
COMPUTERS AND BIOMEDICAL RESEARCH 4, 315-328 (1971)

Computer Determination of the Constituent Structure of
Bio1ogical Images*

RUSSELL A. KIRSCH

Applied Mathematical Division, National Bureau of Standards, Washington, D.C. 20234

Received September 9, 1970

A class of algorithms is described which enables computer quantized images to be
decomposed into constituent parts reflecting the structure of the images. This decomposi -
tion i s viewed as the morphological precursor to a higher level syntactic analysis.
Numerical results for a typical biological image are presented.

INTRODUCTION

Digitized pictures can be processed with computers for any one of several funda-
mentally different purposes. One such purpose exemplified by image enhancement
(I)i s typical in that it has as i t s output a picture derived from an input one. In such
applications the fundamental purpose is the transformation o f one image into
another which i s primarily intended for visual consumption by people. A second
purpose involves essentially artificial or synthetic images. Although these data do
derive from the natural world in a certain sense, they are produced in situations
under sufficient human or mechanical control so that their artificial, schematic,
and synthetic aspects can be heavily exploited in analysis (2). A thirdpurpose served
by information processing i s to produce a single datum, usually the one which
identifies the name of a pattern or the class to which it belongs. This case may be
considered to be a special instance of image processing problems inwhich thepurpose
served by processing apictorial image is to obtain a data structure from that image-
one which may be a description of the image or a partial description of the image
in association with other nonimage data. It i s this class of purposes which concerns
u s in this paper, and the particular type of data structure that we are interested in
obtaining from an image i s one which describes how the image i s constituted out of
i ts component parts. We are thus concerned here with pattern recognition in which
recognition i s understood in the wider sense of not only the naming of a pattern
but also the naming of i t s structural parts with an indication also of their relations
to each other. We will be concerned here with algorithmic methods for determining
the structural decomposition o f an image into i t s constituent parts.

* The work reported here was done on a collaborative project at National Bureau of Standards
sponsored by agreements with National Institutes of Health, NINDS and NCI.
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I.SOURCES OF DECOMPOSITION OFIMAGES

A, Intrinsic Decomposition

I f we consider Images independent of their particular digitized or other form of
quantized representation in a computer, i t will be noted that such images typically
can be partitioned into component parts by making use of data which are intrinsic
to the images themselves. Thus, the image which constitutes this printed page can
easily be seen to be partitioned into subparts consisting of the individual letters
and other orthographic elements on the page. The criterion for t h i s partitioning i s
largely inherent in the image itself, since the boundaries between letters and the
background of the page i s well defined enough to be exploitable for purposes of
isolating the printed characters. In natural photographs, however, the situation i s
somewhat more complex because there are usually at least two classes of objects in
natural photographs, those which have well-defined boundaries, and those which
can only be looked at as statistical aggregates.

1. Well-deJined objects. When a photograph or other image source comes from
an object which consists of well-defined subobjects, very often the definition o f
the subobjects and the consequent partitioning o f the pictorial representation can
be obtained by invoking some simple criterion. Two such criteria are the use o f a
gradient function to determine boundaries or the use of a thresholding mechanism
which establishes boundaries at a place where the optical information func-
tion exceeds some prescribed threshold. These methods work, however, only
where the image comes from an object which i s well-defined in terms of i t s sub-
objects.

2. Aggregates. An important class o f natural images fails to satisfy the above
criterion. Here the objects in an image are aggregates of smaller objects. The smaller
objects need not be distinguishable or individually identifiable, but their aggregative
nature i s identifiable. We are thus drawing a distinction between the forest and the
trees in suggesting that different methods are usable for determining the boundaries
of the forest from those which can determine the boundaries of trees. In biological
examples, we have cases like cells with well-defined membranes, nuclei o f cells
which also have well-defined borders in suitably stained preparations, and, by way
of contrast, regions in tissue sections which are defined more by densities of cellular
constituents than by sharply defined boundaries, or certain substructures like
nucleoli or nissl flakes in nerve cells. There are methods for establishing the boun-
daries of aggregative objects, but they differ from the methods that work with well-
defined objects. Mendelsohn, et al. (3) present a method which works for establishing
the boundaries o f objects like chromosomes whose images should properly be
viewed as aggregates.

