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Abstract
In Part I of this report, a place of Intelligent Control in the variety of systems is discussed. In many cases it

amounts to transforming the system into an intelligent system . Intelligent Systems employ principles of information
generalization, semiotic closure and multiresolutional (multigranular, multiscale) representation. The annotated
bibliography and survey of literature demonstrate that the number of devices and principles that can be associated with
intelligent control much exceeds those applied in three broadly used components: fuzzy representation, neural
networks, and genetic algorithms.  Using these components only doesn’t specify all variety of possible technical
solutions. A broad multiplicity of existing intelligent systems demonstrate human-like capabilities of dealing with
uncertainties: like in expert system and knowledge bases equipped controllers, multi-agent behavior based controllers,
game-theoretic controllers, and others.

This annotated bibliography and survey prove that intelligent controllers can be better recognized by taking
in account the computational tools they use and by the architecture, within which these tools are engrained. This issue
will be addressed in more detail in the second part of the survey.
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Disclaime r

Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the
experimental procedure adequately.   Such identification is not intended to imply recommendation or endorsement by
the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment
identified are the best available for the purpose.
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I.1 Theory of Intelligent Control

1.1 The Essence of Intelligent Control and Control Architectures
Two major points of view are prevalent in the literature related to Intelligent Control.

One view is that Intelligent Control is supposed to demonstrate properties and features typical for
human intelligence. According to this point of view, the devices that are utilized are irrelevant.
Most important is the ability of a control system to make decisions in uncertain situations to the
benefit of the system specified by a designer.

The second point of view links the concept of intelligent control to utilizing a number of concrete
devices including Fuzzy Logic (FC), elements and systems, Neural Networks (NN), and Genetic
Algorithms (GA).

The survey of literature shows that the number of devices and principles that can be associated
with intelligent control much exceeds these three concrete components: FC, NN, and GA.  Also,
the first view doesn’t specify all varieties of possible technical solutions. A broad multiplicity of
technical solutions can fit within the requirement of demonstrating human capabilities for
dealing with uncertainties. Some examples of such technical solutions are: expert system and
knowledge bases equipped controllers, multi-agent behavior based controllers, and others.

In Figure 1, the three major theoretical techniques typical for systems with intelligent controllers
are demonstrated to be various facets of multiresolutional computational methodologies applied
to solving problems of control represented in the multiresolutional state space. Fuzzy systems
enhance the original tessellatum of discretized space as required; NN is a device that provides for
fuzzification in the vicinity, and genetic algorithms apply search techniques to a couple of
adjacent levels of resolution.

This survey proves that intelligent controllers can be better recognized by taking into account the
computational tools they use and by the architecture within which these tools are engrained. This
issue will be addressed in the concluding part of the survey.
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Classical works in Intelligent Control by G. Saridis tend to organize a control system as a three-
level hierarchy: management, coordination and execution levels are accepted as a template for
control architecture. In practice of intelligent control, it was understood that the number of levels
of control depends rather on a size of problem.

intelligent control

fuzzy
systems

genetic
algorithms

neural
networks

GENERALIZATION

IN THE LARGE

SEARCH AT
TWO  ADJACENT

LEVELS
OF  RESOLUTION

GENERALIZATION

IN THE SMALL
INTERACTIVELY

SOLVING
CONTROL   PROBLEM
BY SEARCHING IN THE
MULTIRESOLUTIONAL

STATE SPACE

Figure 1. The existing theoretical techniques are unified by the common approach to representation.
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In Figure 2, the multiagent system is demonstrated. This is a group of autonomous mobile robots
interpretable for both military and civillian outdoor scenario of realization. Its control is
organized as a hierarchy of levels granularity level (levels of resolution, levels of scale). Three
levels introduced by G. Saridis can be discovered at each level of resolution [372]. These levels
can also be interpreted as the modules of Job Assignment (JA), Planning (Pl) and Execution (Ex)
introduced within Real Time Control Systems (RCS) methodology [494, 495, 971].

