
Finding Similar Classes with a Simplified Metamodel
David Flater

National Institute of Standards and Technology
Gaithersburg, Maryland, U.S.A.

Abstract

To integrate conceptual models and other types of
models, it is necessary to identify the portions of the
models that overlap (i.e., find similar classes) and resolve
any conflicts. Complete automation of this task is
generally considered infeasible. However, it may be
possible to provide some automated support to the
integrator. This paper discusses a simplified metamodel
and matching algorithm that have been implemented in a
prototype tool called Similar Class Finder (SCF), which
works with Unified Modeling Language (UML™) class
diagrams. Simple tests of the prototype produce
interesting successes and failures, suggesting that future
work and refinement of the tool could be productive.

Keywords: UML, model, integration

1. Introduction

Model integration – more precisely, the integration of
data models, information models, conceptual models,
and/or structural models in a software context – is just one
part of application integration. It is, however, a vitally
important part. The very integrity of an integrated system
depends on the expertise with which the concepts
represented in these models are merged. This merging
unfortunately tends to consume a great deal of expensive
time.

To integrate models, it is necessary to identify the
portions of the models that overlap (i.e., find similar
classes) and resolve any conflicts. There is a subtask,
herein called the "hard semantic matching problem," that
probably cannot be reliably automated because it is not
done reliably even by people: determining when the
abstractions identified by different models from different
sources can safely be treated as identical. Long before
automation of this task (using ontologies, knowledge

Commercial equipment and materials are identified in order to describe
certain procedures. In no case does such identification imply
recommendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that the materials or equipment
identified are necessarily the best available for the purpose. Unified
Modeling Language, UML, Object Management Group, and other marks
are trademarks or registered trademarks of Object Management Group,
Inc. in the U.S. and other countries.

bases, automated reasoning, etc.) was considered within
information technology circles, 20th century philosopher
Alfred Korzybski argued that confidence in the sameness
of the different abstractions of different people is
generally unwarranted [20]. Nevertheless, without
solving the hard semantic matching problem, it may be
possible to provide some automated support to reduce the
time spent on model integration.

After the discussion of related work, this paper
presents a simplified metamodel and matching algorithm
that have been implemented in a prototype tool called
Similar Class Finder (SCF), which works with Unified
Modeling Language (UML) class diagrams [30]. It then
documents some interesting successes and failures
resulting from simple tests of the prototype and explores
directions for future work.

2. Related work
2.1. Model integration

Work on Similar Class Finder was inspired by a
presentation [31] about another tool, the Visual and
Natural Language Specification Tool (VINST) [4][5].
The original intent was simply to do the same kind of
thing for UML. However, the work ended up taking a
different path. VINST judges the similarity of different
entities using the corpus of information that is available in
the context of ISO 10303, informally known as the
Standard for the Exchange of Product Model Data [13],
which includes full text definitions of terms in addition to
the labels and structural information in EXPRESS models
[14]. While VINST is more sophisticated in its use of full
text definitions, SCF is more sophisticated in its
identification of structural variants.

Although much of the work labeled "schema
integration" or "ontology integration" is equivalent to or
interrelated with the task of model integration, it is
difficult to find relevant references to model integration
by that name, at this time. Quite a lot of references exist
for enterprise model integration, but most enterprise
models are not the kind of models this paper addresses.
Nonetheless, the approach described in Reference [9] is
applicable to many kinds of models. Modeling languages
are characterized using ontologies, effectively creating a
new, unifying metamodel. This addresses the "language

barrier" that exists when integrating models that are
written in different modeling languages and supports
formal reasoning about the structural content of models.
Other information needed to support reasoning about the
integration of different models can then be captured in
"context" ontologies.

Rational Software Corporation's Rational Rose [27]
includes a tool called Model Integrator that allows several
UML models to be merged into one. However,
automated integration of "unrelated" models (in the sense
not derived from a common ancestor) was not in the
original design intent of the tool [26], so its functionality
in that regard has not yet been developed to the level of
sophistication seen in existing schema integration
methods.

