
ARCHITECTING A SIMULATION AND DEVELOPMENT
ENVIRONMENT FOR MULTI-ROBOT TEAMS

Stephen Balakirsky, Elena Messina, James Albus
National Institute of Standards and Technology
Intelligent Systems Division
Gaithersburg, MD 20899-8230
stephen@cme.nist.gov, elena.messina@nist.gov, albus@cme.nist.gov

Abstract
Collaborative multi-robot teams have great potential to add capabilities and

minimize risk within the military domain. The composition of these teams may
range from multiple copies of the same model to heterogeneous ground, air, and
water vehicles operating in concert. The novel and extremely complex nature of
these autonomous systems requires a large up-front investment in design, mod-
eling, simulation, and experimentation. Myriad design decisions must be made
regarding the control architecture and general information �ow for commands
and status exchanged between robots and humans and among robot teams. In
addition, decisions must be made on how to best assemble and deploy these
teams. To assist in making these design decisions, we are developing an inte-
grated environment that we hope will greatly facilitate the design, development,
and understanding of how to con�gure and use multi-robot teams for military
applications and to accelerate the robots' deployment.

Keywords:
simulation, architectures, 4-D/RCS, autonomous vehicles

1. Introduction
Military operations are being redesigned to incorporate robotic vehicles. The

recent successful missions �own by Predator and Global Hawk in Afghanistan
have increased the visibility of, and con�dence in, unmanned vehicles. The
United States Army is transforming its combat forces to be lighter, more agile,
and network centric. The Future Combat Systems (FCS) Program, run out of the
Defense Advanced Research Projects Agency (DARPA) and jointly conducted
with the U. S. Army will distribute the sensing, weapon delivery, and command
and control elements (Gourley, 2000). A single manned vehicle will control a

1

drussell
Proceedings of the International Workshop on Multi Robot Systems, Washington, DC, March 18 - 20, 2002.



2

series of robotic weapons and sensors. The Army Research Laboratory's Demo
III Program culminated in November 2001 with a demonstration of robotic scout
vehicles performing missions in concert with soldiers (Murphy et al., 2002).
Key technologies � both hardware and software � are becoming available to be
exploited by autonomous vehicles.

Despite the early successes of unmanned aerial vehicles and of Demo III,
there is still a tremendous amount of research, design, development, and in-
tegration work to be done. There are several layers of dif�culty that must be
tackled. First of all, building and validating software that works in concert with
complex hardware and that achieves robust autonomy is a major challenge. In-
tegration of multiple vehicles that cooperatively execute a mission is another
level of dif�culty. Cooperation among heterogeneous vehicles (ground, air,
water) is yet a third level of challenge. Besides the technological challenges,
there exists the need for the military doctrine to evolve to be able to fully exploit
these new assets. These challenges cannot wait until there are live experiments
with the new autonomous platforms. Not only would it be unrealistically costly,
but it would delay evaluation and design decisions until it is too late to revoke
them. In order to meet the revolutionary needs of the new armed forces, simu-
lation facilities that are integrated with software development capabilities will
be crucial elements at every stage of this process.

2. An Architecture for Intelligent Autonomous Vehicles
One of the key decisions to be made in building any kind of complex system is

how to organize the hardware and software. The Demo III Program and some of
the teams competing for the Future Combat Systems contract have selected the
4-D/RCS reference architecture for their autonomous vehicles (Albus, 1999).
The 4-D/RCS architecture consists of a hierarchy of computational nodes, each
of which contains the same elements. Based on control theory principles, 4-
D/RCS partitions the problem of control into four basic elements that together
comprise a computational node: behavior generation (BG), sensory processing
(SP), world modeling (WM), and value judgement (VJ). Figure 1 shows the
4D/RCS control node and the connections between its constituent components.
Figure 2 shows a sample 4-D/RCS hierarchy for military scout vehicles.

3. Requirements for a Simulation, Modeling, and
Development Environment

An architecture is a �rst step towards guiding and facilitating the construction
of complex multi-vehicle autonomous systems. Tools that help automate the
software development are another important element. NIST has been working
with industry, other government agencies, and academia to investigate tools
to facilitate construction of the types of large and complex systems needed by



Simulation and Development Environment 3

Figure 1. Model for RCS Control Node.

Figure 2. 4-D/RCS Reference Model Architecture for an individual vehicle.



4

Demo III and FCS. We are developing a large-scale simulation environment
that will enable us, along with others, to design the control hierarchy, populate
the control nodes, run the system in simulation, debug it, and generate code
for the target host. The development and simulation environments are closely
tied to the eventual deployment platforms and are intended to be able to operate
with a combination of real and simulated entities. The ability to enable human-
in-the loop testing and execution is also crucial, given the novel aspects of
human-robot interactions.