1.2 Control Laws Applied
The concept of Intelligent Control made the issue of “control architecture” the major

issue of control theory and engineering (see Section 1.5). Before this, the main question was:
“What is the control Law?” An overview and comparison of a multiplicity of control laws is
given in [1]. The feeling that all control laws target the same end is conveyed in [2], where
Kalman Filter is explained as a particular incarnation of the feedback compensation of the
negative feedback compensation under a definite premise of estimating an error. This view is
conformed in [3], where numerous nonlinear controllers are discussed. The concept of
“feedforward contro” is not even discussed. Thus, “planning” is not even contemplated..

Actually, the abstract discussion of control laws and abstract introduction of general control
solutions seems to be not very productive in a contemporary paradigm of Automatic Control. All
control cases surprisingly resemble the concept of the PID error compensating controller, and
only our attitude toward the gain assignment is being changed. It is more typical for the present
paradigm to consider control laws to be a part of a broader “control strategy” for the overall
system. In [4] and [5], control laws are considered to be a part of much broader control strategy
formulated for the machine as a whole. In some cases control laws are devised based upon more
theoretical premises. In [6] the closed-loop control law is formulated in terms of forming the
“pole attracting” zone.
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1.3 Fuzzy Logic Controllers
It becomes obvious that the fuzzy logic controller (FLC) belongs to the domain of the

intelligent controllers because it employs the concept of changing resolution for the purposes of
achieving the required control performance.  In the fuzzy logic controllers described in [7] and
[8] the fundamental transformation presumes moving input information from the high resolution
domain into the low resolution domain by using the tool of “fuzzyfication”. Fuzzyfication plays
the role of generalization because it searches for adjacency, focuses attention, and groups. The
fuzzy logic controller contains control mappings only for generalized information at low
resolution. When the required control action is found, this low resolution recommendation
should be “instantiated” or moved to the domain of high resolution. This is done by the virtue of
“defuzzyfication”.

A similar process is described in [9].  For the fuzzy logic controller, the center feature is having
input and output information at higher resolution while using control mapping at a lower
resolution. Various control laws can be applied in this setting, e.g., PI and PD laws are illustrated
in [10]; many other effective configurations can be found in [11]. Thus, papers on fuzzy logic
controllers explore various properties of an intelligent controller with two levels of hierarchy.
The issue of stability for the two level hierarchy is addressed in [12], [13], [14]. The details for
computing variables at low resolution are discussed in [15].

Since fuzzy logic controllers perform generalization anyway (for the sake of fuzzyfication), they
have some advantages in control systems with learning: it is known that learning requires
generalization [16] (for more see Part II of this report). We can see that the feature of
recomputing information to lower resolution by the virtue of generalization is an intrinsic
property of each fuzzy logic controller. It makes it a natural candidate for using neural networks
as a component. In this case, not only can we re-compute variables to the level of lower
resolution where the rules are stored, we can learn these rules on-line. How to do that is
illustrated in [17].

Modeling of all processes, characteristic of FLC, is reported in [18]. The laws of generalizing of
high resolution information to the lower level of resolution are specified in [19].

1.4 Neural-Net Based Controllers
Neural Networks turned out to be a natural tool for moving information from higher to

lower level of resolution. An example of a two-level controller similar to the one presented in
[17] is given in [20]. The inverse procedure of moving variables from the lower to the higher
level of resolution (defuzzyfication) can be also performed by a simple neural network [21]. This
application of neural networks already became a standard (see [22]).

There are several conceptual schemes that characterize the way NN are applied in controllers
(including Albus’ CMAC, Grossberg’s adaptive resonance devices, etc.). All of them are
described in Part II, Section 8 of this report.

1.5 Expert System Based Controllers
In many cases the amount of measured information is not sufficient for using

formal methods of fuzzyfication and defuzzyfication. In these cases we are unable to use
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FLC techniques. Expert systems are used to make a judgement concerning
generalizations and rules to be applied at the lower resolution [23]. An example of using
an expert system for the real time control of a dynamic process is given in [24]. The
advantages of these simplified methods are clear when we compare the required effort
with those presented in a complete mathematical model [25].