2.2. Schema integration

Research in database schema integration that was
called database schema integration peaked in the 1980s.
However, as attention shifted to federated and
heterogeneous information systems and to ontology-based
research during the 1990s, much of that research
continued to relate to schema integration (or vice-versa,
depending on one's viewpoint). The fundamental
problems of detecting semantic overlap and heterogeneity
among different information sources were essential to all
of this research, and they remain essential to our present
topic.

Thousands of papers about schema integration were
published. The most one can hope to do is cite a
reasonable set of representative works. The selections
cited here were found by breadth-first exploration of the
references made by several convenient sources. Thus, the
citation of any particular work is indicative only of its
reference proximity to the original sources and should not
be construed as an endorsement of one research program
over another.

Reference [2] contains a survey of integration
methodologies that were available circa 1986. By that
time the various kinds of conflicts that can arise during
schema integration had been analyzed in various ways,
and it was acknowledged that "automatic conflict
resolution is generally not feasible; close interaction with
designers and users is required before compromises can
be achieved in any real-life integration activity." [2]

Of particular interest to the task at hand are any
automated or potentially automatable approaches to
finding similar entities in different schemas. The survey
mentions two references where "the integration system
automatically assigns a 'degree of similarity' to pairs of
objects, based on several matching criteria." In the first,
Reference [1], these criteria appear to include similarities
in the attributes and relationships of entities and in the
attributes and involved entities of relationships in an

Entity-Relationship model. However, the heuristic is not
described in sufficient detail to reproduce it exactly. In
the second, Reference [6], a measure of the degree of
similarity is calculated based on detailed, formal
assertions supplied by the database designer. A work
published later by the same group of researchers,
Reference [21], provides a more detailed analysis of
attribute equivalence. Their prior analyses of object class
equivalence [7] and relationship equivalence [23] are then
revisited from the perspective of attribute equivalence.
Similar work based on a further refined definition of
attribute equivalence appears in Reference [28]. The
automatable portions of these analyses depend on
assertions that involve real-world state, "the underlying
real world instances of the object being represented," or a
similar notion for real-world attribute semantics. The
rigor of the analyses therefore depends on the rigor with
which it can be determined that two different abstractions
refer to the same real-world object, which is another form
of the hard semantic matching problem. As Reference
[28] cautions, "Schema integration involves a subjective
activity which relies heavily on the knowledge and
intuition of the user about the application domain (domain
of discourse), intended use of the integrated schema, and
the systems that manage data modeled by the schemas.
Thus, the results of a schema integration activity are not
unique and cannot be generated totally automatically."

References [16], [17], and [29] document a line of
work that deals with a related notion of "semantic
proximity" between different database objects. Reference
[17] begins with the assertion, "The fundamental question
in interoperability is that of identifying objects in different
databases that are semantically related, and then resolving
the schematic differences among semantically related
objects." Semantic proximity is defined as a function of
context, abstraction, domain (values), and state (extents).
The line of work includes a breakdown of schematic
heterogeneities into domain incompatibilities, entity
definition incompatibilities, data value incompatibilities,
abstraction level incompatibilities, and schematic
discrepancies, each of which is further broken down into
different kinds of conflicts. Different taxonomies of
schematic heterogeneities and resolution methods appear
in many other works about schema integration and
federated, distributed, heterogeneous, and/or multi-
database systems, e.g., References [3] and [19].

