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Abstract

This paper describes a world model designed to act as a bridge between multiple sensory inputs
and a behavior generation (path planning) subsystem for off−road autonomous driving. It
describes how the world model map is built and how the objects and features of the world are
represented. The functions used to maintain the model are explained and the sensors and
sensory processing used to provide data for this application are discussed. The paper includes
examples of integrating and fusing sensory data from multiple sources into the world model
map. The representation is being developed for the Army’s Demo III autonomous driving
experiment, which is an on−going research project. The paper concludes with a discussion of
future research directions. 

1 Introduction
The ability to drive autonomously cross country, over rugged terrain is critical to the success of
the Demo III program [16]. The requirements for the Experimental Unmanned Vehicle (XUV)
developed for Demo III include the ability to drive autonomously at speeds of up to 60
kilometers per hour (km/h) on−road, 35 km/h off−road in daylight, and 15 km/h off−road at
night or under bad weather conditions. The control system for the vehicle is designed in
accordance with the 4D−Real−time Control System (RCS) [1]architecture which divides the
system into perception, world modeling and behavior generation subsystems. This paper’s focus
is on the design and functionality of the world model. Section 2 provides an overview of the
world model module. Section 3 discusses the sensors and algorithms used to provide information
to the world model. Section 4 describes the map and object representations used by the world
model and the functions used to maintain the model. Section 5 describes future work and
discusses issues related to the world model representation, and conclusions are presented in
Section 6 .

2 Wor ld Model
The world model is the system’s internal representation of the external world. It acts as a bridge
between sensory processing and behavior generation by providing a central repository for storing
sensory data in a unified representation, and decouples the real−time sensory updates from the
rest of the system. The world model process has two primary functions:

1. To create a knowledge database (map) and keep it current and consistent. In this
role, it updates existing data in accordance with inputs from the sensors, and deletes
information no longer believed to be representative of the world. It also assigns
(multiple) confidence factors to all map data and adjusts these factors as new data
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are sensed. The types of information included in the map are state variables (e.g.,.
time, position, orientation), system parameters (e.g., coordinate transforms, sensor to
vehicle offsets, etc.), and lists or classes of sensed objects. The world model process
also provides functions to update and fuse data and to manage the map (e.g.
scrolling and grouping objects.)

2. To generate predictions of expected sensory input based on the current state of the
world and estimated future states of the world. For the Demo III off−road
autonomous driving application, very little a priori information is available to
support path planning between the vehicle’s position and a final goal position. The
world model therefore constructs and maintains all the information necessary for
intelligent path planning[8].

The world model implementation fuses information from multiple sensors, including navigation
sensors, Ladar, and stereo vision. The navigation system provides information about the
vehicle’s current position, orientation, speed, velocity, etc. Section 4.1.1 describes the navigation
system’s units and coordinate systems. Data from the Ladar sensor (Section 3.1) includes a range
image (32 rows x 180 columns) processed to provide and array in which each element contains
the data described in Table 1. The vehicle is equipped with two pairs of stereo cameras. One
provides color imagery, while the other provides infra−red (FLIR) data. The information
obtained by processing the stereo range information is shown in Table 2.

Datum Description

Range value Range (m) read from the sensor

Position Elevation (m), North/East position and orientation in NIU1

coords.

Obstacle label Valid/Invalid; Obstacle; No obstacle

Terrain class label Tall grass; ground; cover

Table 1 Processed Ladar Outputs

Datum Description

Time System timestamp
Cell position North/East  in NIU coord.
Elevation Elevation measure (m) and confidence
Roughness Terrain roughness measure and confidence
Obstacle label Obstacle; No obstacle; Positive/Negative Obstacle
Terrain class label Tall grass; bush; tree; rut; soil; rock; outlier

Table 2 Processed Stereo Range Outputs

1 The Navigation Interface Unit (NIU)  coordinate system is based on a fixed translation from UTM
coordinates and the location of the NIU on the vehicle.  It is different for each system start−up.
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The world  model map fuses all sensory information into its map representation (Section 4). The
primary use of the model data is to plan safe and efficient paths. The path planning module uses
the map to select a locally optimal path from the current position to the commanded goal. The
planner heuristically selects a path by starting with a web of potential path segments that extend
out 20 m [8] [11]. The path is updated (replanned) approximately ten times per second. 

