
1

Distributed Testing of a
Device-Level Interface Specification for a

Metrology System
John Horst, Thomas Kramer, Keith Stouffer, Joseph Falco,
Hui-Min Huang, Frederick Proctor, and Albert Wavering
National Institute of Standards and Technology (NIST),

Gaithersburg, Maryland, USA.
E-mail: {john.horst, thomas.kramer, keith.stouffer, joseph.falco,

hui-min.huang, frederick.proctor, albert.wavering}@nist.gov

Abstract—A test suite for a key interface within a dimensional
measuring system (coordinate measuring machine or CMM) is pre-
sented. The test suite consists of test procedures, test definitions,
and various testing utilities. A real-time, distributed test utilizing
the test suite has been performed and is described.

Keywords— conformance test, coordinate measuring machine,
distributed testing, interface specifications, metrology, object-
oriented, real-time systems, test suite, validation test

I. Introduction

Software testing has become critical to software qual-
ity. However, interface specification development ef-
forts often treat testing as non-essential. We argue for
the early and rigorous application of testing to speci-
fication development and implementation, prior to the
standardization process. The goal of interface specifica-
tion development is to create a widely accepted common
(or neutral) language at the interface, and the goal of the
common language is system interoperability. Following
this introduction, therefore, we will briefly describe the
interoperability problem and why a common language
is desirable.

We will be looking at the following systems on ei-
ther side of a two-way interface: application software
on one side and a real-time logic and motion control
device on the other. The device is a coordinate measur-
ing machine (CMM) consisting of device control software
(for logic and motion control), motion control hardware,
sensors, and actuators. The application software per-
forms many operations including interface to the CMM
operator, interpreting inspection programs in higher
level languages, analyzing sensor data, and estimating
high level features from low-level sensed data.

II. The Interoperability Problem

Automated systems continue to be created for in-
creasingly complex tasks in a variety of industries. As
these new systems are implemented, they must be in-
tegrated with existing systems. Furthermore, in a com-
petitive market, many systems perform essentially the
same task. These competing systems often do not speak
the same language either at the input or at the output.

Even given the example of a simple two-way interface
(see Figure 1), industry is encountering costly problems.
The situation often requires the creation and mainte-
nance of up to 2mn interpreters (see Figure 2), for m
systems of one type and n of another.

System
A

System
BInterface

Fig. 1. A simple two-way interface between two separate systems

System
A1

System
A2

System
A3

System
Am

System
B1

System
B2

System
B3

System
Bn

...

...

Fig. 2. The same simple interface of Figure 1 with proliferation of
up to 2mn interpreters required by m different types of system
A and n different types of system B. The systems may consist of
either hardware or software or both.

System interoperability can be defined as a measure of
the ability of multiple systems (all performing roughly
the same task) to communicate efficiently and accu-
rately with another set of systems all performing a dif-
ferent task. The failure to achieve interoperability is an
ever present and serious barrier to increased productiv-
ity and efficiency in industry.

It is perhaps more instructive to look at the interop-
erability problem from the perspective of a single ven-
dor of an "A" or "B" type system. The m "A" vendors
each have up to 2n interface language translators to
create and maintain, and the n "B" vendors each have
up to 2m interface language translators to create and

drussell
NISTIR 6851, National Institute of Standards and Technology, Gaithersburg, MD, January 2002

2

maintain. The total number of interpreters is 2mn,
since only 2 translators total are needed for each of
the mn interfaces. One must convert from proprietary
language Ai, (i = 1,2, . . . ,m) to proprietary language
Bj, (j = 1,2, . . . , n) and vice-versa. This is in contrast to
the situation where we have a common language agreed
to by all vendors. The m "A" vendors each have only
2 interface language translators to create and maintain,
and the n "B" vendors also each have 2 interface lan-
guage translators to create and maintain, or a total of
2(m+n) (see Figure 3). Each vendor need only convert
from its native language to the common and vice-versa.
Furthermore, the vendor has little input into the nature
of each proprietary language, whereas, if there is a com-
mon language, under ideal conditions, every vendor will
be able to influence the nature of the common language.

System
A1

System
A2

System
A3

System
Am

System
B1

System
B2

System
B3

System
Bn

...

...

Common
Language

Fig. 3. The simple interface of Figure 1 with proliferation of only
2(m+n) interpreters required by all different types of system A
and system B due to the agreement on a single common language.
If the systems internally employ the same common language,
even fewer interpreters are required.

The personal computer (PC) domain reveals this prob-
lem very clearly. For example, with different types of
central processing units (CPU) and different types of
printers, special drivers have to be written and main-
tained in order to allow different CPUs to interface with
various printers and vice-versa. This is a substantial
drain on resources and furthermore does not success-
fully solve the interoperability problem. Slowly updated
and inaccurate drivers create a quality and efficiency
problem.

Potential resolution of the interoperability problem
comes in three forms, 1) enforce the use of only one
vendor or 2) develop or select a single new language that
will be used by all or 3) translate proprietary languages
into a single new language, but employing information
modelling languages and accompanying tools to facili-
tate language development. The first type of resolution
to the problem, is illustrated whenever an organization
mandates the use of a word processor from a single ven-
dor. An example of the second is when certain interna-
tional conference organizers agree to use English as the
medium for communication, an example of "selecting"
an existing language. More challenging is to develop

a new language for an interface. Examples of informa-
tion modelling languages which can be used to develop a
new common language are Extended Markup Language
(XML), Interface Definition Language (IDL) [1], and EX-
PRESS [2]. These will effectively eliminate the need for
the definition of syntax in the specification, since syntax
is already part of the modelling language. Neither the
first nor the third type of resolution to the interoper-
ability problem has been chosen by the industry, so the
second attempt at resolution is assumed in this paper.

III. Background

The CMM has become ubiquitous in manufacturing,
particularly in the automotive and aerospace industries,
in part due to the importance of accurate dimensional
measurement to manufacturing quality. The general
application domain of the CMM is called "dimensional
metrology," which is simply the science and technology
of accurately measuring selected geometrical features
on a physical object and making comparison with re-
quired tolerances.

The National Institute of Standards and Technology
(NIST) helps facilitate solutions to system interoperabil-
ity problems of industry. About two years ago, it was
widely acknowledged that a common language solution
to the interoperability problem for the CMM device in-
terface was of high priority. Several automobile and
aerospace manufacturers (users) strongly encouraged
some CMM hardware and software manufacturers (ven-
dors) to create such a language for the device inter-
face. Several proprietary languages had been developed
and used on single-vendor equipment, so the seman-
tical knowledge and language development experience
exists. However, standards development and specifica-
tion (language) testing were weak links. NIST was asked
to take a leadership role in these latter domains.