The database schema integration work that survived
through the 1990s became increasingly mingled with
research having to do with ontologies, e.g. in Reference
[18]. Progress in this direction can be seen in Reference
[12], where a "semantic dictionary" is used in the
detection and resolution of semantic heterogeneity.
Similarly, Reference [10] describes a semi-automatic tool
for finding similar classes in "semantically enriched"
relational schemas. However, this semantic enrichment

corresponds more closely to the information contained in
a UML class diagram. Their approach to finding similar
classes focuses on generalization/specialization and
aggregation, ignoring the attributes. Reference [8]
describes an approach to finding similar classes based on
reasoning about fuzzy terminological relationships
between names as defined in a terminological knowledge
base. Other progress in the ontology direction can be seen
in Reference [33], where it is proposed to replace the
assertion-based characterization of attribute semantics
used in previously described work with a characterization
in terms of a "concept hierarchy." With respect to
automation, Reference [12] repeats the assertion that
"automatic conflict resolution is in general infeasible" and
Reference [10] makes a related assertion to the effect that
detecting semantic relationships among different
databases cannot be completely automated, whereas
Reference [33] proposes to semi-automate the
identification of concepts using natural language
processing of a supplied data dictionary.

Related problems in information retrieval continued to
be addressed (e.g., Reference [24]) until this line of work
was transformed by the emergence of the World Wide
Web.

2.3. Ontology integration

To the extent that some definitions of ontology would
admit a conceptual model in UML, there is some related
work in ontology integration. Reference [22] describes a
semi-automatic tool that finds similar concepts in
different ontologies based on labels, context identifier
tags, term-based matching rules, structure-based matching
rules, and other rules.

3. Boxes & Stuff metamodel

The Boxes & Stuff metamodel is an abstraction that
suppresses structural details that are distracting when
comparing different UML class diagrams for integration
purposes. See Figures 1 and 2. (Note: all figures appear
at the end of the document.)

"Boxes" correspond to classes, which hopefully are
abstractions of important domain concepts. Everything
else is "stuff." The many different ways that UML
provides for associating different things with classes are
reduced to only one: a box has stuff. Whether that stuff
is thought of as being in the box, on the box, associated
with the box, connected to the box by a line, or whatever,
is not germane. The choice between declaring an attribute
whose type is class Snark and making an association to
class Snark, and similar choices, are deliberately
suppressed.

The Boxes & Stuff metamodel also loses constraints
and various other adornments that can happen in UML.

Clearly there will be cases when this information is
critical to integration decisions, but for the purpose of a
first prototype it suffices to ignore it.

The goal of recasting a UML class diagram into boxes
and stuff is not to reproduce the UML model, but to break
it into tiny, flattened pieces representative of how the
model might look from the perspective of an observer
sitting in the various boxes. That way, a similar class
finder can quickly reach a decision about whether the
view from inside of one box is similar to the view from
inside another one in a different model.

Returning to Figures 1 and 2, two non-obvious features
of stuff are apparent. The first is a flag called "many;" the
second is an operation called "normalize." The purpose
of these features becomes apparent in the following
section.

4. Translating classes to boxes and stuff

The prototype mapping from a UML class diagram to
boxes and stuff is as follows.
1. Classes are boxes. The name of the box is the name

of the class.
2. Attributes are stuff.

a. Stuff.name is the name of the attribute.
b. Stuff.type is the name of the type of the attribute.
c. The "many" flag is true if the upper bound on the

multiplicity of the attribute is greater than 1,
false otherwise.

d. The type field and "many" flag are then
normalized as described below.

3. Operations are stuff.
a. Stuff.name is the name of the operation.
b. Stuff.type is the name of the return type of the

operation.
c. The "many" flag is set to false.
d. The type field and "many" flag are then

normalized as described below.
e. Parameters other than the return are ignored.

4. Associations are stuff.
a. Only named AssociationEnds are considered.

(This is a poor but practical substitute for testing
the isNavigable flag, which is often disused.)

b. Stuff.name is the role of the associate (i.e., the
name of the AssociationEnd).

c. Stuff.type is the name of the type of the
associate.

d. The "many" flag is true if the upper bound on the
multiplicity of the association is greater than 1,
false otherwise.

5. Specializations "inherit" the stuff of their "parents" –
it is simply copied over.

6. Normalization of data types.
a. All number types (integers, floats, doubles,

fixed, etc.) become simply "number."

b. All text types (chars, strings, wide char strings,
etc.) become simply "text."

c. If the type field refers to an aggregate type, the
"many" flag is set to true and the contents of the
type field are replaced by the name of the type
being aggregated or "unknown" if it could be a
mixture.

