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Abstract
In this paper, we discuss the importance of recognizing and
representing both stationary and moving obstacles for the
purpose of autonomous driving as well as linking these
representation to an ontology of obstacles to aid in deducing
additional information about them. With the ability to access
additional information about a sensed obstacle, an
autonomous vehicle can better forecast where that obstacle
can and can not be at a future time, and therefore be able to
better plan its path to avoid collision with that obstacle.

This paper describes work just recently begun at the
National Institute of Standards and Technology in
developing and incorporating an ontology of moving
obstacles into the control of an autonomous vehicle to aid in
path planning and obstacle avoidance.

Introduction  
For the purpose of collision forecasting and avoidance in
an autonomous vehicle, it is not only important to know
where an object is at a given time, but also to accurately
predict where that object will be at a given time in the future
[Shoemaker99]. If the object is stationary, this is easy.
However, if the object is moving, this becomes a lot more
difficult. One must sense the existence of the object at a
given time, and be able to correlate where that same object
is in a sensed image at a time in the future. Once this is
done over a series of time points, one could attempt to
associate a set of equations with that motion as a function
of time, and be able to predict where that object will be at a
time in the future.

However, just knowing the direction and speed of an object
at any given time does not necessarily indicate that the
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object will continue moving at that direction and speed in
the future. Although there is no accurate way to
definitively predict where a moving object will be at any
point in the future, there are ways of narrowing down the
possibilities with a high degree of certainty. For example, if
one could identify that a particular moving object was a car,
then one may know that the maximum speed of a car was
192 km/hr and the average speed of a car on a highway was
104 km/hr in open driving conditions. They may also know
that the car can only move forward and backwards (not
sideways) and could turn at a maximum angle given its
speed and tire position. They may also know that cars
primarily drive on roads, and stay on the roads, and within
the lanes of the road, if at all possible. With this
information, the planner for the car can eliminate locations
that the car cannot possibly reach at a given time, and can
also assign probabilities, given the known characteristics of
the car, of where it is most likely to be at a given time.
Perhaps the highest probability of where it will be is directly
along its current path, slightly lower probability in the areas
surrounding its current path, and zero probability in areas
that it does not have the capability of reaching given its
driving limitations.

Almost everything mentioned above requires that there be
a mechanism to identify that the object being sensed can be
classified as a car.  In other words, there needs to be a
mechanism to associate a set of pixels (or other sensor’s
representation), or a map-based representation, to a
symbolic entity that represents the car.

Representing Objects
Object recognition is a very difficult challenge, and one that
is only lightly glossed over in this paper. However, in the
case of on-road driving, the challenge becomes a little bit
easier since, for the most part, the environment is controlled
and there is a bounded set of objects that a driver would
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expect to sense (e.g., other vehicles, pedestrians, animals,
traffic lights, signs, road, etc.).
Since a single object can be sensed by many different
sensors at the same time (e.g., stereo cameras, LADARs,
FLIRs, etc.), the more information that can be captured
outside of the representation of any single sensor, the
better the probability that the information can be reused.
For example, a vehicle six meters ahead could be
represented by a set of points in a LADAR’s
representation, could be represented as a set of pixels
within a camera’s representation, and could be represented
as a set of heat images within a FLIR representation.
Instead of having to deal with each sensor separately, it is
customary to use a map-based representation to fuse the
various sensor images together [Hong02]. However, this
map-base image is still primarily grid-based, with little
ability to incorporate detailed attributes and rules that
pertain to groups of grid cells that comprise a single object.
For example, if that vehicle were detected to be moving, one
would not want to associate that motion with every grid cell
that comprised that vehicle. Instead, one would want to
capture that information once, perhaps in a symbolic
representation of a vehicle, and link the portions of the
map-based representation to that symbolic representation.
In addition to representing the vehicle’s motion, there may
be some other pertinent information about the vehicle that
would be beneficial to represent symbolically, such as
information to detect where the vehicle may be at a time in
the future, the cost of colliding with the vehicle, and
information to help recognize the vehicle. Examples of these
types of information are shown below:

For the purpose of recognizing the vehicle from sensed
data:

• Various salient features of the vehicle, such as
existence of important structures, shapes, lines
and curves, and their relationship to one another

• Pointers to CAD drawings showing prototypical
pictures of vehicle (see Figure 1)

• General knowledge, such as the fact that cars are
typically found on roads

Facts for the purpose of location prediction:
• A car typically has a maximum forward velocity of

approximately 192 km/hr and a maximum
backwards velocity of 64 km/hr. However, a car
typically moves forward at a speed of between 8
and 120 km/hr.