There are two types of path segments: straight and curved. Curved segments extend 20 m from
the vehicle. Each is a series of clothoid segments which are kinematically feasible based on the
turn rate of the steering wheel. These paths are generated offline for different initial speeds and
steering wheel positions. Straight path segments are used from 20 m to 50 m. Although not
kinematically feasible, they are computationally simpler. Given that the path is recomputed
frequently, an exact solution for more distant segments is not necessary. The planner selects the
best combination of segments leading to the goal, using a cost function depending on its task. It
does this by first pruning all segments blocked by obstacles. Then it searches through the
remaining segments to find the path with lowest cost. Among the factors used in the cost
function are terrain elevation, the presence or absence of obstacles, tree cover, the presence of
tall grass areas, the relative distance between different path options, and commanded speed.

3 Sensors and Sensor  Processing
Sensor processing algorithms use sensor data to compute vehicle position, range, obstacle lists,
obstacle positions, and terrain information. The suite of sensors used in the mobility system
include a Schwartz Electro−Optics (SEO) Scanning Laser Rangefinder (Ladar), a pair of color
cameras for stereo vision, a stereo pair of infrared (FLIR) cameras, a stereo pair of monochrome
cameras, a pan−tilt platform, a Global Positioning System (GPS) sensor, a force bumper that
alerts the system to obstacles in the vehicle’s immediate path, and an Inertial Navigation System
(INS) sensor2. The Ladar and stereo camera sensors are described in Sections 3.1 and 3.2. All
sensors are mounted on the vehicle, which is equipped with electric actuators on the steering,
brake, transmission, transfer case, and parking brake. Feedback from the sensors provides the
controller with engine rotations per minute, speed, temperature, fuel level, etc. Multiple
navigation sensors are used. A Kalman filter [7] computes vehicle position and orientation using
data from the inertial dead reckoning system and the carrier phase differential GPS unit.

3.1 Ladar Sensor
The Ladar sensor is mounted on a pan/tilt platform to increase its field of view.   The range of
the tilt motion is +/−± 30° resulting in an effective Ladar field of view of about 80°. Range data
are read into an image array containing 32 rows and 180 columns. Using a priori knowledge
about the location and orientation of the Ladar mounting on the vehicle, calibration factors, and
vehicle position data, we transform the range information into position and orientation values in
a world coordinate frame. Section 3.1.1 describes the sensor processing algorithms used to detect
and label obstacles using Ladar data. Section 3.1.2 describes the algorithm we use to classify the
detected obstacles. Table 3 shows the specifications of the SEO Ladar [14].

2 Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately

specify the experimental procedure. Such identification does not imply recommendation or endorsement by
NIST, nor does it imply that the materials or equipment identified are necessarily best for the purpose.
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Property Specification

Scan resolution 32 lines × 180 pixels

Scan coverage ±10.2° × ±43°
Angular resolution 0.658° × 0.5°
Maximum frame rate 60 scans/s
Range 5 m to 45 m (20 % Target Reflectivity)
Range resolution/accuracy ±7.6 cm

Data measurement rate Range: 345,600 measurements/s.
Data measurement rate Intensity: 345,600 measurements/s.
Day/Night Operation Range Independent of ambient light
Intensity 256 grey level values

Table 3 SEO Ladar Specifications

3.1.1 Obstacle Detection

Obstacles are defined as objects that project more than some distance d above or below the
ground plane. Positive obstacles are detected in the range images, while negative obstacles are
detected in the world model map.

The positive obstacle detection algorithm works column by column in the Ladar range
image [3]. The algorithm starts with a point, g, known to be on the ground. An initial ground
value is assigned at the location where the front wheels of the vehicle touch the ground, known
from INS and GPS sensors. Given point g, the algorithm processes upwards from the bottom
pixel in the column to the top pixel, as follows:

1. Let pi be the i th pixel in the column, where pixel 0 is at the bottom of column. Let x i, yi, zi be

the Cartesian coordinates of pi. Let g be the last known ground pixel in the column, initially
obtained from the vehicle’s position sensors.
Compute the slope between the ground point, g, and the next pixel pk. Pixel pk is labeled a
positive obstacle if

zk
� zg

2

xk
� xg

2 �
yk

� yg

2 �
zk

� zg

2

�
sin2 �

where �  is a predefined constant representing the maximum allowed slope. The value of 

sin2 �  is constant, and is pre−computed for efficiency.