A high-level list of the requirements for such a development and simulation
environment has been developed to help guide its creation. The requirements
are as follows:

• Full support of 4-D/RCS architecture
• Graphical user interface for building, testing, debugging the system under

development
• Reuse support:

− Architecture elements
− Component templates
− Algorithms
− Code
− Subsystems

• Intuitive visualizations of the control system to support design and use
and provide an understanding of what the system is doing and why, and
what it plans to do next. Examples of visualizations include:
− Display of control hierarchy as it executes, including commands

�owing down and status �owing up
− Ability to �zoom in� on a particular node and view states as the

system executes
− Ability to view world models within the system

• Execution controls, including
• Single step through execution
• Breakpoints and watch windows
• Logging

• Simulation infrastructure supporting realistic execution scenarios, visu-
alization, and debugging/evaluation experiments. This includes
− Population of the environment external to the vehicle with relevant

features (such as roads, other pieces of equipment, humans, etc.)
− Dynamic environment (with moving entities)

• Modi�cation capabilities so that the designer and user can perform �what
if� experiments. The tools should allow interactive and intuitive modi�-



Simulation and Development Environment 5

Figure 3. Hierarchy of simulators.

cation of situations in the environment or within the system. The modi-
�cation capabilities should work seamlessly with the visualization, sim-
ulation, and execution features. Examples of types of modi�cations that
should be allowed include:

− Changing world model data
− Importing datasets that represent what the system's sensors would

receive
− Changing environmental conditions

4. Proposed System of Systems
We are seeking to create an integrated environment that provides capabili-

ties typically associated with software development tools and those associated
with simulation environments. Whereas several commercial tools exist to help
design and construct software, these tool-sets are disconnected from rich exe-
cution environments (real or simulated). There also exist many sophisticated
simulation systems, but they work at either a very broad scale at low reso-
lution, or at high resolution. What we are attempting is a totally coherent
environment for designing, developing, and validating a team of vehicles. The
software design development support aspects include being able to work in a
graphical environment to sketch the control hierarchy, bring up partially-�lled
in 4-D/RCS control nodes, easily create connections between nodes (or compo-
nents within them), and automatically generate executable code. The software
support will also encompass capabilities typically found under run-time debug
tools, including single stepping and setting break points.

The software development tools will segue smoothly into the simulation
environment. Under this concept, a virtual world is being created that brings



6

together existing multi-platform and single platform simulation systems into a
system of systems. Through the use of well de�ned interfaces that are supported
on a wide variety of computer platforms, the simulator's internal command
and data �ows will be able to be interrupted and modi�ed. This will allow
researchers to �plug-in� their individual technology components and override
the default methods that the simulators normally employ. Through the use
of these standard interfaces, we are attempting to provide researchers with a
low cost technique for evaluating performance changes due to their algorithm's
implementation. As shown in Figure 3, interfaces will be provided that range
through the entire spectrum of the 4-D/RCS hierarchy; from a low-�delity multi-
platform con�guration to a high-�delity single platform con�guration, to the
ability to add real platforms into the virtual world. In addition, global variable
resolution database resources will be offered. These include a terrain database
that contains elevation data, a feature database that contains vector data for
roads, buildings, rivers, etc., and an entity database that contains information
on all of the platforms participating in the simulation. Filters will be available to
tune the database outputs to the speci�c needs of each algorithm. For example,
a low-level mobility planner may require a 40 cm cell size in an elevation array
while a high-level planner may require a 40 m cell size. In addition to serving
a priori data, these databases will be able to be modi�ed in real-time. Any
modi�cations made to the databases will be viewable by all participants (both
real and virtual) in the exercise.

At the top of the hierarchy, a low-�delity, long temporal and spatial duration,
multi-platform simulator will be used. As designed, this class of simulator
is capable of simulating the interaction, coordination, and movement of large
groups of platforms. While these simulators do simulate down to the level of the
individual platforms moving across the terrain, the terrain and mobility models
are typically low resolution. Therefore, this class of simulator is best utilized
in developing algorithms for group behaviors where precise platform mobility
and sensing modeling is beyond the scope of the experiment. A second class of
simulator will be employed for situations where precise modeling is required.
These simulators will share interfaces with the low-�delity simulator, and in fact
may take commands from the low-�delity simulators in order to precisely model
one or more of the platforms involved in a particular exercise. The high-�delity
simulators will be able to read the shared databases and construct simulated
sensor output (or pass real sensor output) that may be used by external sensor
processing algorithms. Complex, dynamically correct platform motion models
and high resolution terrain information will also be available at this level.