Normalization of data types to "number" and "text" is
done on the premise that the choice among many possible
numeric and text types is seldom significant when
comparing different UML class diagrams for integration
purposes. They would only serve to distract from any
gross similarities that might exist.

5. Matching algorithm

The matching algorithm makes many passes through
the models. The most similar boxes are identified first,
while subsequent passes identify similarities with less and
less confidence.

A mapping from names to canonical synonyms is built
up in the early stages and utilized thereafter when making
comparisons. It may be initialized to include user-
supplied input if desired.
1. Matching Boxes.

do {
added_new_synonym = false;
// Find Boxes with matching names and equivalent

Stuff
// Find Boxes that differ in name only and add to

database of synonyms *
} while (added_new_synonym);
// Find Boxes with matching names that subset Stuff
// Find Boxes with matching names
// Find Boxes that subset Stuff *
// List leftovers
* Empty boxes are excluded in these passes.

2. Equivalence of sets of Stuff.
Sets of Stuff are equivalent if all members of both
sets have a match in the other.

3. Matching Stuff.
Stuff matches if the names and data types match.
(Data type involves both "type" and "many;"
matching is defined below.)

4. Matching Box and Stuff names.
a. Case-insensitive.
b. 'z' = 's' (for U.K. versus U.S. spelling).
c. Modulo database of synonyms.
d. [Future work could add VINST-like rules for

matching among different naming conventions.]
5. Matching data types.

a. Data types match if cardinality and type names
match as defined below.

b. Data types also match if cardinality and type
names match after unrolling one level of "holder

classes," defined as Boxes that contain only one
"Stuff."

6. Matching cardinality.
Equivalence of the "many" booleans.

7. Matching type names.
a. Case-insensitive.
b. 'z' = 's' (for U.K. versus U.S. spelling).
c. Common type names are "normalized" to a

canonical synonym.
d. Modulo database of synonyms.
e. Type name "unknown" matches every type

name.

6. Implementation and test

The algorithm descriptions above and the following
results are accurate as of version 0.4.1 of the Similar
Class Finder (SCF).

Similar Class Finder is a simple command-line
application with the following usage:

SCF left-URL right-URL [thesaurus-URL] [-verbose]
The left and right URLs are of Extensible Markup

Language (XML) Metadata Interchange (XMI) [32] files
such as any UML modeling tool might be able to produce.
The prototype was only tested with Poseidon for UML
[11] Community Edition, Version 1.0.

Four tests were conducted in which SCF was fed XMI
files but not supplied with any initial "thesaurus" (the
database of synonyms). The first test was to try SCF on a
UML translation of the example that was used in the
VINST presentation mentioned under Related Work [31].
Figures 3 and 4 show the class diagrams that were
compared: one from the context of race cars, the other
from the context of mass market automobiles, "street
cars."

Before running SCF, one manual change was made to
the XMI resulting from the race cars model: the
multiplicity of the entries attribute of class logbook was
corrected to be 0..*. A limitation of the version of
Poseidon that we used prevented this information from
being stored in the original model.

This example plays to the strengths of SCF because the
matching of attribute names is trivial. Due to limited
space, the output will only be summarized here. SCF first
matched the identical Weight and Distance classes in the
two models, then correctly matched the class Car from the
race cars model with the class Vehicle from the street cars
model (different in name only). The class named Car in
the street cars model does not match as well; it has
attributes that are specific to street cars, such as air
conditioning. Farther down in the listing, the classes
named Date in both models were matched with
considerably lower confidence since they had only a name
in common.

Because it was derived from relatively simple
EXPRESS models, the first test did not fully demonstrate
the potential benefits of using a simplified metamodel.
The second test, therefore, was to compare the race cars
model used previously with an obfuscated version of
itself. The obfuscations were:
• Distance was renamed to Length, its attributes were
reversed and their data types were changed.
• Two of the attributes of Car were converted to
associations, and one was replaced with an accessor
operation.
• The troublesome entries attribute of Logbook was
changed from type 0..* String to a generic List type.