• A car can only move forward and backward, but
can also turn at a maximum angle of 45°.

• The angle that a car can turn is usually a factor of
its speed.

• Associated equations capturing the current speed
and direction of the car as a function of time

Facts for the purpose of determining the cost of collision:

• A car is a heavy solid object that can not easily be
moved.

• Colliding with a car can cause serious damage
and/or injury.

Providing and using this information could only be
possible if there were a mechanism to accurate associated
map-based images with symbolic entities, thus provide
object recognition. This would assume that the system
would be able to perform the following types of steps:

1. Identify that an object exists based on various
types of sensed data.

2. Identify the components of that object. This
would most likely come from the combination of
sensed data. For example, LADAR sensors could
tell you the 3D coordinates of the obstacle. FLIR
data could give you heat data about the obstacle,
camera data could give you color data, etc. The
combination of this data would give you the
attributes of the obstacle to help you recognize it.

3. Classify the sensed image with respect to
predefined classes of objects, if possible. This
could be done in a number of ways, all based upon
the attributes and salient features of the sensed
object. If the object is stationary and is part of the
terrain, one could use a priori maps and compare
areas on the map with objects that are sensed to
identify an object (solely by location). If prototype
images (see Figure 1) and scale-invariant salient
features of the various types of objects have been
previously stored, one could compare LADAR
images of the object with those previously stored
features and images to determine if there is a
match. This is similar to the MASCOT work
currently being performed at the University of
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Figure 1: Different Types of Representations



Illinois at Chicago [Arlt00]. This is sometimes
referred to as “Query by Example.” In addition to
the dimensions of the object, if cameras were used,
one could compare information such as color to
see if sensed objects match possible colors for
objects previously stored. In addition, one could
use other facts which have been stored about
objects, such as the fact that car are primarily
found on road surfaces.

Object recognition is a very difficult area, and a lot of
research has been performed in this area with limited
success. However, using a bounded case and constrained
environments as a starting point, possibly comparing this
information with previously obtained ground truth, a proof
of concept demonstration could be performed and then
generalized to a more real-life environment.

Representing Motion
For the purpose of representing moving objects, the
following two assumptions are made:

• All objects are rigid masses, and all components of
that rigid mass move uniformly, such that if point
A on that mass moves at a given velocity and
direction, all points on that mass move at the same
velocity and direction. Though this may not be the
case with all moving object (e.g., when a person
walks, their legs and arms sway, thus moving a
different speeds than the rest of their body), it
should be accurate enough to simplify
computation.

• All moving objects of interest touch the ground.
Since the primary moving objects of interest are
other vehicles, people, and animals, this should be
a valid assumption. Obviously moving objects
such as aircraft and flying projectiles would not be
included, though for the purpose of autonomous
driving, they are not of significant importance.

Recognizing and classifying objects and identifying that an
object is moving are essential steps to be able to identify
and represent moving objects, but it is only half the game.
This is primarily because almost every object moves: trees
and grass sway in the wind, a traffic light shakes back and
forth due to wind and the wake of passing traffic, etc.
However, these are not the types of motion that a planner
cares about when determining the path a vehicle should
follow and this type of information does not need to be
represented in a world model. However, motion of cars,
pedestrians, animals, etc. are very important to represent
and track when determining the appropriate path for a
vehicle to take. So how does one determine what to capture
and what not to? By recognizing objects, one can query a
knowledge base to determine if this is an object of interest
or not within a given context. If it is, information about the

movement of this object should be represented and tracked
within the knowledge base while other types of movement
can be ignored.

Therefore, in addition to the steps mentioned in Section 2
above, the following additional steps need to be performed
to sense and track the movement of an object:

1. Identify that the object is moving
2. Correlate the “parts” of the moving object at

time = tn with the “parts” of the moving object at
time = t0.