Two common (non-proprietary) device specifications1

have since emerged and are being examined [3][4], the
"CMM-driver" and "I++" specifications, respectively. The
two specifications cover exactly the same logical inter-
face and, furthermore, are mostly similar in the kinds of
commands and responses chosen for the interface [5].
It now appears that the two specification development
teams have agreed to work together to create a single
specification using the I++ specification as the baseline.
However, up until now, NIST has primarily been work-
ing with those responsible for the CMM-driver specifica-
tion, developing and implementing testing procedures
and tools. This document describes what those proce-
dures and tools are, what tasks they perform, and what
remaining work needs to be done. NIST has now been
asked by the industry to apply the same concepts to and
develop similar tools for the I++ baseline specification
and we are just beginning this process.

1A specification is a standard under development prior to formal
acceptance by a broad community of interested parties.

3

IV. CMM Device-Level Specifications

The CMM device-level interface specifications cur-
rently under development [3][4] consist of require-
ments for communications protocol, software execution
paradigm, and the syntax and semantics for command
and response across the interface. For example, com-
munications protocol might be TCP/IP or direct serial
link. Software execution paradigms might include cyclic
execution of commands and responses, preemptive ex-
ecution, or a combination of both. Syntax may require
ASCII text format and the type and ordering of allowable
characters. Semantics will specify the precise meaning
of commands and responses. This includes definition
of the allowable error types and what each error type
means.

The audience of the specifications is the technical im-
plementors who will be creating interpreters for appli-
cation software or device software that either convert
from the native language to the common or vice-versa.
It is expected that users will not be involved in many
of the details of the specification. However, users may
need to interact with the CMM system directly, not just
through the application software, and the interface un-
der consideration is between the application software
and the CMM. However, functional requirements as well
as requirements about implementation are essential in-
puts from the users.

There are a multitude of decisions to be made on func-
tionality alone. One of the key issues, for example, is
whether to allow uncompensated measurement point
data on the interface. The advantage of disallowing un-
compensated data on the interface is that responsibility
for temperature and thermal compensation of the data
lies squarely with the CMM vendor. Also, the CMM ven-
dor is most often the one that can best perform such
compensations. The advantage of allowing uncompen-
sated data on the interface is that 3rd party applica-
tion software can now perform compensation, allowing
a broader selection of solutions.

A particularly controversial issue has been whether
to allow raw (uncalibrated) probe sensor data on the in-
terface. There are more 3rd party application software
packages that perform probe qualification (or probe cal-
ibration) than there are 3rd party application software
packages for temperature and thermal compensation.

V. The Need for Testing

A specification may be written so as to be ambiguous
in its meaning; this is particularly true of natural lan-
guage specifications, of which [3] and [4] are instances.
Since an implementor may choose the wrong interpreta-
tion of something in the specification, it is particularly
important that the specification be as unambiguous as
possible. Even a demonstrably unambiguous specifica-
tion is still not enough to make for a high quality specifi-
cation; there needs to be sufficient functionality allowed
in the specification. This leads to the need for validation

testing which will be dealt with later. There also needs
to be some minimization of complexity in the specifi-
cation, and implementation must be kept as simple as
possible, since broad adoption of the specification is es-
sential to interoperability. A high quality specification
is a necessary but not sufficient condition for achieving
the ultimate goal of high quality interoperability; ensur-
ing high quality implementations is the next step toward
that goal.

Even if the natural language specification is unam-
biguous, it can be misinterpreted by an implementor.
Therefore, there must be tests that verify whether the
implementation actually conforms to the specification.
This is called conformance testing and, if done well, is
an important step towards ensuring a high quality im-
plementation.

Several other items are needed to ensure high qual-
ity interoperability. If two implementations conform
to two different conformance levels2, a naive user may
think two implementations are completely interchange-
able because they comply to the same specification.
However, they are not interchangeable, because they
comply to different conformance levels. In this case,
interoperability is not achieved. Therefore, the number
of conformance levels should be kept as small as possi-
ble. Furthermore, even if a specification is a good one,
if there is incomplete agreement and partial acceptance
of the specification, or of the testing procedures and
tools, high quality interoperability will not be achieved.
Finally, it may have taken so long for the specification
to be successfully developed and accepted that, even if
interoperability is achieved, current technologies may
have advanced beyond the technology assumed by the
specification. Clearly, high quality interoperability is a
challenging goal, requiring all the resources of many or-
ganizations; much education on the importance of high
quality and timeliness is vital.

It is important to discover the logical separability of
software elements in an implementation and testing
tools. If we can minimize the elements related to the
proprietary implementation of the specification and use
common software for everything else, we reduce vari-
ability in the testing, which reduces development time
and ultimately increases the chance of high quality in-
teroperability. For example, the command objects and
its queue have to be used by all implementors. If all
testing participants use the same command objects and
command queue for their tests, we reduce the size of
the domain where implementation errors occur. This
makes testing more efficient.

Also, the use of testing allows the application of quan-
tifiable metrics. Quantifiable metrics are needed to mea-
sure the success of each implementation and ultimately
to ensure interoperability. Testing later will cause more
problems (and delays) when the cost to change (after
publication of the specification) is substantially higher.

2A conformance level is a subset of the total specification

4

Ultimately, early and thoughtful testing facilitates a
high quality, timely specification.

The success of an interface specification is dependent
on whether it leads to compatible implementations and
whether the specification has sufficient functionality.
It would be ideal to express the specification in a for-
mal language, like first order logic, as a set of require-
ments, and be able to test all implementations auto-
matically against these requirements. Formal methods
for describing syntax are available, e.g., Backus Naur
Form (BNF)[6], but formal methods for describing se-
mantics (i.e., the meaning of something), are not mature
enough to allow one to define all the semantics needed
for inspection. Furthermore, specifying requirements
and specifications in a formal manner requires that all
implementors be familiar with the formal method, a
daunting learning curve. This being the case, unambigu-
ous natural language specifications coupled with well-
defined testing procedures and testing tools is essential
for the success of a specification.

This is like the situation with formal computer lan-
guages. The language itself is defined in natural lan-
guage, but the compiler acts like a testing tool to check
for inconsistencies and errors in the syntax. However,
semantic errors are not caught by compilers. We would
want a testing procedure to catch all syntax errors and
as many semantic errors as possible.

Syntactical errors can be detected "informally," as
long as the testing tools exhaustively look for and flag
such errors. This is not too hard to do. Much more chal-
lenging is how a testing procedure detects semantic er-
rors. It appears to be impossible to test for all semantic
errors, but some obvious problems can be detected. For
example, if a CMM system responds to a measure point
command without either returning measured points or
an error, we have a semantic problem, even if all syntax
is correct.

VI. NIST Involvement in Testing

NIST’s role in the specification development process
is primarily to develop and maintain testing tools for
use by the industry. NIST’s involvement consists of the
following,

1. develop and maintain the entire testing suite
2. maintain an issues log to keep track of necessary

changes to the specification and the test suite
3. provide a leadership and advisory role in the plan-

ning and conduct of various meetings and specifi-
cation review efforts

4. perform those tests that will be necessary to im-
prove the testing suite

A local testbed will be maintained (see Figure 4). Test
analysis tools may be developed by NIST and some lim-
ited analysis may be done at NIST. This type of involve-
ment by NIST has a long history in the development of
many standards such as Dimensional Measuring Inter-
face Standard (DMIS) [7], XML, and Standard for the Ex-
change of Product Model Data (STEP) [8].