The results were as follows. First, the Person and
Logbook classes of the two models were matched (same
names, equivalent stuff). Then Distance and Length were
found to differ in name only and added to the database of
synonyms, and subsequently most other classes were
matched immediately with high confidence (matching
names, equivalent stuff). The exceptions, Weight and
Date, were matched with lower confidence than was
strictly necessary (matching names, subset stuff) because
the obfuscator incorrectly made the links from Weight
and Date to Car navigable, resulting in extraneous "car"
stuff on Weight and Date.

The third test was to compare UML translations of the
Application Resource Model (ARM) (see Figure 5) and
the Module-Interpreted Model (MIM) (see Figure 6) of
the person and organization module from a draft ISO
specification [15]. Again, some manual edits were made
to the XMI to correct the multiplicity of some attributes.
As with the first two tests, there is something to make the
job of SCF easier: the ARM and the MIM are related by
a design methodology that effectively makes them
different views of the same information. However, in this
case, the limitations of SCF began to show. The Address
entities were matched with high confidence (matching
names, equivalent stuff), but Organization and
Organisation were only found to have equivalent names,
and Person was only found to have a subset (75%) of the
stuff of Person_in_organisation. The confidence with
which the Organization classes were matched could be
improved by recognizing the refactoring of the name
attribute(s) and the substantial overlap that exists despite
the fact that neither set of attributes is a subset of the
other. However, the matching of the Person class with
Person_in_organization is more troublesome. An
examination of the models shows that
Person_in_organization might be better matched to
Person_and_organization. However, the semantics are
still not quite equivalent. One could argue that the
pairwise comparisons made by SCF are simply
inadequate in this case. Future work should examine the
possibilities for expanding the algorithm to find many-to-
many correspondences.

The last test was to compare the previously used MIM
model with an analogous person and organization model
derived from the Product Data Management (PDM)
Enablers standard from the Object Management Group™

[25] (see Figure 7). The PDM Enablers model used an
association class that was not supported in the version of
Poseidon that was used, so a normal class was substituted.
The results were disappointing. Nothing was matched at
any higher confidence than matching class names (Person,
Organization). The similarity between Party and Address
went completely unnoticed, as did the match between
PersonOrganization and Person_and_organization. There
is clearly still much work to be done if the matching
algorithm is to perform well on models from significantly
different sources.

7. Conclusion

The Boxes & Stuff metamodel eliminates several kinds
of shallow "obfuscations" that cause similar models to
appear different, thus increasing the effectiveness of a
similar class-finding tool. The next step is to make
progress in recognizing the deeper "obfuscations" that
result from refactorings, different vocabularies, and
different naming conventions. Although similar problems
have been researched for many years with no conclusive
victories, it may be productive to revisit this line of work
from the perspective of a simplified metamodel. An
extension of the matching algorithm to perform many-to-
many comparisons might help with refactorings. The full
text definition processing done by VINST [4][5] sought to
address the vocabulary and naming convention problems,
so a merging of ideas between VINST and SCF might
yield additional progress. Finally, it is likely that some of
the information that was ignored in the conversion to
Boxes & Stuff, notably the distinction between
aggregation and composition, should be used to enable a
more accurate translation and better identification of
structural variants.