3. Based on a single, predetermined point on the
object, or on an easily identified set of salient
features, track that feature or point through a
series of images at known time intervals

4. Based on algorithms such as curve fitting,
compute the equations corresponding to the
moving object’s direction, velocity and
acceleration. In the case of a moving vehicle, a
great deal of work has already been performed on
the autonomous vehicle in computing the curves
representing the possible directions the vehicle
can go as a function of its wheel orientation and
current velocity. These curves may also be able to
be applied to sensed vehicles, and these curves
could be overlaid on sensed positions of the
sensed vehicle to determine which best represents
its motion. The equations representing these
curves could then be used to predict where the
vehicle will be in the future based on its current
velocity and path. In addition, one could assume
that, in general, that a car primarily.

4a. There is currently considerable work ongoing in the
area of lane following. In the simple case (which
accounts for perhaps 80%-90% of the time) one
could assume that the vehicle approximately
follows the equation that accounts for the
curvature of the road, and therefore one may be
able to “predict” that the vehicle will continue
following that curvature equation until sensed
locations prove otherwise.

5. For the purpose of collision avoidance, compute
the moving object’s position at given time points
in the future based on the identified equations.

6. Based on newly sensed data, repeat numbers 3
through 5 to refine the equations and recomputed
the moving objects position at future time points.

The actual representation of the motion would then be a set
of equations, in which given a time t, a corresponding
position could be determined assuming the vehicle
continues to move at its current speed and direction.



Symbolic Representation of Objects
In Jim Albus’s book “Engineering of Mind” [Albus01], he
describes a hierarchy of entities (pixels, lists, surfaces,
objects, and groups), where each higher-level entity is a
classification and grouping of lower level entities (see
Figure 2). In this section, we expand upon the object level
of the hierarchy, and introduce a simple ontology within
this level for classification of objects.

Many objects that could be encountered share similar
characteristics. For example, a car and a motorcycle both are
vehicles that are primarily found on the road and move at
speeds between zero and 120 km/hr. It would be redundant
to represent the same information twice for these two
different types of vehicles. A much more efficient type of
representation would be an ontology of obstacles which
allow for the inheritance of attributes or characteristics from
the object’s parent lineage. A simple example of such an
ontology is shown below, with a subset of attributes
included for some classes (objects). Classes are in bold,
indentation shows superclass-subclass relationships, and
attributes are in italic. Attribute inheritance is supported,
such that all children of a superclass inherit all of its
attributes. In this case, the vehicle class would not only
include its own attributes, but also all of the attributes of
the moving object class and the object class. A more
detailed ontology could include subclasses with multiple
superclasses, many different types of relationships
between classes, and a more formal type of representation.

Stuff
Actions
Objects

• Name
• Position
• Orientation
• Color attribute(s)
• Link to CAD drawing(s)
• Pointer to areas in sensor representations (voxels

in LADAR representation, pixels in camera
representations, etc.)

• Pointer to list entities which comprise the object
• Pointer to surface entities comprising the object
• Pointer to group entities aggregating objects
• Pointer to parent class(es)
• Pointer to child class(es)
• Context(s) in which the object is usually seen
• Rules pertaining to the object
• Relationships to other objects
• How bad is it if I collide with this object (this may

be based on the context)
Stationary Object

Road
Traffic Light
Sign

Speed Limit Sign
Stop Sign

Toll Booth
Guard Gate
Construction Cone
Road Markings
Street Lights

Moving Object
• Set of sensed locations (x,y coordinates) as a

function of time
• Velocity (both speed and direction)
• Maximum velocity in different directions
• Average velocity range in different directions
• Acceleration (both rate and direction)
• Maximum acceleration in different directions
• Average acceleration range in different directions

Vehicle
• Pointer to equations showing possible vehicle

speed and direction given a vehicle’s current
velocity and wheel orientation

Car
Van
Motorcycle
Truck
Bus

Living Entity
Animal

Person

Figure 2: Expanded Object Entity in the
Hierarchical Groupings of Entities
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Symbolic Representation Applied to Sensor
Integration and Registration

On a tangent to what was stated above, symbolic
representations could also assist in integrating “images”
from disparate sensors. During the process of recognizing
and classifying sensed images, one is associating a
representation in the symbolic domain with a representation
in the iconic domain (e.g., associating sets of pixels in the
camera image with a class in the ontology). If this
association is done with multiple different sensed images
from different sensors, then one can correlate and register
the two different images together using the common sensed
image as a reference point.