We will prescnt below an algorithm that exploits the interference between separate
objects to establish boundaries not only between well-defined objects but also
between aggregative objects.
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B. Decomposition by Externally Imposed Syntax

Although we have suggested above that various kinds of measurements performed
on patterns can yield recognition of their component parts, it i s useful to notice
that component parts of an image can, in certain cases, be identified without making
any measurements at all upon the components. In the case o f highly structured
images (again using the example of this printed page), the degree of redundancy
in the structure i s such as to make it possible to recognize certain component parts
once we know two facts: first, the context in which the components exist and,
second, the mere fact o f existence of those components. Theproblem of recognition,
then, becomes transformed into a problem of recognition of the context and mere
detection o f the existence o f a component in animage. I t i s thus the syntax, the higher
order structural organization of the image that enables the recognition of certain
of the component parts of that image.

The farther we get, however, from highly stylized and therefore artificial image
sources, the less likely are we to be able to exploit the syntactic structure of these
images for purposes o f recognizing their component parts. In the case o f natural
images, such as occur in most biological applications of image processing, there is,
nevertheless, a certain degree of residual redundancy in the images which can be
exploited in recognizing component structure. However, in most o f these cases the
redundancy serves more to resolve ambiguities in the recognition of component
parts than it does to determine the recognition in i t s entirety. We would expect,
therefore, in biological images, to find that the externally imposed syntax with
which a particular image may be viewed can serve to resolve morphological am-
biguities where precise measurements on the component parts yield only ambiguous
conclusions with respect to the identity o f the morphological parts.

The overall conclusion that we must draw from the above discussion with respect
to image processing for natural biological subjects i s that the recognition o f con-
stituent structure for such images must result from an interplay between themorpho-
logical identification of the components and the invoking of an a priori syntactical
structure imposed upon the image from knowledge that derives from sources other
than the image itself. And we would expect that this interplay will be such that
during the recognition process both syntactical and morphological recognition
criteria will be used to invoke the other kind in a fairly complex kind of recognition
algorithm. The morphological part o f such a recognition algorithm i s described in
this paper.

11. A CLASS OF DECOMPOSITIONALGORITHMS

A. A Particular Example

W e wish now to consider a particular example of how the decomposition at the
morphological level may be made for a gray scale image that i s prepared for com-
puter input. The type of data to which such an analysis i s applicable i s best illustrated
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by the description given by Stein, Lipkin, and Shapiro (4) in which the method for
obtaining such data with a computer controlled microscope is described. We will
first consider a particular example of how one may do morphological analysis, and
then we will generalize to include a wide variety o f different cases.

The picture which i s to be analyzed may be represented, as in Fig. 1, as a rect -
angular array of 36 x 36 decimal numbers. These quantities represent the brightness
of corresponding elementary regions in the original picture. We will not specify
whether t h e image i s considered to consist of dark objects on a light background or
conversely, since the method of analysis at the morphological level should be equally

applicable to figure and ground, treating both of these symmetrically. Within the
input image (thus quantized), we wish to identify regions with varying degrees o f
heterogeneity of brightness values. These regions and a suitable structure imposed
upon them will represent the output of the morphological analysis process.

For the purpose o f our example we will choose a particular contrast function in
the following manner : at any arbitrary point p, as shown in Fig. 2, we will number
the eight adjacent points as a,, al,. ..) a7 and then evaluate the contrast function:

)5(ai+ + ai+J - + ait4 +
where the subscripts are evaluated modulo 8. I t will be seen that this nonisotropic
function i s related to the magnitude of the gradient o f the original brightness
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a7 p u3 Numbering of elements in the neighborhood of an arbitrary point,p
a6 a5 a4

Contrast function at p
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Where all subscripts are evaluated modulo 8.

FIG. 2. A brightness contrast function.

function. It i s nonsymmetric and sensitive to small changes in the value of the
gradient. If we perform this computation homogeneously for the brightness function
in Fig. 1, the result i s as shown in Fig. 3, where we have chosen to use two decimal
characters to represent the magnitude o f the contrast function at every point.