1.6  Hybrid Logic/Analytical Controllers
Hybrid controllers are defined as multilevel control systems in which lower levels of

resolution are formulated in the terms of the logic based (IF-THEN rules based) controllers,
while the higher resolution levels are analytical controllers (e.g. PID controllers, Kalman filters,
etc.). This is how hybrid systems are described by the organizers of the regular meetings
dedicated to these areas: “hybrid systems are models for networks of digital and continuous
devices in which digital control programs sense and supervise continuous and discrete plans
governed by differential or difference equations” [674].

Hybrid controllers, as a research area, have attracted many strong mathematicians since the very
boundary between the discrete and continuous control is under consideration. They are related to
the area of intelligent control since they explore many levels of resolution, employ generalization
of information from level to level, and confirm computational complexity reduction [26-35.]
It is customary for a domain of hybrid controllers to use and further explore the automata
formalism as a control-theoretical tool [36-37].

In [38] a hybrid controller is specified, in which the lower level of resolution is represented by an
FLC controller, and the higher level of resolution utilizes integral-derivative control. The term
hybrid doesn’t necessarily presume the joint use of logical and analytical control tools; joint use
of different control principles evokes utilization of the term "hybrid" in many other cases, too.
Several examples of using this term are given:

• In 1986 M. De Lassen developed an analysis for the hybrid controller, which is defined as a
joint functioning of controllers working at various frequency of sampling [818]. The author
considers his work further development of the results of K. Narendra and I. Khalifa [819].

• In 1990 Y.-H. Chen and S. Pandey described a hybrid controller for robot manipulators, in
which the term hybrid is understood in a sense that it combines the use of both cone-bounded
uncertainty and quadratically–bounded uncertainty for controlling the position and force
simultaneously under conditions of an imperfect modeling, realistic friction, payload change
and external disturbances [675].

• J. C. H. Chung and G. G. Leininger have developed a controller that compensates jointly for
deviations in several variables. This is why they called it a hybrid controller. Among the
variables are force and position, and among the factors that are taken care of are the task
location, dynamic friction, load variations, and others [820].

• In 1995, C. Kwan presents [676] a theoretical analysis for the hybrid controller for
manipulators where the term hybrid is understood as a joint force position controller (as it
was understood in [675], too).

• L. R. Medsker defined hybrid intelligence systems that combine several AI technologies to
perform better than their individual components would do alone [660].
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• In 1996 M. Vukobratovic and O. Timcenko described a hybrid controller for a biped
locomotion robot where hybrid is understood as combining a traditional model-based and
fuzzy logic based control techniques [677].

• In 1998 J. -S. Liu and S. -L. Chen outlined a theory for the hybrid control of a constrained
robot where the term hybrid reflects the duality of having one part of the controller
responsible for motion while another part is responsible for forces.

1.7  Behavior-Based Controllers
Behavior based control employs the concept of superposition of the activities of multiple

controllers working simultaneously, each providing for a separate type of behavior.
Methodologically, behavior-based control evolves from traditional AI, as shown in [888] and, as
many other AI-related techniques, is motivated by intuition rather then by explicit analytic proof.

From the control theory point of view the idea is rather straightforward and requires an
introduction of the “importance factors” that determine a relative contribution of each control
activity in a different situation. For artificial intelligence the view seemed to be a rather novel
approach to constructing an architecture of intelligence. Even within behavior oriented
methodology of control, the hierarchies are useful for selecting the action [347, 40]. Shaping
reactive behaviors in unstructured environments are described  in  [886]. Generation of subgoals
can be done by using a simple neural network solution, as in [529], and by local optimization as
in [887].