Not surprisingly, one of the primary purposes of certain
types of symbolic representations is for integration of
different systems that use different underlying
representations. Although this is usually done in the purely
symbolic regime (where the external systems represent their
information symbolically), this type of information
integration can also be done to integrate iconic information,
by performing object recognition and mapping the iconic
structures (e.g., pixels, voxels) to the appropriate
symbolically-represented classes.

Introduction of Driving Behaviors

To take the above discussion one step further, for the
purpose of predicting where a moving object (specifically, a
vehicle) will be at some time in the future, there are at least
three types of information that a planner should know:

1) The acceleration, velocity, and direction of the
object at the current time

2) The capabilities of the vehicle, namely, what type
of motion is it capable of

3) Driving rules that the vehicle should follow (a
vehicle usually stops at a red light, vehicles
usually drive slower in hazardous conditions, etc.)

The first two items are addressed in the previous sections.
The third item, driving rules, has been well documented in a
book entitled “Driver Education Task Analysis. Volume 1.
Task Descriptions” written by the Human Resources
Research Organization [McKnight70]. A part of this book
deals with a set of driving “situations”, and the steps that a
driver should perform in response to those situations. An
interest exercise would be to represent a subset of those
situations and behaviors in a formal matter within a
knowledge base, linked to an ontology, to be able to
deduce the action that an external vehicle should take in
given situations. This would allow a planner to better
predict the actions, and hence location, of external vehicles,

and make more informed decisions as to paths to take to
avoid collision.

Exchanging Position Information Among
Mobile Agents via the Semantic Web

The work described in this paper is a vital component to
realizing the vision of the semantic web, specifically in the
areas of: sharing dynamic vehicle information among
agents communicating over the Internet, for publication of
object motion histories, such as for simulation evaluation,
and for planning both real and simulated environments
involving moving objects.  Next generation traffic control
systems will need to post and monitor structured
information about vehicles and transportation
infrastructure in order to regulate traffic flow.  The military
needs to post information for dynamic and retrospective
analysis of simulated and in-theater operations.  All these
applications can benefit from structured and standard
presentation utilizing the rapidly emerging infrastructure of
the semantic web

The text below discusses these concepts in the context of a
scenario focusing on the tracking of friendly and enemy
vehicles in a hostile environment. First some background
information is given, and then the scenario is presented.

As discussed above, an autonomous vehicle must
constantly track the position and movements of all external
obstacles for the purpose of path planning and obstacle
avoidance. When little information is known about the
external object, various steps need to be taken, such as
recognizing what the object is and generating equations
that represent the movement of the object (see previous
sections). However, there may be cases in which more
information is known about the external objects. For
example, in times of battle, the autonomous vehicle (Vehicle
A) may need to track other friendly vehicles in its section,
to allow for executing section-level plans and to possible
maintain a safe distance between them. In this case, much
of information is already known about the other vehicles in
the section, such as what the “object” is, where it is
located, and the direction and velocity in which it is
moving.

In addition, one of the friendly vehicles in the section may
have detected a hostile vehicle that other vehicles in the
section have not. In this case, this friendly vehicle would
need to transmit the location and velocity of the hostile
vehicle over the semantic web to other friendly vehicles in
the section. What is needed is a way to accurately
communicate this information.

This communication must happen in a fashion in which the
semantics of the message are completely and



unambiguously understood. The semantic web could
indeed provide this forum, but only if it is based upon a
well-defined ontology consisting of types of obstacles and
objects in which the friendly vehicles could encounter, as
well as very well-defined characteristics of those objects.

The simple ontology provided in the previous section
provides a starting point for introducing terminology and
related characteristics to aid in the communication among
mobile agents via the semantic web. It provides a
classification of the types of objects that one would expect
to sense in the environment, along with the appropriate
types of characteristics for those objects. Position and
velocity are some of the characteristics that one would wish
to know about a moving obstacle.