Interfaces will be inserted into each simulator that will enable the export and
import of both world model and behavior generation information at each level of
the 4-D/RCS hierarchy. This will enable researchers to implement a particular
group behavior or algorithm at a particular level of 4-D/RCS. For example, a



Simulation and Development Environment 7

cooperative search algorithm could be implemented at the �section� level of
4-D/RCS. The algorithm would receive its command input from the platoon
level of the low-�delity simulator and construct a plan based on information
read from the terrain, entity, and feature databases. The planned course of
action (individual plans for several platforms) would then be passed back into
the simulator for execution. In this particular case, the plans could be passed
either back to the low-�delity simulator or to the high-�delity simulator. In
addition, one or more of the platform's plans could be passed to real systems.
As designed, the source and destination of these plans and the data utilized to
construct them is transparent to the planning system and totally controlled by
the user. This will facilitate an environment where a researcher can simulate as
many or as few subsystems and levels as desired.

5. Current Implementation
While the entire software development and simulation system has not yet

been implemented, progress has been made on developing prototypes and de-
signs for the overall system. A simulation testbed system has been built with
emphasis placed on developing interfaces into the shared databases and into a
low-�delity simulator. These interfaces will allow our individual real robots
to interact in simulated group behaviors, and our group behavior planning sys-
tems to plan for mixed groups of simulated/real robots. For the initial system,
we have chosen the US Army STRICOM's OneSAF Testbed Baseline1 for
both the low-�delity simulation and shared database server. We have worked
closely with the Army Research Laboratory and Science and Engineering Ser-
vices Inc. to install the standard interfaces. All of the interfaces communicate
over NIST's NML communication channels (Shackleford et al., 2000) which
provide a multi-platform solution to inter-process communication.

Distributed, shared databases are implemented as part of the standard imple-
mentation of OneSAF. We have added interfaces into the simulation system that
allow for simple outside access of this information. These interfaces include
hooks into the terrain elevation database, feature database, and entity database.
For the terrain elevation database, both all-knowing (what is the elevation in
this area, to this resolution) and modeled (what is the terrain map as modeled
by vehicle x with its sensors) are available. Feature vector data is currently
available only on an all-knowing basis. For entity data, �ltered information (all
friendly, enemy, detected, etc.) reports are available as well as event detections.
Events currently supported include line crossings and anticipated line crossings
with more to be added shortly.

1The identi�cation of certain commercial products does not imply recommendation or endorsement by NIST.



8

In addition to the database access interfaces, we are able to interrupt the stan-
dard OneSAF command �ow to inject our own plans. This has been demon-
strated by having OneSAF section level plans sent out over an NML channel to
a stand-alone vehicle level planner. The results of the vehicle level planner can
then be executed on real robotic hardware, sent to a high-�delity simulator, or
sent back into the OneSAF simulator for execution.

Work is continuing on developing further interfaces. These new interfaces
will include the ability for a real robotic platform to in�uence OneSAF databases
by continuously updating their own location as well as adding detected features
and entities. In addition, further breaks in the OneSAF command �ow will
be implemented to allow for planning systems that compute group plans to be
implemented and evaluated.

In terms of the software development support, we have been experimenting
with various representation techniques and development tools. These range
from commercial packages, such as Real-Time Innovation Incorporated's Con-
trolShell to novel formal languages, such as Stanford's Rapide (Messina et al.,
1999). Recent work has focused on the use of the Uni�ed Modeling Lan-
guage to support 4-D/RCS control system development (Huang et al., 2001).
A commercial development and execution tool for building simpler versions
of RCS-style controllers has been developed by a small company (Advanced
Technology and Research), but it is targeted at manufacturing systems that have
minimal sensing requirements. We are currently working with outside partners
to develop a prototype control system development tool that permits the types
of visualizations, modi�cations, and execution controls as were listed above.

References
Albus, J. (1999). 4-D/RCS reference model architecture for unmanned ground vehicles. In Ger-

hart, G., Gunderson, R., and Shoemaker, C., editors, Proceedings of the SPIE AeroSense
Session on Unmanned Ground Vehicle Technology, volume 3693, pages 11�20, Orlando, FL

Gourley, S. (2000) Future combat systems: A revolutionary approach to combat victoryArmy
Huang, H., Messina, E., Scott, H., Albus, J., Proctor, F., and Shackleford, W. (2001) Open system

architecture for real-time control using an UML-based approach. InProceedings of the 1st
ICSE Workshop on Describing Software Architecture with UML

Messina, E., Dabrowski, C., Huang, H., and Horst, J. (1999) Representation of the rcs reference
model architecture using an architectural description language. InLecture Notes in Computer
Science EUROCAST 99, volume 1798 ofLecture Notes in Computer Science. Springer Verlag

Murphy, K., Abrams,M., Balakirsky, S., Chang, T., Lacaze, A., and Legowik, S. (2002) Intelligent
Control For Off-Road Driving. InProceedings of the First International NAISO Congress on
Autonomous Intelligent Systems

Shackleford, W. P., Proctor, F. M., and Michaloski, J. L. (2000) The neutral message language:
A model and method for message passing in heterogeneous environments. InProceedings of
the 2000 World Automation Conference