This is an example from  [39] below. Instead of arranging the controller from a mobile robot as a
system with a representation upon which a planner develops a trajectory to follow, and an
executor is trying to track it, a behavior based robot is constructed as follows: “…several
modules would be implemented corresponding to the different competencies necessary to the
task: a module for recognizing and going through doors, a module for wall following…, a
module for obstacle avoidance…, and so on. All of these modules operate in parallel. A simple
arbitration scheme… suffices to implement the desired priority scheme: the obstacle avoidance
modules always have priority over going through doors which has priority over wall following.
This robot doesn’t plan a course of action. However from an observer’s point of view it will
appear to operate in a systematic rational way.”

It is possible to show how a robot, without representation and with superposition of behaviors,
can be easily deceived by the environment. Nevertheless, for simple cases this vision was
appealing and generated numerous research results, like in [40]. In [44] a case of wall following
is described where a genetic algorithm is used for improving the decision making process. The
superposition of behaviors can be implemented together with NN-based elements of learning
[41] (for more, see Part II, Section 8).

It was also evident that superposition of behavior can’t satisfy requirements of functioning in the
realistically complex cases, nevertheless the idea was appealing because of the resemblance
between “behaviors” and basic reflexes of living creatures [42]. Later it became clear that
superposition of behaviors doesn’t need to substitute planning: it can be added to the RCS-like
hierarchical planning as a nice locally useful feature [43]. As a local feature the behavior based
“skills” can learn and evolve [44, 45].
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The contemporary behavior-based control architecture explicitly comprises reactivity, planning,
deliberation and motivation that are supposed to respond not only to the external situation, but
also to the list of its needs, and results of cognitive processes for synthesizing the action [885].
The techniques of behavior-based control formation can be beneficial for organizing joint
functioning of multirobot teams [889]. Most of the behavior synthesizing control schemes are
meaningful in learning and experiential skill acquisition. All relevant literature is surveyed in the
Part II of this Report.

1.8  Novel Methods of Synthesis of Intelligent Controller
Now is a period when the views presented in subsections 1.1-1.7 are being digested by

the research and engineering communities. In a large paper [46] a synthetic view is presented
which essentially explicates the benefits of blending FLC, NN and GA in a joint algorithm,
which is categorized as “soft computing,” and plays the role of an intelligent controller.

In [47] FLC is demonstrated to be a “universal approximator”. As we understand from
subsection 1.2 this is another term for describing the function of fuzzyfication as a function of
generalization.

Further progress can be anticipated in the area of linguistic controllers. A powerful linkage is
established between representation language, robot concepts hierarchy, and the control
architecture that allows mapping control situations and control modes into each other [48]. On a
more practical note, the role of linguistic approach is determined for control in a battle field
environment [49]. A computer engineering aspect of a similar elaboration is shown in [50].

A number of further mathematical developments gives an opportunity to close the gap between
“ad hoc” build-up of intelligent controllers and the overall body of control theory. In [51] a
cautious Wiener filter has been developed for prediction, filtering, and smoothing. Methods of
robust identification are proposed in [52] for linear time varying systems. An algebraic approach
for synthesizing controllers for systems with distributed parameters is outlined in [53].

1.9   Game-Theoretic Controllers
This area is an interesting example, which illustrates the potential significance of

multidiciplinarity for the area of intelligent control. During the 70s there were significant
advances in using principles of Game Theory for control purposes (e.g. [540]). The promise of
game theory was transparent; however, the results did not advance our capabilities in research
and design of control systems with sophisticated functionalities. The game theoretic approach
proclaimed in [55] which was published 20 years later shows that the tools of game theory allow
for an elegant reformulation of other theoretical development in control theory. The authors in
this area are aware of the important avenues linked to the psychology of the game theoretic
representation of supervisory control (with possible applications for planning). However, the
level of multidiciplinarity required in the area of Intelligent Control doesn’t have any substantial
appeal to the researchers in the area, just as it didn’t have any appeal 20 years ago.
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1.10   Defining Intelligent Control
The following excerpts from [56-63] should be taken into consideration in our

further efforts of defining Intelligent Control.