VII. Test Suite

We define the total collection of all testing related en-
tities as the "test suite." The entire test suite consists of
the following elements, most of which are under varying
stages of development at NIST.
• test types

– validation tests
– conformance tests
∗ CMM implementation tests (Figure 5)
∗ application implementation tests (Figure 6)
∗ cross testing (simultaneous testing of two im-

plementations, as shown in Figure 7)
• testing utilities

– test cases
∗ inspection plans
∗ test artifacts

– common test software
∗ application simulator
∗ response simulator

– command and response classes
– analysis tools and metrics

• testing procedure
The test suite ostensibly checks to make sure an im-

plementation is written according to the specification.
However, the test suite is ultimately meant to improve
the specification. As we conduct the tests, we will invari-
ably find that certain aspects of the specification need
adjustment. As we perform and analyze tests, we will
also discover that the test suite itself need to be im-
proved. So, testing is iterative with the implementation
development, the specification, and the test suite itself.

Each of these elements in the test suite will now be
described.

VIII. Types of Tests

Conformance testing is the effort to determine the
level of compliance of implementations of the specifica-
tion to the specification itself, i.e., does the implemen-
tation comply with the specification. Validation test-
ing is the attempt to guarantee that all the functionality
needed on the interface is explicit in the specification.

Validation testing should be done early in the specifi-
cation development process, so that all necessary func-
tionality is being integrated into the specification. In the
same manner, conformance testing should begin early
in the development process and be used to test every
new implementation of the specification. The valida-
tion test will not have such continued use. For a good
overview of conformance testing see [9].

A. Validation Tests

Validation testing is necessary to assure the develop-
ers that all the functionality required by users of the
interface is sufficiently expressible in commands and re-
sponses detailed in the specification. The two specifica-
tions under discussion [3][4] have not, as far as we know,
undergone any formal validation tests for functionality.

5

Response file write

and GUI

CMM
Interface

Legend

Application and CMM testing utilities

NIST's interoperability testing system

Components shared by interoperability and testing utilities systems

Response validate
Response string
parse and load
response class

Command
file read
and GUI Command class

extract and generate
command string

CMM Fine CMM
simulator

Native
controller

Specification to native
 controller language interpreter

CMM
Level

Appli-
cation
Level

Response simulator

Response
rules file

DMIS to specification interpreter

Feature-Based
Inspection and
Control System

(FBICS)
CAD

Socket read Socket write

Command string parse and
load command class

Socket read

Response class extract and
generate response string

Socket write

Fig. 4. NIST CMM Interface Specification Testing System: This graphic breaks down into components both the application and CMM utilities
as well as NIST’s own application system and CMM system. It also reveals the distinct use of object-oriented command and response
classes in the overall testing architecture.

6

Common
test utility

CMM Implementation
Conformance Test

Common
Test Plans

CMM type A CMM type B CMM type C

Test Results
A

Test Results
B

Test Results
C

Analysis
 and

Reporting

Common
Test Artifacts

Common
Test Artifacts

Common
Test Artifacts

At NIST (USA)

At NIST (USA)

At NIST (USA)

At LK
Metrology,
Ltd. (UK)

Real-time,
distributed, and
cross-continental
demonstration

Fig. 5. A graphic describing a set of tests of the conformance to the specification of three CMM implementations of the specification
employing various utilities in the test suite.

7

Common
CMM utility

Trivial CMM

Simulation

Test Results

1

Test Results

2
Test Results

3

Analysis

 and
Reporting

Common

Test Plans

Application
software type 1

Application
software type 2

Application
software type 3

Common

Test Plans
Common

Test Plans

Response
Rules FIle

Application Implementation
Conformance Test

Fig. 6. A graphic describing a set of tests of the conformance to the specification of three application software implementations of the
specification employing various utilities in the test suite.

8

Analysis
 and

Reporting

Common
Test Plans

CMM type A CMM type B CMM type C

Common
Test Artifacts

Common
Test Artifacts

Inspection
Software 1

Inspection
Software 2

Inspection
Software 3

Common
Test Plans

Common
Test Plans

Test
Results

A1

Test
Results

A2

Test
Results

A3

Test
Results

B1

Test
Results

B2

Test
Results

B3

Test
Results

C1

Test
Results

C2

Test
Results

C3

Common
Test Artifacts

Application and CMM Implementation
Interoperability Test

Fig. 7. A graphic describing a set of tests of the level of interoperability of three application software implementations of the specification
with three CMM implementations of the same specification.

9

Functionality "coverage" has been accomplished infor-
mally (as thought experiments).

B. Conformance Tests

A useful family of conformance tests for the specifica-
tion might consist of three classes of tests. The first two
are conformance tests and the last is an interoperability
test.

1) A suite of test files containing specification compli-
ant strings are placed on a socket by the common appli-
cation utility (see Section X-A.3) and sent to a CMM sim-
ulator or a real CMM that has an implementation of the
specification. The test will automatically (or manually)
compare the real output to the expected output and log
the results of this comparison for analysis. The test files
will command the CMM to perform various inspection
tasks on a common test artifact. Test files include er-
roneous commands to test for proper response to such
inputs. This is done for n CMM systems. Figure 5 gives
an example of this type of test. The thick arrows in
the figure correspond to a real-time, distributed, cross-
continental test that was performed on July 13, 2001 as
described in Section XIII.

2) A suite of test response files are generated for use
by the (common) CMM utility software (see Section X-
A.4). The response files will include a variety of rules
for producing various kinds of responses depending on
the input received by the CMM utility. The rules will
look at the commands, command sequence, and ran-
dom events to determine the appropriate response for
each test. The response files will contain rules for pro-
ducing legal and illegal responses for both semantics
and syntax. Response files coupled with the CMM utility
will be employed with all m application software pack-
ages. Figure 6 gives an example of this type of test.
High level test inspection plans may be used but may
not be necessary or even helpful. The CMM utility will
automatically (or manually) compare the real output of
the application software (subsequent commands) to the
expected output and log the results of this comparison
for analysis. The goal in testing application implemen-
tations is to minimize (or avoid altogether) any required
testing modules in the application software.

3) A suite of test files consisting of high level inspec-
tion plans are input to an implementation of the specifi-
cation by an application software package that performs
inspection plan execution and sends it to a CMM simu-
lator or a real CMM that has an implementation of the
specification. Figure 7 gives an example of this type of
test. The output of the application software will also be
sent into the common receiver utility, and comparisons
and results will be logged for analysis. The test files
(again including errors) will command the CMM to per-
form various inspection tasks on a common test artifact.
This test will be repeated for the mn combinations of
m inspection plan execution software packages and n
CMM systems. An analysis utility will compare the real
output (subsequent commands) of the high level inspec-

tion program to the expected output and log the results
of this comparison for analysis.

The goal of performing these tests is to verify the cor-
rectness of implementations, produce a complete and
unambiguous specification, and facilitate interoperabil-
ity.