8. References

[1] Carlo Batini and Maurizio Lenzerini, "A Methodology for
Data Schema Integration in the Entity Relationship Model,"
IEEE Transactions on Software Engineering, v. 10, n. 6,
November 1984, pp. 650-663.
[2] C. Batini, M. Lenzerini, and S. B. Navathe, "A
Comparative Analysis of Methodologies for Database Schema
Integration," ACM Computing Surveys, v. 18, n. 4, December
1986, pp. 323-364.
[3] Yuri Breitbart, Peter L. Olson, and Glenn R. Thompson,
"Database Integration in a Distributed Heterogeneous Database
System," in Proceedings of the Second IEEE Conference on
Data Engineering, February 1986.
[4] H. Dalianis, "The VINST approach: Validating and
Integrating STEP AP Schemata Using a Semi Automatic Tool,"

in Proceedings of the Conference on Integration in
Manufacturing, October 1998.
[5] H. Dalianis and E. Hovy, "Integrating STEP Schemata
using Automatic Methods," in Proceedings of the ECAI-98
Workshop on Applications of Ontologies and Problem-Solving
Methods, August 1998, pp. 54-66.
[6] R. Elmasri, J. Larson, and S. Navathe, "Schema Integration
Algorithms for Federated Databases and Logical Database
Design," Honeywell Corporate Systems Development Division,
Report CSC-86-9:8212, January 1986.
[7] R. Elmasri and S. B. Navathe, "Object Integration in
Database Design," in Proceedings of the IEEE COMPDEC
Conference, April 1984.
[8] P. Fankhauser, M. Kracker, and E. Neuhold, "Semantic vs.
Structural Resemblance of Classes," SIGMOD Record, v. 20, n.
4, December 1991, pp. 59-63.
[9] Florence Fillion, Christopher Menzel, Thomas Blinn, and
Richard J. Mayer, "An Ontology-Based Environment for
Enterprise Model Integration," in Proceedings of the IJCAI
Workshop on Basic Ontological Issues in Knowledge Sharing,
August 1995. (Pages not numbered)
[10] Manuel García-Solaco, Malú Castellanos, and Fèlix Saltor,
"Discovering Interdatabase Resemblance of Classes for
Interoperable Databases," in Proceedings of the IEEE RIDE-
International Workshop on Interoperability in Multidatabase
Systems, 1993.
[11] Gentleware AG, Poseidon for UML product,
http://purl.org/net/dflater/org/gentleware/poseidon.
[12] Joachim Hammer and Dennis McLeod, "An Approach to
Resolving Semantic Heterogeneity in a Federation of
Autonomous, Heterogeneous Database Systems," International
Journal of Intelligent and Cooperative Information Systems, v.
2, n. 1, March 1993, pp. 51-83.
[13] ISO 10303:1994, Industrial automation systems and
integration — Product data representation and exchange.
Available from ISO, http://purl.org/net/dflater/org/iso.
[14] ISO 10303-11:1994, Industrial automation systems and
integration — Product data representation and exchange —
Part 11: Description methods: The EXPRESS language
reference manual. Available from ISO,
http://purl.org/net/dflater/org/iso.
[15] ISO/CD TS 10303-1011:2001(E), Industrial automation
systems and integration — Product data representation and
exchange — Part 1011: Application module: Person
organization. Available from ISO,
http://purl.org/net/dflater/org/iso.
[16] V. Kashyap and A. Sheth, "Schema Correspondences
between Objects with Semantic Proximity," Technical Report
DCS-TR-301, Dept. of Computer Science, Rutgers University,
October 1993.
[17] V. Kashyap and A. Sheth, "Schematic and Semantic
Similarities between Database Objects: A Context-based
Approach," Very Large Data Bases (VLDB) Journal, v. 5, n. 4,
1996, pp. 276-304.
[18] Vipul Kashyap and Amit Sheth, "Semantic Heterogeneity
in Global Information Systems: The Role of Metadata, Context
and Ontologies," in Michael P. Papazoglou and Gunter