 “An intelligent system has the ability to act appropriately in an uncertain environment,
where an appropriate action is that which increases the probability of success is the
achievement of behavioral subgoals that support the system’s ultimate goal.”

The following definition emphasizes that the system in question processes information, and it
focuses on man-made systems and intelligent machines:

Machine intelligence is the process of analyzing, organizing and converting data into
knowledge, where (machine) knowledge is defined to be the structured information acquired
and applied to remove ignorance and uncertainty about a specific task pertaining to the
intelligent machine.”

A procedural characterization of intelligent systems is given next:
“Intelligence is a property of the system that emerges when the procedures of focusing
attention, combinatorial search and generalization are applied to the input information in
order to produce the output.”

In view of the above, a working characterization of intelligent systems, or of (highly) intelligent
(control) machines, that capture the essential characteristics present in any such systems is:

An intelligent system must be highly adaptable to significant unanticipated changes, and so
learning is essential. It must exhibit a high degree of autonomy in dealing with changes. It
must be able to deal with significant complexity, and this leads to certain sparse types of
functional architectures such as hierarchies.” [56]

From the viewpoint of control theory, intelligence might be defined as a knowledgeable
‘helmsman of behavior.’ Intelligence is the integration of knowledge and feedback into a
sensory-interactive goal-directed control system that cam make plans, and generate effective,
purposeful action directed toward achieving them.

… Intelligence can be observed to grow and evolve, through increased computational power,
and through accumulation of knowledge of how to sense, decide, and act in a complex and
changing world.”  [57]

The following properties of intelligent systems are focused upon:

 “1) A desirable property of intelligent systems is that they are ‘adaptive’…
  2) Intelligence is an internal property of the system, not a behavior…
  3) A pragmatic reason for focusing on ‘intelligent’ control systems is that they endow the
controlled system with enhanced autonomy.” [59]

The trade off between increased functionality and computational complexity is spelled out:
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“Intelligence. Intelligence is a control tool (for the system at hand) that has emerged as a
result of evolution. Intelligence is oriented toward complexity reduction. Intelligence allows
for an increase in functionality with a reduction of computational complexity.” [60]

Viewed as a control problem, the following research areas become very important for the field of
intelligent control:

“• mathematical models for intelligent control systems;
• systematic (or perhaps automatable) design procedures for intelligent controllers;
• application of techniques from nonlinear analysis;
• performance analysis;
• simulation techniques for intelligent systems (particularly, hybrid systems); and
• implementation issues.” [61]

Merger of abstract and descriptive tools is proclaimed to be one of the main features:

“Intelligent control provides the fusion between the mathematical and linguistic methods and
algorithms applied to system and processes. It combines effectively the results of cognitive
systems research, with various mathematical programming control techniques.”  [62]

Yet, most of these properties seem to remain just engineering dreams:
“True intelligent control — control which replicates the most critical aggregate capabilities
of human intelligence — doesn’t exist in any artificial system today.” [63]

G. Saridis has defined the intelligent control problem as: “Intelligent Control is postulated as the
mathematical problem of finding the right sequence of internal decisions and controls for a
system structured according to the principle of increasing intelligence with decreasing precision
such it minimizes it total entropy.” In [64] he has indicated that this definition can be
constructively used for a theoretical design.

Multiple sources associated with industrial applications demonstrate that the above definitions
are productive for the engineering design, too [65-66].

1.11 Evolution of the Usage of the Term Intelligent Control
In the late 70s, K.-S. Fu and G. Saridis introduced the combination of words Intelligent

Control. In the 80s it was brought to the wide spread practice by G. Saridis, A. Meystel, and J.
Albus via the annual IEEE International Symposium on Intelligent Control and multiple
workshops on Autonomous Intelligent Control Systems. Many researchers that belong to the
school of Soft Computing established by L. Zadeh have actively contributed to the nascent
science of Intelligent Control. As far as terminology is concerned the area is not stable yet. The
main issues that precluded from stability are the following:

• In 1985, when the annual symposia on Intelligent Control emerged, it was proclaimed a
theoretical domain, in which control theory, artificial intelligence, and operation research
intersected. This immediately created several controversial issues.
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• Classical control theorists, proud of the well known high intellectual level of their results
could not comply with a fact that a small group of researches “usurped” the term of
intelligence in their results.