2. Pixel pk may fail the above test but still be a positive obstacle. This is because the slope test is
a function of distance. The obstacle can be far  from the current ground point due either to
occlusion or to the resolution of the sensor which degrades as a function of distance. To
resolve this ambiguity, the height of the obstacle is required to be greater than a constant, H.
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i.e., zk
� zg

� H

3. If pk is not an obstacle, it is assumed to be ground and replaces g as the current ground pixel.
The process iterates up the column with each pixel being compared to the closest ground
pixel.

4. If pk is an obstacle, g is unchanged, and is compared with pixels pk, pk � 1,... as above, until
another ground pixel is found.  When this occurs, point g is set to the new ground pixel value
and the process repeats.

Figure 1 Positive obstacle detection

In Figure 1, pixel 0 corresponds to the bottom of the vehicle wheel.  Pixels 1, 2, 3, 8 and 9 are
ground pixels.  Pixel 4, 5, 6 and 7 are positive obstacles because they fail step 1 and satisfy step
2.  The direction vectors shown on the bottom of Figure 1 indicates the vectors in which the
slopes are determined.  In a way, the algorithm is analogous to flooding; pixels 1, 2, 3, 8 and 9
are flooded because they have shallow slopes.

The results of the positive obstacle detection are shown in Figure 2. The figure on the left is a
Ladar scene of a wall obstructed by a truck on the far right. The objects in the foreground are
low poles.  The figure on the right shows the objects detected as positive obstacles in this scene.

The negative obstacle detection algorithm maintains its own high−resolution ground map
centered on the vehicle.  This ground map contains all the projected ground pixels detected by
the positive obstacle detection module.  The algorithm first identifies the pixels in the range
image that potentially correspond to a negative obstacle (see algorithm details below). Based on
the accumulated ground information in the ground map, the algorithm determines more precisely
the dimension of the negative obstacle.  Thresholds for depth and width are  used to reject pixels
that correspond to negative obstacles that are too small.  For efficiency, the algorithm detects
only the borders of negative obstacles.  Steps 1 thru 4 describe the algorithm in detail.

1. Let pk be a ground point, and let w and d be the approximate width and depth of the negative

obstacle.  i.e., w � xk
� xg and d � zg

� zk.  Let proj p
k
 be the map location corresponding to the
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Figure 2 Raw ladar image and detected positive obstacles



projection of  onto the ground map. Let be the minimum depth for an obstacle, and 
the minimum width smaller than the vehicle wheel diameter.

2. If both d � dmin and w� wmin are true,  then proj p
k
 is marked as a ground location and no

further work is done.

3. If proj p
k
 is within a neighborhood corresponding to the area along the line of sight from the

closest ground point on the map, then pk  is not labeled as a negative obstacle, and  proj p
k
 is

marked as a ground cell.

4. When both w
�

wmin and d
�

dmin are true and no ground map cell exists within the

neighborhood, pk is labeled a negative obstacle, and proj p
k
 is not marked as a ground cell.

border negative obstacles

Current Ladar

Ground map

g

p
k

X

Z

Figure 3 Negative obstacle border detection

Figure 3 graphically describes this process. The points marked as circles represent points in the
ground map. The triangular points represent current Ladar hits. The points enclosed in squares
fulfill the requirements described in Step 4 above and are labeled as negative obstacle borders.

3.1.2 Obstacle Classification
After a pixel has been labeled as an obstacle, additional processing is performed to classify the
obstacle type. A number of factors were considered in selecting a classification algorithm for
Ladar data. The most important was the need for real−time operation. Also important was the
ability to operate on poor quality data.  The quality of the range data precludes more than a
coarse classification, which currently identifies vegetation and ground (i.e., not vegetation).

The approach is based on the method of Ojala, Pietikännen, and Harwood [12]. It makes use of
two texture measures, Local Binary Patterns (LBP), and Contrast. Local Binary Patterns are
computed on 3×3 windows, as follows (Figure 4.) First, the center pixel value is used to
threshold the other pixels in the window. This results in values of 0 if the pixel is less than or
equal to the center pixel, and 1 if it is greater. In order to produce a compact pattern, a weighted
sum is computed of the eight surrounding thresholded points. The weights are assigned as
powers of 2, so that each location has a unique weight, which indexes a unique bit position in the
pattern, associated with that location. Given that there are eight surround pixels, and each has
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value 0 or 1 after thresholding, the final value assigned by the operator to the central pixel can
be represented by an eight−bit byte, making the implementation very efficient. The LBP values
are combined with a contrast measure at each point, computed over the same window. The
contrast measure is computed as the difference between the averages of the range values of the
pixels greater than the center pixel and those less than the center pixel value. That is, those that
have value 1 in Figure 4(b) and those that have value 0. Contrast measures are quantized into
eight values. The range contrast can be viewed as a measure of porosity of a volume. If  the
volume is sparsely filled, the contrast will be large, as in the case of grass. If the foliage is
denser, such as for brush or thick shrubs, the contrast will be smaller, since the expected distance
the laser will travel before hitting a surface will decrease. If the surface is solid, the contrast
should be close to zero.