IX. NIST Testbed

In order to develop and thoroughly test all elements of
the test suite, it is necessary to have a testbed containing
whatever is needed to perform all the types of validation
and conformance tests (presented in Section VIII) for
at least one application software system and one CMM
system. Such a testbed exists at NIST and is shown in
Figure 4. This figure breaks down into components both
the application and CMM utilities as well as NIST’s own
application system and CMM system.

The interoperability testing system at the application
level can allow the user to enter commands to mea-
sure features on a part at a high level. This is the
Feature-Based Inspection Control System (FBICS) [10],
which interacts automatically with Computer-Aided De-
sign (CAD) software to produce DMIS commands at the
output. A DMIS interpreter converts DMIS into device-
level interface commands (and converts responses to
DMIS). Currently these commands and responses are in
NIST’s own native language, but can easily be converted
to whatever device-level specification industry agrees to
support.

The conformance testing system involves both testing
utilities and the interoperability testing system (applica-
tion and CMM levels). For testing the application utility,
testing would be performed with both the response sim-
ulator and the CMM system (both simulated and real).
For testing the CMM utility (the response simulator),
testing would be performed with both the application
utility and NIST’s application software system.

X. Testing Utilities

Successful design and implementation of the valida-
tion and conformance tests requires that there be a mix
of testing utilities to support these tests. The general
idea is to have the same (common) utilities used by ev-
eryone conducting tests. This minimizes variations in
the meaning of the test results. If errors in the test
utilities occur, all testing participants should experi-
ence them and the common testing utilities can be fixed.
Testing utilities include the following:
• test cases

– test artifacts
– inspection plans

• common test software
– application simulator
– response simulator

• analysis tools and metrics
We need to test implementations on both sides of the
interface. Interestingly, such tests are not symmetric.

10

Tests for implementations on the CMM side simply re-
quire a sufficient set of test cases, each consisting of a
test artifact paired with a test inspection plan for that
artifact. However, testing implementations on the ap-
plication side are more subtle and challenging. Essen-
tially what is required is to create a response simula-
tor and some sort of analysis tool that examines the
response of the application software to the response
simulator. The analysis tool must be independent of the
application software and not require any compilation of
the analysis tool into the application software. The re-
sponse simulator must be able to generate both correct
and incorrect responses of sufficient variation to fully
exercise the application’s implementation of the spec-
ification. Furthermore, we may want to require a set
of high level inspection plans to test the application’s
implementation. However, the application software will
invariably translate high level commands into low level
commands uniquely from other implementations, mak-
ing it difficult to do quantitative test and analysis of re-
sults.

We have not created application software testing util-
ities as yet, except that we have a CMM response utility
that parses specification compliant commands and very
roughly simulates CMM-like responses. Simulation in-
volves simply appropriate delays for "move" and "mea-
sure" commands. We now describe tools for testing
CMM implementations of either specification.

A. Test Cases

A single test case consists of a test artifact paired with
a test inspection plan for that artifact. We want these
test cases to provide sufficient coverage of the types of
commands allowed in the specification. We use these
test cases to sufficiently exercise the commands from
the specification as realized in each implementation un-
der test.

A.1 Test Artifacts

Common test artifacts are needed to minimize the
sources of error in the various implementations. We
need to be able to ensure that any problem in execution
of a test inspection plan is not attributable to the test
artifact. If we restrict all tests to specific and common
test artifacts, we stand a better chance of efficiently de-
bugging problems in the various implementations of a
specification and ensuring that the implementation con-
forms to the specification.

Neither specification contains any single command in-
tended to measure a high level feature (like a cylinder).
The commands are at a low level of abstraction, like
"measure a point" or "go to a point." Combinations of
these low level commands are intended for use to mea-
sure high level features, but such aggregation would
form part of a higher level specification such as DMIS.
Therefore, it would seem that features need not be ex-
plicitly defined in any test artifact. However, a variety

of types of measurements and moves of the probe and
head is required to fully exercise either specification.
This argues for a test artifact with a small variety of fea-
tures. Three non-parallel flat surfaces are necessary for
localization of the artifact. A spherical surface is help-
ful to test simultaneous moves of CMM arm and head
and potentially, scanning-type measurements. Cylindri-
cal features at several orientations are also useful to test
discrete moves of the CMM arm and head.

The artifact needs to be quickly available and inexpen-
sive, since we expect many implementors to be involved
in the testing process. Furthermore, it is expected that
certain implementors will get involved at different times
in the testing process, and we want to assure them that
they can begin testing with the others as soon as possi-
ble.

Neither specification requires a highly accurate arti-
fact, since no test of the specifications would require
any unusual accuracy or repeatability of measurements.
This said, the part must be accurate enough. Substantial
inaccuracy in the assembly could have negative conse-
quences. For example, there must be three non-parallel
planes on the artifact, which are used to determine the
artifact coordinate system (three such planes can be
seen in the tall tower in the lower right hand corner of
Figure 8). If these planes vary significantly from artifact
to artifact, a subsequent measurement at the extremity
of the artifact may be so far off that an expensive CMM
probe might be damaged.

These requirements led us to choose an artifact as-
sembled from freely available Lego™3 building block
pieces. This approach meets all the required con-
straints. Example assembly instructions have been gen-
erated for the artifact. CAD model of the assembly is
shown in Figure 8.

In order to avoid grossly inaccurate artifact dimen-
sions, a test artifact with a stiff assembly is required.
The first step is to create a stiff layer forming the foun-
dation for the artifact. The concept of stiffness is also
applied to all subassemblies of the artifact in 8). The
"algorithm" used for both the foundation and all sub-
assemblies is simply to maximize the occurrence of
"crossings" from layer to layer while using the largest
sized piece possible. A crossing is when the outside
boundary edges of the top piece has minimal coinci-
dence with the outside boundary edges of the pieces
below.

A.2 Inspection Plans

Initially, NIST modelled the test artifact in STEP
AP224 [11]4. We used the FBICS [10] to generate DMIS
code to inspect a few features on it. The idea was that if

3Certain commercial products are identified in this paper in order
to specify the experimental procedure adequately. Such identifica-
tion is not intended to imply any judgement by the National Institute
of Standards and Technology concerning these products, nor is it in-
tended to imply that they are necessarily the best available for the
purpose.

4AP stands for Application Profile

11

Fig. 8. CAD model of test artifact

NIST’s DMIS interpreter were modified to generate CMM-
driver compliant commands, the command file could
then be generated automatically. The DMIS interpreter
was only partially so modified because the output file
of device-level inspection commands produced by the
existing interpreter was much more complex than nec-
essary. So it was ultimately easier to write the command
file by hand.

Eventually, we expect that the test inspection plans
will consist of files of both high level (e.g., DMIS) com-
mands and files consisting of lists of specification com-
pliant strings. We must have the latter in order to suc-
cessfully introduce errors into the list of commands. A
subset of these files will simply contain one command
per file. Log files consisting of the correct responses
will exist for each file. The inspection plans should not
require any artifact other than the test artifact(s). We
want the files to test both syntax errors and semantical
errors. The latter would include errors in execution, for
example, the probe being sent to measure a non-existent

point or the probe encountering an obstacle prior to an
approach point in a "measure" command or in a "move"
command.