• Specialists in Artificial Intelligence traditionally abstained from getting involved in the
dynamic mathematical control issues, and felt uncomfortable with the domain of research,
involved in intelligence, while being beyond their discipline. Yet, it was broadly understood
that expert system based controllers, linguistic controllers, restructurable controllers
containing an on-line decision-maker about restructuring, biologically inspired controllers, e.
g. “eye-hand,” are definitely intelligent controllers.

• Numerous specialists in Control and Automation tried to avoid getting involved in the issues
of cognitive science, psychology, biology and ecology associated with a notion of
intelligence. They preferred to have a set of constructive boundaries, e. g. intelligent control
as a blend of neural networks, fuzzy systems, and genetic algorithms.

• It was clear that the terms Intelligence and Intelligent carry the main responsibility for
terminological instability. However, it was impossible to eliminate them since they also carry
the essence of the scientific problem that was supposed to be resolved. The focus of interest
was exactly in finding the structure, the explanation of functioning, and avenues of utilization
of the mechanisms of natural intelligence that have discovered and continue to be discovered
in the animate nature and in human activities, and that contain many important answers of
how things should be done. This means that the problem of Intelligent Control is intrinsically
an interdisciplinary problem. This is why starting in 1995 NIST and IEEE, in cooperation
with other agencies, have organized a series of conferences that enhance the topic of
Intelligent Control to the more consistent, yet more difficult, theme Intelligent Systems.

It would be instructive to recapitulate the definitions given to the term Intelligent Control.
1. K.-S. Fu linked a concept of intelligent control with the following features that were

traditionally out of the scope of specialists in conventional control theory: decision making,
image recognition, adaptation to the uncertain media, self-organization, planning, etc. [813].

2. G. Saridis gave the definition of Intelligent Control in [372] as a statement of expected
functions containing the promise that it will “replace a human mind in making decisions,
planning control strategies, and learning new functions by training and performing other
intelligence functions whenewhere the environment doesn’t allow or doesn’t justify a presence
of a human operator” (p.4). Expectantly, such systems will “solve problems, identify objects, or
plan a strategy for a complicated function of a system,” (p. 23); will utilize “memory, learning,
or multilevel decision making in response to fuzzy or qualitative comments…” (p.447) In all
these excerpts the concept of goal was not mentioned, because goal is a part of more general
statement, which includes intelligent control by necessity: “…control of a process employs
driving the process to effectively attain a prespecified goal” [372].

3.  The most popular definition belongs to J. Albus [130]: “…intelligence [is] …an ability
of a system to act appropriately in an uncertain environment, where appropriate action is that
which increases the probability of success, and success is the achievement of behavioral subgoals
that support the system’s ultimate goal.”

4. A. Meystel has put together the information about Intelligent Control in [816, 817].
5. J. Albus and A. Meystel has presented knowledge on Intelligent Control in [969, 970].
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The following are observations related to the usage in the literature of the term intelligence and
intelligent control during last decade.

•  In 1988 K. Passino and P. Antsaklis used the term Intelligent Controller applied for adaptive
control of an aircraft: “The actions of the intelligent controller, which will depend on the
detected changes, the avionic systems and the pilot, are made in an intelligent manner
involving on-line decision making processes” [651]. In [657] A. Meystel has determined the
main features of intelligent controllers:
—dealing with ill-posed problems, using nested models of information acquisition,
estimation, identification, representation and control,
—using nested hierarchy of control loops,
—negotiating cost-function among the loops,
—performing joint planning and feed-back compensation within each loop, and
—building up nested hierarchical system of knowledge representation.

• In 1990 L. Acar and U. Osguner proposed a rational and a mathematical theory to compute
parameters of the hierarchies typical for intelligent control systems [814].