We will say that point p in Fig. 2 i s adjacent to points a, through a, and we will
speak o f a blob as a set of points, each of which may be reached from all the others
in the set by moving from a point to an adjacent point in the set. W e may finally
introduce the notion o f a blob of heterogeneity K by making simultaneous use of
the notion of a blob and of the contrast function previously calculated. By a blob
of heterogeneity K we will mean a set o f points in the original brightness function



which constitutes a blob for which all the corresponding points in the contrast
function have magnitude less than or equal to K and having the property that any
point not in the blob, but adjacent to a point of the blob, has a value for i t s contrast
function greater than K. Intuitively speaking, a blob of heterogeneity K i s simply a
maximal size contiguous region in which the contrast function i s less than or equal
to K, bounded by points having contrast greater than K.It will be seen that for any
value of K, a brightness function like Fig. 1 can b e partitioned into (generally)
disjoint subregions. Figure 9 shows the partitioning of Fig. 3 for K= 40.

The problem of doing a morphological analysis can be seen as one o f choosing
suitable values of K for the partitionmg of a region like Fig. 1 into subregions. A
general method for achieving such a partitioning may be based upon two observa-
tions. First, we note that whatever criterion i s used for establishing the boundary
o f a region considered as figure should also be used for establishing the boundary
of a region considered as ground. That is, the objects and their background should
be treated uniformly by such a partltioning method. Secondly, we note that the
boundaries of a region may be variously defined according to the degree o f hetero -
geneity attributed to that region. But whereas two regions of heterogeneity K may
be disjoint, they may nevertheless constitute parts of a single region of heterogeneity
K + 1. While there i s no obvious criterion for generally requiring regions to have a
given heterogeneity, i tIS possible to allow regions to be defined in such a way that
they are defined by some maximum heterogeneity, such that any greater hetero -
geneity would lead to disjoint regions coalescing into single regions.

I t can be seen that we have implicitly specified an algorithm for obtaining a set
of different partitions of a brightness function like Fig. 1. The first partitioning is
into all blobs of heterogeneity 0, the second partitioning i s into all blobs of hetero -
geneity 1, etc. Furthermore, these partitionings induce a partial ordering represented
by a tree structure on the original brightness function in a certain natural way.
The nodes of such a tree are the blobs of heterogeneity K f o r each value o f Kranging
from 0 to some maximum, the maximum being the value of K for which the whole
of Fig. 1 constitutes a single blob o f heterogeneity K. Whenever two blobs of hetero-
geneity K coalesce into a single blob of heterogeneity K+ 1, we represent this by
having the node for the single blob cover the node for the two constituent blobs in
the tree. Figure 4 i s an example o f how such a tree structure might appear. Blobs
A, B, C, D, Eare blobs o f heterogeneity 0; blobs G, Land Jare blobs of heterogeneity
4, etc. Blobs HandI,which are disjoint at K = 3, coalesce into a single blob, L,
at K= 4.

Such a complete morphological decomposition o f an image i s unnecessarily
elaborate and may generally be reduced significantly if we notice (in the example)
that the sequence o f blobs from A through G in Fig. 4 provides very little additional
information beyond that given by either A or G. We may thus consider reducing
such a tree as the one in Fig. 4 to a considerably simpler one as shown in Fig. 5.

We should note that for real images the (homomorphic) tree reduction involved
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FIG. 4. The tree structure of a complete morphological decomposition of an image.

in going from Fig. 4 to Fig. 5 will nevertheless usually produce very large trees.
Figure 6 i s an example of such a reduced tree obtained from the image in Fig. 1
using the contrast function in Fig. 3. The tree i s represented in Fig. 6 as a set of
quintuples. For each quintuple the first pair of numbers represents the row and
column coordinates of the upper left-hand corner of a blob, the number of points
in which i s given by the third number and whose degree of heterogeneity i s given by

K
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C

K = 7

K:6

K = 5

K = 4

n = 3

K = O

Fxo. 5. A reduced tree structure for a morphological decomposition of an image.
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the fourth number. Position in the tree i s indicated by indentation in Fig. 6. Part
of the structure given in Fig. 6 i s shown in conventional tree form in Fig. 7, where

FIG. 6. Complete morphological decomposition of the image given by Fig. 1 with the contrast
function in Fig. 3.