Figure 4 (a) A 3x3 neighborhood. (b) Result of thresholding by middle
value. (c) Weights applied to each thresholded pixel. (d) Resulting value is
sum of weighted thresholded values.

The texture measures are computed after the obstacles are computed. First, the connected
components of the obstacle image are found, and are surrounded by a bounding box at least
16×16 pixels in size. For each obstacle, a two−dimensional histogram is computed from the
texture measures applied to the pixels in the bounding box. The histogram is used to determine
the class to which the obstacle belongs. Classes are defined by models, created in a learning
phase. A model is simply a two−dimensional histogram computed from the LBP and contrast
measures. It is learned by extracting and combining the LPB and contrast measures from a
sequence of images containing obstacles that are known to belong predominantly to a single
class. In [12], matching the models to the sample data is done using Kullback discrimination.
This was too slow for our purposes, and a simple minimum of summed difference of squares
was used instead. This works almost as well, especially given the coarseness of the Ladar data. 
Figure 5 shows a color coded raw Ladar image of a grassy scene and the classification results.
Figure 6 shows a scene taken at Ft. Knox with tall grass and obstacles.
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Figure 5 Top: Color coded Ladar image. Bottom:Region classified as tall grass

Figure 6 Top: A range image from Fort Knox, with a table and a
person in the image. Bottom: The results of classifying the obstacles
in the scene. Red represents vegetation, while Blue represents non−
vegetation objects that are still labeled as obstacles.
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3.2 Stereo Vision Sensors
Stereo vision provides another way of computing range information. The system is equipped
with a color camera pair with a 60° field of view (FOV) and a FLIR camera pair with a 40° FOV
for night vision. The stereo system includes an iris controller; an image acquisition unit; a stereo
range algorithm; positive and negative obstacle detection algorithms [9]; and a terrain
classification algorithm [2]. 

 A multiresolution, coarse to fine, approach is taken to determining correspondence between the
left and right images. First, the two images are rectified to align their scanlines in order to
increase processing efficiency.  A difference of Gaussian image pyramid is then constructed, and
image similarity is computed using a sum of squared difference measure for 7×7 windows over a
fixed disparity range. The disparity is estimated, and bad matches are removed using consistency
constraints. After smoothing, the pixels are transformed to three−dimensional points by
triangulation. Figure 7b is an example of a depth map (320×240 pixels) computed from a stereo
FLIR image set. The left image of the set is shown in Figure 7a. The image sets shown in this
section are discussed in Reference [10]. Section 3.2.1 discusses obstacle detection using stereo
range data and Section 3.2.2 discusses a color image classification algorithm.

3.2.1 Obstacle Detection

For each range image column, a set of obstacle detectors is applied to extract gaps and
discontinuities in the range data that indicate non−traversable regions. Non−traversable regions
are classified into either negative (Figure 8b) or positive obstacles (Figure 8d). Negative
obstacles are detected by checking for gaps in the range data followed by a range jump. This
usually occurs when a ditch or hole exists. Positive obstacles are detected by checking for
upward slanted edges in the range data, i.e., any upward protrusion out of the ground plane
steep enough to be non−traversable or to cause a tip− over hazard.
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3.2.2 Terrain Classification
Terrain classification is performed on color images taken from one of the stereo images.
Consequently, the classification label is registered with the range image. Classification types
currently include green vegetation, dry vegetation, soil/rock, ruts, tall grass, and outliers. The
classification algorithm relies on color, and is based on Bayesian assignment. The class
likelihoods are represented using a mixture−of−Gaussian model. The parameters of the model
are estimated by training data using the Expectation Maximization algorithm. Reference [2]
discusses the details of the algorithm.

4 Wor ld Model: Maps, Objects and Functions
This section describes the organization of the world model in detail. Section 4.1 describes the
actual map structure as well as the terminology used to define and classify objects and terrain in
the map. Section 4.2 describes the computational functions performed by the world model to
maintain its representation.