Imagine the situation where a friendly vehicle (Vehicle A)
senses a hostile tank and begins to track its position and
velocity. It would immediately need to notify other friendly
vehicles in its section via the semantic web to make them
aware of the enemy tank. Unfortunately, the sensors on
Vehicle A have a very limited field of view, so the enemy
tank can only be tracked by Vehicle A for a short amount of
time before it leaves its field of view. However, Vehicle A
was successful in capturing the movement of the enemy
tank, and was able to accurately predict where the enemy
tank would be at a given time in the future. This information
is sent over the semantic web to another friendly vehicle
(Vehicle B) in the section whose field of view encompassed
the location where the enemy tank was expected to be, and
Vehicle B then senses the enemy tank and tracks its motion.
This continues from vehicle to vehicle, until the enemy tank
is sufficiently out of range, or is considered an imminent
threat and is therefore fired upon.

Since the enemy vehicle was identified as being a tank,
various characteristics of a tank are known a priori, such as
the tank’s maximum speed in both the forward and reverse
direction, as well as its ability to turn in tight spirals. This
information allows the system to more accurately predict
not only where the enemy tank will be at a point in the
future, but to confidently predict where the tank can not be.

Even with this, the problem is not solved. The individual
vehicles need to be able to exchange position and velocity
information in an unambiguous way. Having common
terminology and semantics, such as the simple ontology
presented in the previous section, helps to accomplish this.
Initial work has just begun to integrate this ontology with
the current SUO [Pease02] work, thus providing more
formal semantics for the concepts introduced.

Even with this, the problem is not solved. Each sensor on
the vehicle is egocentric (i.e., the vehicle doing the sensing
is perceived as the center of the universe) and all sensed
objects’ positions are represented in a coordinate frame in
which the autonomous vehicle is at the origin. Thus, not

only does the position and velocity information have to be
passed (and unambiguously understood) among vehicles,
but so does a coordinate transform that can map a sensed
object from the perspective of one vehicle’s coordinate
frame to the coordinate frame of another vehicle. Thus the
position of any friendly vehicle would need to be known
and maintained with respect to the position of any other
friendly vehicle in the section.

Not only would this position information need to be shared
among the friendly vehicles in the section, but it would also
most likely need to be shared with some type of central
command that would continuously monitor enemy vehicles
such as to develop a section-level plan to combat the
enemy vehicles, if necessary. Thus, this position
information would also need to be transformed into a
central coordinate frame, for the purpose of tracking
outside of any individual vehicle, and sent to the central
command via the semantic web.

Conclusion
This paper describes a lot of challenges and research areas
related to the areas of object detection and symbolic
representations, while only skimming the surface on
providing concrete solutions on how to resolve these
challenges. The paper represents the very beginning of a
research effort that is getting underway at NIST, which is
exploring the incorporation of ontologies and other types
of symbolic representations into a control hierarchy to
control an autonomous vehicle.

It is impossible to separate the representation of an
obstacle with the process in which it is recognized, which is
why a good portion of this paper deals with the steps that
must occur during the object recognition process. Many
efforts in the past have attempted to develop
representations (ontologies) of objects and actions without
any clear indication of how they were expected to be used.
Although there is value at doing this at the highest levels
of ontology building (with the expectation of having these
general ontologies be specialized for domain-specific
purposes), any attempt to develop a domain ontology
needs to have a clear understanding of not only what types
of concepts need to be represented, but what specifically
needs to be represented about those concepts. In the case
of representing sensed obstacles for autonomous driving,
one would also need to know how those objects were
perceived, so the appropriate characteristics of the object
could be included in the representation (e.g., salient
features, CAD drawings, etc.).

In this paper, we discussed the importance of recognizing
and representing both stationary and moving obstacles, as
well as the value that one would gain by linking these
representations to an ontology of obstacles. This ontology
could not only contain a taxonomy, with attributes, of



obstacles, but also a set of rules and statements about the
obstacles. These rules and statements could facilitate
operations such as obstacle detection, location prediction,
and associating a cost/risk of colliding with the obstacle.
For example, if the rules of driving behaviors were
embedded in the knowledge base, one could more
accurately predict where an external vehicle could be at a
time point in the future, given a set of driving conditions, to
help better avoid colliding with that object.
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