The file format for files of CMM-driver commands is
based heavily on the file format created by D. Smith of
LK Metrology, Ltd. [3] in the form of a set of sample files
of CMM-driver commands that he used for testing.

Some of the files we wrote, after debugging, were
error-free, some were filled with intentional errors, and
some had only a smattering of intentional errors.

The error-free files included:
1. Some similar to what a list of CMM-driver speci-

fication compliant messages coming from a DMIS
interpreter might look like when DMIS code was be-
ing interpreted for inspecting a simple DMIS feature
such as a cylinder or a plane.

2. Some that simply tested part of the CMM-driver
specification by including all messages of a certain
type (such as all messages for getting and setting
parameter values).

12

Fig. 9. Application utility GUI

The error-filled files were of two types:
1. Sets of command messages with various syntax er-

rors. Files of this sort may contain an error on every
line.

2. Sets of command messages that cause execution
errors. This type of file necessarily contains about
two-thirds correct commands, since most execution
errors can only occur when a particular machine
state has been reached, and it usually takes two or
three correct commands to reach a desired state.

For each command file, we wrote a corresponding
trace file. The trace file is similar to what would be ex-
pected to be in a log file prepared by the application util-
ity. The file consists of pairs of lines, the first being a
line from the corresponding command file, and the sec-
ond being the responses that would be expected from
a system executing the command. A real log file, how-
ever, would have only one response per line and would
not be so nicely ordered, since queueing is used (result-
ing in "done" messages arriving much later). Also, in
the hand-written file, all probed points are at the exact
nominal location, whereas in a real file, it would be sur-

prising if any point were exactly at the nominal location.
We wrote a test program (CMM-driver specification

compliant command file) for the test artifact that was
used in an international demo with LK Metrology, Ltd.
The demo is described in Section XIII. D. Smith of LK
Metrology, Ltd. [3] added substantially to this program.
In connection with the test program we wrote C++ soft-
ware for translating goal points in a CMM-driver specifi-
cation compliant command file. This was needed since
the test artifact might be located on any part of the table
of the CMM doing the inspection.

A.3 Application utility software

An application utility has been fully developed for dis-
tributed testing of the CMM-driver specification defined
in [3]. The application utility is a graphical user inter-
face (GUI)-based, object-oriented program that runs on
a personal computer (PC) platform and was developed
in Visual C++. The commands are sent over a TCP/IP
socket to a specification compliant controller. The con-
troller receives the commands, executes them, and re-
turns the appropriate response back to the application

13

utility via the socket. The application utility creates a
time-stamped log file of commands sent and received
over the socket and performs a validation test on the re-
turned responses to determine if the CMM controller is
compliant with the specification. The application utility
and a small set of test command files (inspection plans)
were delivered to several CMM vendors for evaluation
and testing of their specification compliant controllers.

The user executes the application utility through the
GUI shown in Figure 9. The user first selects which type
of file to run and the name of the file to run. The ap-
plication utility can run either of two types of files, a
low-level command file or a DMIS file. When a DMIS
file is selected, the file is run though an interpreter that
converts the DMIS command to the appropriate speci-
fication compliant low-level command(s). Only a sub-
set of DMIS commands are supported at this time. The
user then selects the name of the log file where the time-
stamped data will be recorded. The user specifies the
host name of the controller. The host name can be en-
tered as either a fully qualified host name or IP address.
The user then specifies the port number. The default
port number is 1294 as specified in [3]. When the user
pushes the "Connect to CMM Controller" button, a non-
blocking TCP/IP socket is created between the applica-
tion utility and the CMM controller on the specified port.
Once the application is connected to the controller, the
user can either enter a command manually, single step
through the program file that was selected, or run the
entire file. A status window displays the current status
of the executing program, including what command was
just sent or received and any error conditions that exist.

A.4 CMM utility software

The CMM utility software will eventually allow an ap-
plication software vendor to test his or her implemen-
tation of either specification. The idea is to have a set
of files consisting of response rules that given a specific
event will output a specific response or sequence of re-
sponses. The event that triggers the response may be a
specific command, or a specific command sequence, or
the tick of a clock, or some random event. The utility
will examine the nature of the subsequent commands
from the application, looking for expected command se-
quences.

We may also want to create high-level test inspection
plans, e.g. DMIS, for use with the CMM utility test soft-
ware. However, the problem here is as follows. First,
we cannot force the generation of certain low-level com-
mands (such as "get parameter") with the detailing of a
high-level command. The application developer, in his
or her test measurement routines, may never test cer-
tain low-level commands. Certain response rules will
never fire because the events needed to fire those rules
never occur. This will be a complete test of an imple-
mentation only if those particular commands are never
needed by the application, which is doubtful. Secondly,
the particular low-level commands (and the order of ex-

ecution of those commands) accompanying a particular
high-level command will be to some degree the unique
choice of the application software developer. On the
other hand, certain high level commands, e.g., to "mea-
sure a point" or to "go to a point" will of necessity require
a low-level "measure" and/or a "move." This issue needs
to be debated and resolved as the metrology industry
moves along the specification development and testing
process.

The current implementation of the CMM utility in-
cludes a command parsing engine coupled with both
a real CMM and a simple CMM simulator. NIST devel-
oped CMM-driver specification compliant message pars-
ing software, which was integrated into the CMM utility
software. The source code, along with the executable
code, for the CMM utility is available to all testing par-
ticipants.

The current CMM utility is expected to interact with
the application implementation in terms of receiving
and handling CMM-driver specification compliant CMM
control commands from any application and generating
appropriate responses. The commands are to be coded
as ASCII character strings and sent through a commu-
nication socket with a mutually agreed port number.

This CMM utility software provides the following com-
mand reception functions:
• Read text strings from the pre-designated commu-

nication socket.
• Interpret the strings according to the specification

and either extract for command information or de-
termine error severity and report the errors.

• Manage the commands, i.e., either place them in a
queue or abort them.

Both specifications detail the syntax and semantics
for error responses. For example, the CMM simulator
produces errors such as "parameter out of range" and
"illegal probe type." In order to be able to execute these
error responses and to be able to verify the correctness
of the command reception, the software provides the
following CMM simulation functions:
• Retrieve the commands from the queue. Execute

them using a state machine model.
• Simulate the machine behavior, in low fidelity, to

provide feedback for command execution.
• Report errors if execution fails.
The CMM utility executes at a uniform rate, i.e., cycli-

cally. Its first function is to read the socket for com-
mand strings. A parser processes the command string
into command serial number, command name, and com-
mand parameters. Each segment must conform to the
format stated in the specification. When reading a com-
mand name, the parser reads until either a left parenthe-
sis or end-of-command character is recognized. Blank
spaces in between the characters are allowed but ig-
nored. The command parameter parser is a generic one
that handles all the commands, hence, it accommodates
variable length commands. For example, a "home" com-
mand contains no parameter and a "move axis" com-

14

mand can contain one, two, or three axis parametric
values.