4.1 Maps and objects
A modified form of Hebert’s [4] grid obstacle map was adopted for representing obstacles in a
way suitable for path planning and vehicle control. The map consists of a header and a square,
two−dimensional array of cells (Figure 9). Sections 4.1.1 and 4.1.2 describe the contents of each
of these elements in detail.
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                       (a)Left intensity image of ditch  (b)Overlay of detected obstacle

                           (c)Left FLIR image of rocks      (d)Overlay of detected obstacles

Figure 8(a) Left intensity image of a ditch. (b) Negative obstacle detected. (c) Left FLIR image
(d) Positive Obstacle detected



Figure 9 World Model Map

Datum Description

Grid size The size of each map grid (cell) in meters.
Map size The number of grids in each dimension of the map.
Map center Grid center in NIU coordinates (north, east)
Grid center location Grid center location in the array data structure of the Map
Vehicle position Current (x,y,z) position of vehicle in NIU coord.
Vehicle orientation Current (roll, pitch, yaw) angles of vehicle in NIU coord.
Predicted position Predicted vehicle position at next computational cycle
Predicted rotation Predicted vehicle orientation at next computational cycle
Predicted curvature Predicted steering curvature at next computational cycle
Predicted speed Predicted vehicle speed at the next computational cycle
Offset position Offset between vehicle position UTM3 coord. and NIU coord.

Table 4 World Model Map

4.1.1 Header
The map header contains information that is shared by all map grids. Table 4 describes the data
fields.

4.1.2 Map Gr id Array
The map is a two dimensional array (301 x 301 cells) containing information extracted from
processed sensor data. Figure 10a shows an image of the XUV on an unpaved road at Fort Knox;
Figure 10b  displays this scene as an elevation map constructed from the information in the
world model. The position of the XUV is shown as an overlay on the map; the yellow path in
front of the XUV represents the vehicle’s planned path, and red areas represent unclassified

3 UTM (Universal Transverse Mercater) coordinates are the earth’s coordinates read from a Global
Positioning System (GPS).
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obstacles.

Each map grid cell represents an area defined by the header grid size (currently 0.4 m × 0.4 m)
and is marked with the time it was last updated. The total extent of the map is 120 m x 120 m.

The information stored in a cell includes:

1. The average ground elevation height; the variance of the height; and a confidence
measure reflecting the "goodness" of the elevation data. 

2. A data structure describing the terrain covered by the grid cell. This includes a
terrain label (e.g., tall grass, water, ruts, etc.), and a cost factor for determining the
relative safety of traversing the grid. The terrain label represents the best estimate of
the terrain type based on information fused over time. Each terrain type has a
confidence associated with it, and the map grid selects the label with the highest
confidence. For ease in path planning, the cost of paths is computed based on terrain
type.

3. A linked list structure describing the type of object viewed by the sensor. Examples of
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Figure 10(a) XUV at Ft. Knox (b) World Model elevation map  of (a)



different types of objects include roads, buildings, fences, positive or negative
obstacles, traversable or non−traversable regions, etc. Each object has a name, a
position, a time stamp and a confidence measure. For each cell, objects are stored in a
linked list containing pointers to the previous object in the list, the next object in the
list, and a pointer back to the map grid describing the object attributes. Certain object
labels are explicitly declared, e.g. a non−traversable region is flagged as a "no go"
area.

4.2 Maintaining and Updating the Wor ld Model
The world model map must be maintained and updated in a timely manner. World model
functions have been developed to scroll the map as the vehicle moves, to update map data, to
fuse data from redundant sensors, and to extract and group information from the object lists.
These functions are described in the following sections.

4.2.1 Map Scrolling

An efficient, scrolling, local map is used  that updates new sensor data while keeping the vehicle
centered on the map. This approach has the advantage of minimizing grid relocation. No
copying of data is done; only updating. When the vehicle moves out of the center grid cell of the
map, the scrolling function is enabled. The scrolling function includes recentering the map and
reinitializing the map borders. Because the map is vehicle−centered, only the borders of the map
contain new regions that must be initialized. While the initialization information could be
obtained from a priori maps, in the current implementation, the information in available a priori
maps is too coarse (30 m resolution),  so the borders are initialized to zero.