we see the whole original image i s partitioned into two component blobs of hetero -
geneity 48, the f i rs t being located at coordinates 1, 1 and having an area of 1070, the
second at coordinates 19, 12 with an area of 41. Each o f these blobs, in turn, is
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FIG. 7. Top of tree for reduced structure inFig. 6.

partitioned into other subblobs where the heterogeneity of those blobs i s shown in
Fig. 7. Blob (8,30, 131,4Q) inFig. 7 i s the right-hand blob of Fig. 9 and blob (19, 12,
41,48) in Fig. 7 i s the left-hand blob inFig. 10.

B. Output Form of Morphological Analysis

The type of structure presented inFigs. 6 and 7, which represent the decomposition
of the original image in Fig. 1, actually consists o f a whole class o f different de-
compositions. To specify any particular decomposition, we must choose a set of
nodes which constitutes a cover o f the top node of the tree. Thus, in Fig. 5 such a
cover would consist o f the nodes K and M or K and J,I,H, G, or K, J, L, G, etc.

By selecting a lower set of nodes, as for example, Z andHrather thanL in Fig. 4,
we thereby choose a more precise form of decomposition o f the image structure
than if we were to choose the higher node. The sets of lower nodes represent a close
approximation to the notion of a refinement of a partitioning. Thus, the partition

Dirjolnt blobs
far small wlndow

Small window

Slnqle blob

I 1-Large windo'#

FIG. 8. A single blob at large window sizes which becomes multiple blobs at small window sizes.
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into K, J, L, and G represents a refinement of the partitioning into K and M in
Fig. 4. Actually this fails to be precisely the case o f a refinement o f a partitioning,
insofar as the total area of blobs1,L and G i s slightly less than that of blob M.
The difference in the areas or number of points constituting these two sets o f blobs
i s attributable to the points constituting the boundaries of the blobs. But, never-
theless, any such cover o f the top node of the tree constitutes aproper morphologic

decomposition of the whole image. The question o f the choice of such a particular
cover must be deferred to higher stages in the structural analysis. These stages are
the ones that make use of syntactic and even semantic information about the
structure of the image.

There i s an interesting interpretation that may be given to the process of choosing
covers for a morphological decomposition tree. From the standpoint of morpho-
logical analysis, any cover i s acceptable, but choosing a more refined cover, i.e.,
one using lower nodes in the tree, can be understood as the analog of the process
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of more precise measurement in more conventional types of measurement systems.
Here we are dealing with images and their structure. The proper representation o f
an image’s structure appears as a more complex object than does the representation
o f other types of scientific quantities which lend themselves more naturally to
numerical measurement. In numerical measurement, when we proceed from a gross
determination to a more refined determination o f a quantity, we represent this

more refined determination by a number having more precision in i t s representation
(more figures o f significance). By analogy, when we describe the constituent structure
of an image, we may elect to give more precise specification o f this structure by
choosing a more refined cover for the constituent structure tree.

I t i s useful to recognize that this process of increasing precision o f representation
of an image has many of the attributes of the more customary process o f increasing
the precision of specification of any other type of measurement. One would hope
that as the science o f mechanical determination of image structure progresses,
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some of the attributes o f more conventional precise measurement will be seen to
play an important role. What we are suggesting here i s that a famous remark by
Lord Kelvin (5) regarding numerical precision and i t s effects on scientific measure -
ment be extended to include data structures more complex than the real number
system for which mathematical operations are just as available, though less com-
monly understood, than they are for numerical measurements.

C. Generalizations of the Algorithm

The above discussion and the example presented are both intended to illustrate
a particular instance of a class of decomposition algorithms. Several arbitrary
choices have been made in the example above for purposes of clarity. We now wish
to describe generalizations of this algorithm which yield slightly different decom-
positions of images. These generalizations have some consequences with respect to
the complexity of processing on a computer, and may have consequences with
respect to the usefulness o f such an algorithm as a model for visual recognition
and the psychophysics of visual perception.

Our first generalization is with respect to the source o f numercial data to be
processed. We suggested above that the numbers in the initial array represent some
brightness function. The methods whereby such a brightness function may be
assigned to a naturally occurring image are many and varied. A good survey of the
psychophysical bases for assigning brightness functions as well as contrast measures,
rather different from the one used above, can be found in the review by Brown and
Mueller (6).