The testing utilities also contain a set of common com-
mand classes for each of the commands (the common
command and response classes are described in Sec-
tion X-B). Once the parser verifies the command name,
the corresponding command class will be used to store
the associated parameters. Methods relating to each
command are predefined in each command class. A
variable-length linked list stores the valid input com-
mand class instances in the order that they are received.
Currently, if the CMM utility receives an "abort" com-
mand, it will clear the queue (as required in [3]).

At the end of the parsing, the CMM utility sends a
confirmation signal back to the application. The confir-
mation conveys a message that the input is either a valid
or erroneous command. The parser contains a function
to determine the severity of the errors.

We partition the CMM utility software such that users
can either take the parser and integrate only that into
their own machine controllers or also use the execution
and simulation modules that are a part of the CMM util-
ity software.

The execution of each of the commands has been im-
plemented using a state machine model. At the begin-
ning of the state machine, a new-command flag is veri-
fied and, if true, a new instance of the command class
will be generated and populated with the information
that is specific to the command that is just retrieved
from the command queue. A new instance of the re-
sponse class will also be generated and the attributes
updated throughout the execution. The state machine
model has additional common features for all the com-
mands. It checks for certain common errors, such as
"CMM not initialized" and "invalid command parame-
ters." After the errors are checked out, the state machine
calls the simulator for the command.

B. Command and Response Classes

An important part of the testing utilities is a common
set of command and response classes. Both applica-
tion and CMM utilities use this common set of defini-
tions for command and response. Using these (or simi-
lar) command and status classes in implementations of
either specification [3][4] will reduce development and
debug time and will streamline the testing and analy-
sis process. NIST has developed a set of CMM-driver
specification compliant command and response classes
which are currently being used within the CMM utility
software and a CMM-driver specification compliant ver-
sion of the NIST DMIS interpreter. The command and re-
sponse classes are written in C++. Accompanying these
classes are C++ files defining various methods for each
of these classes. In order to simplify the class struc-
ture, the actual command and response classes are de-
rived classes from command and response base classes,
respectively. The primary function of these classes is
to provide a common set of data structures for pass-

ing data and generating command and response strings.
The role of the command and response classes is illus-
trated in Figure 4. Also defined are classes for handling
data types and errors defined with in the specification.
The data classes contain the necessary logic for format-
ting the data per the specification when a command or
response string is being generated. Figure 10 gives an
example of command and response (status) classes sup-
porting the CMM-driver specification (this specification
does not specify the structure of the classes).

C. Analysis Tools and Metrics

In order to better utilize conformance testing, quan-
titative metrics are essential. This will give all imple-
mentors measurable incentive to perservere until their
implementation receives high marks in all tests. It will
also help as a presentation tool to management in all the
organizations involved in testing, to quantify progress
with simple graphs. Several spreadsheets have been de-
veloped. An example spreadsheet, shown in Figure 12,
gives some preliminary metrics for measuring CMM im-
plementations tests, such tests as are illustrated in Fig-
ures 5 and 6. These spreadsheets need to be completely
filled in for all test cases.

The data analysis tool currently extracts communica-
tion performance information from the data log files
that both the application and CMM utilities generate.
The analysis tool generates a performance report that
consists of two parts, for each individual command and
for the command file. For each individual command,
the analysis tool indicates whether the command has
been handled at every stage and within user specified
timing ranges, and whether an error condition has oc-
curred. The command performance for the following
critical stages were listed:

1. command sending, whether and when (referring to
the execution starting time)

2. command receiving
3. command acknowledgement signal sending
4. command acknowledgement signal receiving
5. command completion signal sending
6. command completion signal receiving.
The summary part of the performance report totals

the numbers of commands that are properly and not
handled properly, including not received and taking too
long to respond. The performance report is illustrated
in Figure 11.

XI. Testing Procedures

Validation (functional) testing and conformance test-
ing of any specification are both essential. Neither for-
mal validation testing nor formal conformance testing
has yet been done on either specification. The imple-
mentation and testing that has been done on the CMM-
driver specification, however, has provided informal
validation and conformance testing. Informal testing
should continue and formal testing should begin. It will

15

Command
Description: Probe to absolute position 10,20,30 on the XY plane.
Implementation Code:
_probeToCommand = new probeToCommand(ABSOLUTE);
_probeToCommand->setAxis(X,10.000);
_probeToCommand->setAxis(Y,20.000);
_probeToCommand->setAxis(Z,30.000);
_probeToCommand->setUnitSurfaceNormal(0,0,1);
cout << _probeToCommand->getCommandString() << endl;
delete _probeToCommand;
Output: PROBE_TO(X =10.000, Y= 20.000, Z = 30.000, 0.000, 0.000, 1.000)

Response
Description: Actual position probed 10.002, 19.999, 30.001 on the XY plane.
Implementation Code:
_probeToStatus = new probeToStatus(++id);
_probeToStatus->setAxis(X,10.002);
_probeToStatus->setAxis(Y,19.999);
_probeToStatus->setAxis(Z,30.001);
_probeToStatus->setUnitSurfaceNormal(0,0,1);
cout << _probeToStatus->getStatusString() << endl;
delete _probeToStatus;
Output: TOUCH(X =10.002, Y = 19.999, Z = 30.001, 0.000, 0.000, 1.000)

Fig. 10. Example command and response (status) class usage

Starting time: 01:07:11_15:44:49:60

CMD NAME CMDSENT CMDRECEIVED ACKSENT ACKRECEIVED COMPLETIONSENT COMPLETIONRECEIVED
1 INIT_DRIVER() 15:44:49:603 0.301 sec 0.0 sec 0.0 sec 0.0 sec 0.120 sec
2 SET_AUTO_MODE() 15:44:50:354 0.50 sec 0.0 sec 0.0 sec 0.0 sec 0.120 sec
3 GOTO(142.756,127.671,-73.809)) 15:44:51:105 0.301 sec 0.0 sec 0.10 sec 1.492 sec 0.120 sec
...
47 MOVE_HEAD(2,90,90) 15:45:24:153 0.300 sec 0.0 sec 0.0 sec 34.550 sec ^^long ^^ 0.0 sec
...

SUMMARY:

CMD file name: lego1.prg
TOTAL NUM OF CMDS IN FILE: 60
TOTAL EXECUTION TIME: 0 hour(s) 1 minute(s) 27.578 second(s)

CMDS PROPERLY RECEIVED AND EXECUTED: 60
CMDS NOT RECEIVED BY RECEIVER: 0
CMDS TOOK TOO LONG TO BE RECEIVED BY RECEIVER: 0

ACK NOT RECEIVED BY SENDER: 0
ACK TOOK TOO LONG TO BE RECEIVED: 0

COMPLETION NOT RECEIVED BY THE SENDER: 0
CMDS TOOK TOO LONG TO ACCOMPLISH: 2

Fig. 11. Text output log of the analysis tool

be useful if an organization consisting of NIST and ven-
dors from both sides of the interface is formed to col-
laborate in testing. A procedure or process is needed
to guide the conformance testing to achieve testing ef-
ficiency and high quality implementations.

