product
by NIST. This project is funded [in part] by NIST's SIMA
Program and the SEI TIDE Program. SIMA supports NIST
projects applying information technologies and standards-
based approaches to manufacturing software integration
problems. The work described was funded by the United
States Government and is not subject to copyright.

AUTHOR BIOGRAPHIES

CHARLES MCLEAN is a computer scientist and
Program Manager of the Manufacturing Simulation and
Visualization Program at NIST. He also leads the
Manufacturing Simulation and Modeling Group. He has
managed research programs in manufacturing simulation,
engineering tool integration, product data standards, and
manufacturing automation at NIST since 1982. He has
authored more than 50 technical papers on topics in these
areas. He is on the Executive Board of the Winter
Simulation Conference and the Editorial Board of the

McLean, Jones, Lee, and Riddick

International Journal of Production, Planning, and Control.
He is formerly the Vice Chairman of the International
Federation on Information Processing (IFIP) Working
Group on Production Management Systems (WG 5.7). He
is also the NIST representative to the Department of
Defense’s Advanced Manufacturing Enterprise Subpanel.
He holds a MS in Information Engineering from University
of Illinois at Chicago and a BA from Cornell University.
His e-mail address is mclean@cme.nist.gov.

ALBERT JONES is an operations research analyst and
currently manages the Enterprise Integration Program at
NIST. Prior to that, he led several projects to investigate
the functional and integration requirements for the next-
generation simulation tools. Dr. Jones has published
numerous articles on control systems, scheduling, and
simulation. Before coming to NIST, Dr. Jones taught for
several years at John Hopkins University and Loyola
College of Baltimore. He received his Bachelors Degree
from Loyola College. He received a MS in Mathematics
and PhD in Industrial Engineering from Purdue University.
Dr. Jones is currently on the Executive Board of the
Engineering School at Loyola of Baltimore. He has chaired
or co-chaired several international conferences, and has
served on several proposal evaluation panels for National
Science Foundation (NSF), NIST, and Defense Advanced
Research Projects Agency (DARPA). His email address is
jonesa@cme.nist.gov.

TINA LEE is a computer scientist in the Manufacturing
Simulation and Modeling Group at NIST. She joined NIST
in 1986. Most recently, she has been working on the design
and development of interface information models to
support the Software Engineering Institute (SEI)
Technology Insertion Demonstration and Evaluation
(TIDE) project. Previously she worked at the Contel
Federal Systems and at the Sperry Corporation. She
received her BS in Mathematics from Providence College
and MS in Applied Science from College of William and
Mary. Her e-mail address is leet@cme.nist.gov.

FRANK RIDDICK is a computer scientist in the
Manufacturing Simulation and Modeling Group at NIST.
He has participated in research and authored several papers
relating to manufacturing simulation integration and
product data modeling. He is the NIST representative to
the Distributed Simulation Special Interest Group within
the Object Management Group (OMG) that is developing
standard for distributed simulation. He holds a BS in
Mathematics from Saint Augustine's College and MS in
Mathematics from Purdue University. His e-mail address is
riddick@cme.nist.gov.

mailto:mclean@cme.nist.gov
mailto:jonesa@cme.nist.gov
mailto:leet@cme.nist.gov
mailto:riddick@cme.nist.gov

	INTRODUCTION
	Project Overview
	Related Work
	Graphical Approaches
	IDEF3
	Petri Nets
	Message-based Part State Graphs (MPSG)

	Simulation Generators
	Data Driven Approaches
	A New Hybrid Approach

	REQUIREMENTS DEFINITION
	Why Use UML?
	Machine Shop UML Diagrams

	INTERFACES AND ARCHITECTURE
	Why Use XML?
	Machine Shop Data Model in XML
	Simulator Architecture
	Prototype Development

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	ACKNOWLEDGMENT