• In 1991, G. K. H. Pang describes intelligent controller as a controller, which is utilized for
shaping the behavior of an intelligent system. The distinct properties of this controller is to
provide for the following features [652]:

a) it should “know” what actions to take and when to perform them;
b) it should reconcile the desirable and feasible actions;
c) it should vary the high resolution details of control heuristics;
d) the acquired control heuristics should be the most suitable ones and they should
change dynamically;
e) it should be capable of integrating multiple control heuristics;
f) it should dynamically plan the strategic sequences of actions;
g) it should be able to reason between domain and control actions. In other words, it
should use at least two levels of resolution simultaneously: the level of generalized
“domain actions” and the level of elementary control actions.

• In 1992 D. White and D. Sofge in their foreword to [527] wrote: “To us, ‘intelligent control’
should involve both intelligence and control theory. It should be based on a series attempt to
understand and replicate the phenomena that we have always called ‘intelligence’ — i. e., the
generalized, flexible and adaptive kinds of capability that we see in the human brain.” In the
same book K. Astrom and T. McAvoy wrote: “An intelligent control system has the ability to
comprehend, reason and learn about processes, disturbances, and operating conditions.”

• A paper was published on intelligent test data generation [653]. The reason for calling the
system intelligent is the feature of freedom space, in which a branching is suggested for
generating of parameters of testing.

• In their paper [678], K. Narendra and S. Mukhopadhyay called intelligent control ”a system,
which includes the ability to sense its environment, process the information to reduce
uncertainty, plan, generate and execute control action”. They admit “as more intelligent
control systems are designed, it become necessary to combine adaptation, learning and
pattern recognition in novel ways to make decision at various levels of abstraction.”

• In 1993 H. Xu, C. Baird and D. Riordan defined “intelligent adaptive control” as the one that
provides for process description in terms of mathematical models, parameter estimation
algorithms, adaptive control methods, criteria and requirements for the quality of a system's
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performance, and is equipped with intelligent control and decision strategies. The latter
include:

a) selecting the decision parameters through the expert systems,
b) searching the optimal parameters by parameter tuning,
c) choosing the control or decision strategy from several choices,
d) using explanation facilities of the causal mechanism for user guidance, and
e) monitoring and supervising the system in an uncertain environment [654].

• R. Isermann defines intelligent system as a system with an ability “to model, reason and learn
the process and its automatic functions within a given frame and to govern it toward a certain
goal” [664].

• In 1995 C. W. DeSilva has published the book Intelligent Control: Fuzzy Logic Applications
[659]. L. R. Medsker, in his book Hybrid Intelligence Systems, defines Hybrid Intelligent
Control as a blend of several AI systems within one control system. The set of AI systems,
from which the candidates for blending are taken, is defined as follows: expert systems,
neural networks, genetic algorithms, fuzzy logic systems, and case-based reasoning systems.

• In 1996 a concept of intelligent forging was introduced, which is considered to be a part of
the system of intelligent manufacturing  [655]. "Intelligence" is understood as integration of
the dynamic simulation system for anticipating future decisions. The forging process is
modeled by using variable resolution and finite element modeling, and for the lower level
resolution a neural network compliance control is applied.

• O. Kaynak defines “mechatronics” as “synergistic integration of mechanical engineering
with electronics and intelligent computer control and the design and manufacture of products
and processes” [662].

• R. Isermann explains an intelligent control system “as an on-line expert system that
comprises
— multi-control functions (executive functions),
— knowledge base,
— inference mechanisms,
— communication interfaces,” in which “on-line control functions are usually organized in
multi-levels.” [663]

• In 1997 A. Stothert and I. MacLeod described a distributed intelligent controller that uses
coordination of multiple semi-autonomous agents to control a plant [656]. At both levels of
resolution an extensive protocol of supplying distribution and sharing knowledge between
agents is applied. The advantages of a system are determined by using both a priori and
operational knowledge for control.