A. Validation Testing Procedures

Informal validation occurs naturally as part of imple-
mentation. For example, when an application vendor
writes the software that generates commands provided
in the specification, if the vendor discovers that there is

16

Test case
execution

in
simulation

Did the plan
execute to

completion?
(1 for yes, 0

for no)

If the plan
executed to
completion,
how many

lines did not
match the
benchmark
output file?

If the plan did
not execute to
completion,
how many

lines did your
system execute
before failure?

If the plan did not
execute to

completion, how
many hours of
code rewriting

were required to
fix the problem?

If the plan executed to
completion, but one or
more lines of output do

not match the benchmark
output file, how many

hours of code rewriting
were required to fix the

problem?

#1
#2
#3
#4
#5
#6

…

Test case
execution
on CMM

Did the plan
execute to

completion?
(1 for yes, 0

for no)

If the plan
executed to
completion,
how many

lines did not
match the
benchmark
output file?

If the plan did
not execute to
completion,
how many

lines did your
system execute
before failure?

If the plan did not
execute to

completion, how
many hours of
code rewriting

were required to
fix the problem?

If the plan executed to
completion, but one or
more lines of output do

not match the benchmark
output file, how many

hours of code rewriting
were required to fix the

problem?

#1
#2
#3
#4
#5
#6

…

Common application test software with CMM
CMM type:

Fig. 12. Example metrics spreadsheet for testing CMM implementations of the specification

no command to perform a required action, the vendor
raises an issue against the specification.

Validation testing is also a side-effect of conformance
testing. If a vendor attempting to build software that
conforms to the specification finds that it is unreason-
able or impossible to make the software conform, the
vendor raises an issue against the specification.

It will be useful to devise a procedure for collecting
issues discovered during implementation and confor-
mance testing and considering whether and how the

specification might be changed. The Standard Improve-
ment Request process used by the DMIS National Com-
mittee provides a model of how this might be done.

Formal validation testing is conducting by identify-
ing functional scenarios that should be supported by a
specification and trying to carry out each scenario using
the specification. The total set of functional scenarios
should cover the entire range of functionality expected
to be supported by the specification. This set should be
agreed on by the community interested in the specifica-

17

tion.
Scenarios might be given in natural language, such as

"inspect hole A and plane B on the part whose design
is in CAD file C," or they might be given in inspection
programs written in DMIS or some other high-level lan-
guage. Manual use scenarios should also be included,
since the specification needs to support manual use.

The role of NIST in validation testing has not yet been
determined, but it is likely to include helping devise val-
idation tests and conducting validation testing.

As part of validation testing, it is essential to conduct
interoperability testing like that shown for conformance
testing in Figure 7. In interoperability testing, each ap-
plication tries working with several CMM vendors and
each CMM vendor tries working with several applica-
tions. At the stage where software on side A of the in-
terface has been made to work with only one vendor’s
software on side B of the interface, it is nearly certain
that the side A software will not work with a second
vendor’s side B software. The failures are most likely to
reveal that one side or both are not actually conform-
ing. The failures, however, are also likely to reveal am-
biguities or other inadequacies in the specification and
inadequacies of conformance tests. These should be re-
ported when discovered.

B. Conformance Testing Procedure

A conformance testing procedure is meant to test the
compliance of an implementation to the specification.
Metrics and analysis are needed to determine the degree
of compliance. Conformance tests may be conducted
privately by a vendor or they may be conducted by a
testing service set up to do conformance testing and is-
sue certificates (or other assurances) of conformance.
At one extreme, a conformance testing service might
make detailed results of all conformance tests publicly
available. At the other extreme, a conformance testing
service might make nothing public except certificates
of conformance. Test results and trends may be per-
formed privately or at some independent site. The de-
gree of openness is determined by what users and ven-
dors prefer. A side effect of the conformance testing
process is to effect an improved interface specification,
which can ultimately lead to quantifiable CMM system
interoperability results.

The test files and procedures used by a conformance
testing service should be publicly available. Ideally, a
vendor will have run all the tests and adjusted the soft-
ware so that it passes all the tests before submitting it to
a conformance testing service. Large users might con-
duct conformance tests themselves. It is expected that
particularly interoperability testing will be performed
in a distributed manner. Potential commercial imple-
mentations of the specification need to be involved in
the testing. Care must be taken to insure that testing
results are not made available to unwanted parties.

The role of NIST in conformance testing is to devise
testing files and procedures that may be used by testing

services, vendors and users.

C. Collaborative Testing

It will be useful to form an organization of represen-
tatives from NIST and metrology systems vendors (on
both sides of the interface) to do informal validation and
conformance testing. We assume here that this organi-
zation also is responsible for development and modifi-
cation of the specification; if that is not the case, proce-
dures for changing the specification will be less direct
than described below.

We envision two or three phases for this procedure.
Phases one and two are differentiated by an expanding
scope of commands. Phase three (not yet fully defined)
expands to more devices accompanied by a formaliza-
tion of the specification into a standard. Metrics that
will be the measure of testing success are discussed in X-
C.

C.1 Phase One Testing

Phase one scope would include some of the following
commands:
• two degree of freedom (DOF) probe head and three

DOF move of CMM arm (five DOF total)
• measuring in same five DOF
• abort
• get and set parameters
Phase one will exclude error correction and recovery,

scanning, rotary motion, and probe calibration. Among
other benefits, this will help to debug the conformance
testing procedure itself. Phase one testing will consist
of tests on the various CMMs and/or their simulators
as well as tests on third party inspection program ex-
ecution software, independently and together. Various
high level languages, e.g., DMIS, inspection plans will be
required, files of command strings in the format of the
emerging specification, and response rules files. Soft-
ware tools agreed to for use by all participants must be
employed in testing to minimize variability.

C.2 Phase Two Testing

The scope of phase two will include error correction
and recovery, scanning, rotary motion, and probe cal-
ibration as well as the entire set of commands in the
specification.

C.3 Conformance Testing Procedure for Both Phases

1. Design (or select or modify) and agree upon an ap-
propriate artifact or artifacts.

2. Develop and achieve consensus on appropriate
high level inspection programs and specification
compliant command files for each chosen artifact,
and response rules for the CMM utility software.

3. Develop, collect, and publish on the web any nec-
essary files (i.e., DMIS files, specification command
files,and response rules) along with file format

18

specification (allowing automated output file vali-
dation) that will be the standard baseline for test-
ing. Specification-compliant command files will be
used in testing because we will not be able to encode
in certain high level languages certain behaviors we
can perform with CMM driver commands. Further-
more, high level to low level language interpreters
will not, in general, be able to produce certain im-
portant types of errors.

4. Develop and publish on the web performance anal-
ysis tools consisting of various metrics of perfor-
mance and reporting facilities. These tools will be
used to quantify the success of the test results. All
participants will agree to these metrics before test-
ing begins.

5. Using the specification compliant inspection pro-
grams and application utility software, vendors
and users will implement the specification, conduct
tests, and do performance analysis.