Schlageter, eds., Cooperative Information Systems: Current
Trends and Directions, Academic Press, 1998, pp. 139-178.
[19] Won Kim, Injun Choi, Sunit Gala, and Mark Scheevel, "On
Resolving Schematic Heterogeneity in Multidatabase Systems,"
Distributed and Parallel Databases, v. 1, 1993, pp. 251-279.
[20] Alfred Korzybski, Science and Sanity: An Introduction to
Non-Aristotelian Systems and General Semantics, 5th edition,
Institute of General Semantics
(http://purl.org/net/dflater/org/igs), 1994.
[21] James A. Larson, Shamkant B. Navathe, and Ramez
Elmasri, "A Theory of Attribute Equivalence in Databases with
Application to Schema Integration," IEEE Transactions on
Software Engineering, v. 15, n. 4, April 1989, pp. 449-463.
[22] Prasenjit Mitra, Gio Wiederhold and Jan Jannink, "Semi-
automatic Integration of Knowledge Sources," in Proceedings of
Fusion '99, July 1999.
[23] S. B. Navathe, T. Sashidhar, and R. Elmasri, "Relationship
Merging in Schema Integration," in Proceedings of the 10th
International Conference on Very Large Databases, 1984.
[24] Yannis Papakonstantinou, Hector Garcia-Molina, and
Jennifer Widom, "Object Exchange Across Heterogeneous
Information Sources," in Proceedings of the IEEE International
Conference on Data Engineering, Taipei, Taiwan, March 1995,
pp. 251-260.
[25] Product Data Management Enablers v1.3 specification,
Object Management Group, 2000. Available from
http://purl.org/net/dflater/omgdoc/formal/2000-11-11.
[26] Rational Software Corporation, "Issues using Model
Integrator to merge 'unrelated' models," Technote 7382, 1999-
04-23. Available at
http://purl.org/net/dflater/org/rational/technotes/7382.
[27] Rational Software Corporation, Rational Rose product,
http://purl.org/net/dflater/org/rational/rose.
[28] A. P. Sheth, S. K. Gala, and S. B. Navathe, "On automatic
reasoning for schema integration," International Journal of
Intelligent and Cooperative Information Systems, v. 2, n. 1,
1993, pp. 23-50.
[29] Amit Sheth and Vipul Kashyap, "So Far (Schematically)
yet So Near (Semantically)," in Proceedings of the IFIP
TC2/WG2.6 Conference on Semantics of Interoperable
Database Systems, DS-5, November 1992. Also in IFIP
Transactions A-25, North Holland, 1993.
[30] Unified Modeling Language v1.4 specification, Object
Management Group, 2001. Available from
http://purl.org/net/dflater/omgdoc/formal/2001-09-67.
[31] Evan Wallace, "Adventures in Discovering Latent
Semantic Links: Experiments with the VINST Tool,"
presentation given at NIST, 2001-10-03.
[32] XML Metadata Interchange v1.1 specification, Object
Management Group, 2000. Available from
http://purl.org/net/dflater/omgdoc/formal/2000-11-02.
[33] C. Yu, W. Sun, S. Dao, and D. Keirsey, "Determining
relationships among attributes for Interoperability of
Multidatabase Systems," in Proceedings of the First
International Workshop on Interoperability in Multidatabase
Systems, April 1991.

http://purl.org/net/dflater/org/gentleware/poseidon
http://purl.org/net/dflater/org/iso
http://purl.org/net/dflater/org/iso
http://purl.org/net/dflater/org/iso
http://purl.org/net/dflater/org/igs
http://purl.org/net/dflater/omgdoc/formal/2000-11-11
http://purl.org/net/dflater/org/rational/technotes/7382
http://purl.org/net/dflater/org/rational/rose
http://purl.org/net/dflater/omgdoc/formal/2001-09-67
http://purl.org/net/dflater/omgdoc/formal/2000-11-02

9. Figures

Figure 1. Boxes & Stuff metamodel in UML

Box:
 name: text
 stuff: many Stuff
Stuff:
 name: text
 type: text
 many: boolean
 normalize: void

Figure 2. Metamodel as boxes and stuff

Figure 3. Race cars model

Figure 4. Street cars model

Figure 5. Translation of Application Resource Model

Figure 6. Translation of Module-Interpreted Model

Figure 7. People and organizations in the Product Data
Management Enablers

	Finding Similar Classes with a Simplified Metamodel
	Abstract(
	Model integration
	Schema integration
	Ontology integration