We have assumed above that the discrete numerical values associated with what-
ever brightness function has been chosen are assigned to elements in some discrete
tessellation of the plane. For purposes of use in a decomposition algorithm, some
such tessellation i s required, but the implied rectangular one used above i s not the
only one which may conveniently be chosen. Others include a triangular tessellation
in equilateral triangles which fill the plane, and another, which also leads to a simple
scanner implementation, i s a tessellation into regular hexagons. Of course, there is
no necessary requirement that the tessellation be a regular one. A model in which
the spacing of resolution elements varies as a function of position in the plane i s
also one that might be considered. Along with the nature o f the tessellation chosen,
there i s also the matter of choosing a suitable topology, particularly that aspect
concerned with the notion of adjacency. In the algorithm described above, we have
implicitly assumed a connectivity in the plane such that an element i s considered
adjacent to eight neighboring elements. Other choices are possible; obviously the
four neighbor choices and others which assume different degrees o f connectivity
for points located at different distances from a given element.

In the operation of the decomposition algorithm the notion of the degree of
heterogeneity occurs, and we chose above a rather arbitrary resolution for this
heterogeneity measure in terms o f minimally resolvable units in the contrast func-
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tion. These minimally resolvable units (more usually referred to as just noticeable
differences) may be chosen in many different ways. Again the reader i s referred to
the psychophysics literature.

Another rather subtle generalization in our algorithm can be obtained if one looks
more carefully at the two related notions o f precision of representation and resolu-
tion of measurement. W e have suggested above that the counterpart of ordinary
numerical precision occurs in the choice of depth in a covering tree used to represent
an image decomposition. The number of disjoint blobs that occur in such a cover
is, in turn, a consequence of a choice that has been arbitrarily made in the above
example. This choice involves the size of the “window” used for measuring dis-
jointedness o f two blobs. When two disjoint blobs come together, it i s this coalescence
that manifests i tse l f in the appearance o f those blobs as elements in the tree rep-
resentation. Furthermore, if two regions in the original image are connected to
each other by no shorter path than one which involves long distances in the original
image, these two such regions will still be parts o f the same blob. Consider a case
such as that of Fig. 8. Here we see that points x and y are parts o f the same blob not
because there is any direct connection between x andy, but only because of a remote
connection between points a, b, c, d, etc. One might imagine the use of a small
viewing window, such that superimposing this window upon the original blob, in
Fig. 8, will inall cases place points nand y inblobs disjoint within the small window.
For blobs that are not convex, as in Fig. 8, a suitable choice o f small window can
cause a single blob to be treated as two or more separate blobs.

The window implicitly used in the above example, of course, i s a window larger
than the whole image. This corresponds to the use o f a measuring tool whose
resolution is very gross. Consequently, regions where certain kinds of fine structure
“information” in the original image appear will not be resolved by so gross a
measuring instrument. The use o f a smaller window will enable the resolution o f
such information containing regions. The consequence of this observation i s that
the choice of a suitable size window for measuring connectedness of points or
connectiveness o f regions in an original image determines the resolution with
which the image can be decomposed into i t s constituent parts. Then the depth in
the tree, with which the image i s partitioned, represents precision of the image’s
description. One would expect that good measurement practice dictates the use o f
high precision in representation only in the cases where high resolution i s available
in the measuring instrument. Thus, with small windows we choose covers for the
representing tree which are far down in the tree. For large windows we choose
higher covers nearer the top node of the tree.

All of the above described modifications and generalizations of the algorithm
we have discussed lead to slightly different kinds of decompositions. The notion
that remains basic, however, i s that of taking an image and decomposing it in a
variety o f different ways into constituent parts, based on information which i s
intrinsic to the image. The tests for validity o f such a decomposition are twofold:
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first, whether such a morphological decomposition can profitably be used at a
higher syntactic level where knowledge of the structure of the information source
i s imposed from outside, and second, whether certain practical applications can be
achieved using decomposition to detect subobjects in an image, and to be able to
resynthesize the image from such a decomposition.
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