6. CMM utility with response rules: Using the NIST
test suite, third party inspection program software
vendors and third party software users will conduct
tests and do performance analysis.

7. Integrated system testing: Using high level inspec-
tion plans and test artifacts, application software
vendors, application software users, CMM vendors,
and CMM users will conduct tests on an integrated
system and collect data. These tests may be done
remotely in a distributed manner, assuming that
high level programs require no real-time interaction
with the CMM from command to command.

8. Performance results will be collected, stored, and
analyzed using agreed performance metrics. Re-
sults of this analysis will be made known only
to participants, their managers, and any oversight
committee.

9. An issues log will be maintained and all partici-
pants will log issues resulting from the testing. Reg-
ular conference calls following testing sessions will
be centered on the resolution of these issues.

10. Modify the specification as needed.
11. Modify the common utility testing software as

needed.
12. If the specification is stable or a previously deter-

mined time period has expired, conclude and move
to next phase. If the specification is not stable, go
back to the first step in this procedure.

XII. Real-Time and Object-Oriented Issues

There are at least two levels of real-time in this testing
procedure. In the narrow sense, we are testing a real-
time system remotely over a non-real-time link. In the
broader sense, the specification must be tested in "real-
time," though now the time scale is much longer.

In the narrow sense of real-time, we cannot do remote
testing over a non-real-time link unless commands in
the specification are completely independent in time,
so that the success of a command, or series of com-

mands, is not at all dependent on the relative time any
previous or subsequent command is executed or com-
pleted. For example, the definition of the "move" com-
mand will determine the timing requirements for send-
ing commands. If "move" specifies a non-zero final ve-
locity of the probe head, the system is now dependent
on the timing of the subsequent command(s). How-
ever, this is not a problem if commands are allowed
to be queued in the CMM implementation. The CMM-
driver specification allows such queueing, and it implic-
itly requires it of the CMM implementation. Therefore,
assuming that all application implementations expect
command queueing in the CMM implementation, the ap-
plication will send subsequent commands upon receipt
of an "OK" response only versus "OK" and "done" or "er-
ror." The CMM implementation can then look ahead and
wait to execute all adjacent "move" commands together
which will allow non-zero final velocities for some of
the "move" commands. The CMM-driver specification
allows "fly mode," i.e., non-zero final velocities, only for
adjacent "move" commands.

In the broader sense of real-time, the specification
must be developed, implemented, and tested success-
fully by a broad majority of vendors and users within
a certain time frame that might be defined as the tech-
nology change window, i.e., the specification cannot be
obsolete by the time it appears in new products.

The issue of objects has been in the forefront of devel-
opment in both specifications. The I++ specification has
chosen to make objects (in the form of Unified Modelling
Language (UML) models) as part of the specification,
whereas the CMM-driver specification makes no such
requirement. However, we argue for a middle ground
where the object models are part of the testing and im-
plementation tool set that allow implementors to facili-
tate implementation, testing, and integration. This will
both facilitate implementation development (and subse-
quently interoperability) and will allow implementors to
choose non-object oriented implementations while still
complying with the specification.

XIII. Distributed Real-Time Tests

A real-time, distributed, and cross-continental demon-
stration was conducted on July 13, 2001 in which a
CMM-driver specification compliant file was used as in-
put for sending commands to LK Metrology in Darby,
United Kingdom (UK) from the National Institute of
Standards and Technologies (NIST) in Gaithersburg,
Maryland, USA, where the commands were used for in-
specting the test artifact of Figure 8. A user-controlled
pan/tilt/zoom camera was also integrated into the en-
vironment with a web-based video server to allow the
inspection program to be viewed at either location. The
demonstration used only one inspection plan test file.

This demonstration helped us improve NIST testing
utilities and showed that distributed testing is not only
possible but efficient and beneficial to any future testing
events.

19

XIV. Future Work

Depending on the needs of the CMM industry, we may
create and perform explicit validation tests. Addition-
ally, more precise metrics need to be defined in concert
with the CMM community of users and vendors. Our
current set of metrics (Section X-C) is preliminary only.

The current set of testing utilities is focused on the
CMM-driver specification detailed in [3]. Based on a re-
cent study and comparison of the two specifications [5],
it is clear that the two specifications have more similari-
ties than differences. It currently appears that the com-
munity of CMM system users and vendors is moving to
integrate the two specifications into one while using the
I++ specification [4] as the baseline. It seems clear that
the next step is to perform any modifications necessary
to make the current testing utilities compatible with the
I++ specification.

Perhaps the most important single item lacking in
our test suite is to develop a comprehensive response
simulator for use in application implementation test-
ing. This may also be the most challenging part of test
suite development. We also need to discern whether to
couple our response simulator (which includes the re-
sponse rules) with high-level test inspection plans, e.g.
in DMIS, for use with the CMM utility test software. The
questions and problems associated with this decision
are discussed in Section X-A.4.

References

[1] ISO 14750:1999, Interface Definition Language, ISO, Geneva,
Switzerland, 1999.

[2] ISO 10303-11:1994, Industrial automation systems and integra-
tion - Product data representation and exchange - Part 11: The
EXPRESS Language Reference Manual, ISO, Geneva, Switzer-
land, 1994.

[3] David Smith [LK Metrology], Lutz Karras [Zeiss IMT], Michel Pen-
lae [Xygent], and William Wilcox [Wilcox Associates], “CMM-
driver Specification,” Release 1.9, 2001.

[4] Hans-Martin Biedenbach [Audi], Josef Brunner [BMW], Kai Gläs-
ner [DaimlerChrysler], Günter Moritz [Messtechnik Wetzlar],
Jörg Pfeifle [DaimlerChrysler], and Josef Resch [Zeiss IMT], “I++
DME-Interface,” Release 0.9, 2001.

[5] Thomas Kramer and John Horst, “A comparison of the CMM-
driver Specification Release #1.9 with the I++DME-Interface Re-
lease 0.9,” 2001.

[6] “Revised report on the algorithmic language algol 60,” Commu-
nications of the ACM, vol. 3, no. 5, pp. 299–314, May 1960.

[7] Consortium for Advanced Manufacturing - International,
Dimensional Measuring Interface Standard, Revision 3.0,
ANSI/CAM-I 101-1995, CAM-I, Arlington, Texas, 1995.

[8] ISO 10303 Part 1:1994, Industrial automation systems and in-
tegration - Product data representation and exchange - Part
1: Overview and fundamental principles, ISO TC184/SC4, ISO,
Geneva, Switzerland, 1994.

[9] Martha Gray, Alan Goldfine, Lynne Rosenthal, and Lisa Carna-
han, “Conformance Testing,” http://www.itl.nist.gov/div897/
ctg/conformProject.shtml, 2000.

[10] Thomas Kramer, “Feature-Based Inspection Control System
(FBICS),” 2002.

[11] ISO 10303-224:1998, Industrial automation systems and inte-
gration - Product data representation and exchange - Part 224:
Application Protocol: Mechanical Product Definition for Process
Planning Using Machining Features, ISO, Geneva, Switzerland,
1998.