4.2.2 Map Updating and Fusion

The map updating algorithm is based on the concept of confidence−based mapping described in
Oskard[13]. In this algorithm, confidence measures increase or decrease linearly as the model
receives updated information from the sensors. When a map cell receives a vote for a class such
as an obstacle, an elevation measurement, a terrain classification, etc., the cell’ s confidence in
that class is incremented by a predefined constant. 

Three different types of data must be updated and fused: non−traversable ("no go") regions,
elevation values, and terrain classifications. The confidence measure of a "no go" region is
updated based on the obstacles detected from Ladar data [6], stereo range data [9], and the force
bumper. The obstacle’s confidence increases by empirical predefined constants (i.e. a bumper
obstacle constant, a stereo obstacle constant, and a Ladar obstacle constant). When the
confidence measure exceeds a pre−defined threshold, the map grid is labeled "no go."

The elevation confidence of each grid cell is updated every sensor cycle, e.g., 10 Hz for Ladar
data and 1 Hz for stereo data. The new elevation is updated by the weighted average of the
current sensed elevation value and the accumulated elevation value:
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Elevationt �
Wi

� Elevationi

�
Conf t � 1

� Elevationt � 1

Conf t

If Conf t

	
MaxValue then Conf t � Conft t � 1

�
Wi

else Conf t � MaxValue

Conf t is the confidence measurement of the elevation value at time t. Wi is the empirical

confidence measurement for sensori. Elevationt is the current elevation value read from sensori at

time t, and  Elevationt is the estimated elevation value at time t.

Conversely, when a map cell is labeled "ground", the "no go" confidence decreases. Decreasing
the "no go" confidence measure reduces "no go" false alarm, and results in a fairly static
environment. 

A map cell is classified into a terrain type and an object type. Examples of terrain types are tall
grass, water, ruts, etc. Examples of object types are rocks, bushes, trees, etc. The confidence of
these classes is updated based on the results of both Ladar classification algorithms [5] and
stereo classification algorithms [2]. Confidence values increase by a factor determined by sensor
characteristics, which are learned off−line by analyzing and testing data collected for this
purpose.   Confidence values are used as a cost factor in determining the traversablility of a grid.

4.2.3 Object Grouping
The map cell contains a pointer to the object list, and each list node contains a pointer to the
previous entry, a pointer to the next entry, and a pointer to the originating (attribute) grid. "No
go" regions are an example of an object group (Figure 9). The object list also contains the
object’s position in the grid, the object type, the time stamp, and the confidence measure. The
attribute pointer currently points back to the map grid location. This object list is used to
compute the object’s properties, i.e., velocity, size, and moments, which can be used for object
recognition. This data structure is very similar to the one described by Shneier [15] in which
objects are indexed spatially by a pointer associated with each node in an octree. 

5 Future Work and Discussion
This paper has described the implementation of a sophisticated world modeling system, but
much research remains to be done to add to its capabilities and performance. One area of future
research involves tracking moving obstacles because confidence−based mapping may not be
adequate for this task. Currently, a hypothesis/prediction model for predicting the motion of
moving obstacles is not implemented. Such an approach would be useful for maintaining
knowledge of local obstacles at the sensory processing level. This knowledge could be used to
improve detection accuracy and could also be used to detect moving obstacles. 

The use of a priori maps would enhance the scope of the current world model. Currently survey
maps, GPS maps, and aerial maps contain fine resolution and significant information about
existing topology and structures. In order to take advantage of this knowledge, research is
needed to register a priori maps with our sensor generated map. Also, higher resolution a priori
maps must be generated; current geological survey maps are too coarse for autonomous driving
applications.
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Additional research is also needed to broaden the system’s terrain and object classification
capabilities. The number of terrain and object classes currently used is small; the ability to
recognize and label bodies of water, rocky roads, buildings, fences, etc. would enhance the
vehicle’s autonomous driving performance.

6 Conclusion
A world model has been described that is designed to act as a bridge between multiple sensory
inputs and a behavior generation (path planning) subsystem for off−road autonomous driving.
The world model map and object representations have been described, as well as the functions
used to maintain the model. To more fully understand the application, the sensors and sensor−
processing algorithms were presented, and the information extracted from them was described.
Also included were examples of integrating and fusing sensory data from multiple sources into
the world model map. The representation is currently being used as part of the Demo III
autonomous driving experiment at Ft. Knox. The map is used by a path planner [1] module to
compute safe and task−appropriate routes [8]. The current world model represents an on−going
research project. Possible future research directions were discussed to enhance the world
model’s capabilities. 
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