• In 1998 the intelligent control system for wastewater treatment plants was created. In
describing this plant the intelligent controller was defined as a system that “human-like tasks
in environments of uncertainty and vagueness with minimal interaction with human
operators” [658]. The authors recognize at least two levels of resolution and corresponding
behavior in the systems to be controlled: the microscopic and macroscopic ones. They wrote
that in intelligent control “there is a clear demarcation between the knowledge and the
information about the process data and the inference mechanism for applying this
knowledge. As a consequence deep knowledge of the process dynamics, i. e. the microscopic
behavior of the process, is not essential. Intelligent control is therefore particularly attractive
when the expertise to control a process is available in a form of linguistic rules acquired from
normal operational experience.” [658]
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• A system for intelligent tool wear estimation was described in [661]. The system synthesizes
the neural network for learning and a fuzzy mechanism for sensor fusion and modeling. In
[815] an Autonomous Intelligent Cruise Control system is described where the function of
intelligence is to insure equal distance from the other vehicles of platoon and compensate for
the actuator delays.

I.2 The Toolbox of Intelligent Control Domain

In Section I.1, we discovered that all systems falling into the category of "intelligent
controllers" are associated with an operation of moving information from one level of resolution
to another depending on where the rules of control law reside. (Each control law can be
represented by a set of rules). Apparently this leads to the existence of at least two levels of
resolution required for functioning, while by recursive expansion of this principle the number of
levels of resolution might be increased. This phenomenon of having more than one level of
resolution is typical for all fuzzy controllers, neural controllers, neuro-fuzzy controllers, hybrid
controllers, and expert controllers. Even behavior-based controllers that focus upon blending
elementary behaviors at a single level of resolution need other levels of resolution for the overall
planing.

In this section the focus is upon formal tools which are required to provide for all of these
features that are characteristic for intelligent controllers. Most of these tools are closely
associated with various features of multiresolutional intelligence and frequently require specific
software solutions.

2.1 Automata as a Generalized Model for Analysis
It is well known that each dynamic system can be represented both by a system of

differential equations or by using automata formalism [67-69]. Therefore, using the automata
formalism does not testify for being within the domain of logical control as opposed to
continuous representation; it carries only a meaning of using a discretized model for representing
a possibly continuous system, and should be done anyway if computer control is presumed.

The use of automata models for continuous systems is a fact of engineering reality, and it turns
out to be convenient for the case of stochastic systems [70], AI Systems [71], and Fuzzy
Controllers as well  [72]. Methods of re-computing continuous systems into fuzzy systems and
vice versa are considered in [940].

The area quickly acquired fundamental mathematical results [73], and can be considered as
theoretical roots for the other subdomains of control theory [74, 75].

It should be emphasized that within the very theoretical tissue of the automata theory the
possibility and the need is ingrained of introducing multiresolutional automata. Such automata
are based upon multiresolutional system of corresponding languages. This was clear as early as
in the 1970s [134].
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2.2 Resolution, Scale, Granulation: Methods of Interval Mathematics
However, all works in automata are traditionally presented in single resolution

formalism. As we noticed, the phenomenon of moving information from one resolution to
another plays a fundamental role in intelligent control.

There are many ways of talking about resolution. Sometimes, it defines the accuracy of
representation by the value of the smallest measurable interval (distinguishability zone). In many
cases, this zone is considered to be a half of the smallest division on the scale used for measuring
a particular coordinate. In this particular case, it is associated with the value of error. It is
understandable that because of this fact, instead of talking about levels of resolution, people are
used to talking about levels of scale. It is interesting that in addition to the existing works on
multiresolutional decomposition [76, 77], there is a stream of literature on scale decomposition
and scale transform [78, 79].

In computer science literature, instead of talking about resolution and/or scale, researchers talk
frequently about fine-granulation and coarse-granulation. The term granulation is used to
determine the smallest zone of distinguishability, and in the area of image processing is called a
pixel for 2-D spaces, and voxel for 3-D spaces. The phenomenon of granulation serves as a key
concept in the fundamentals of fuzzy set theory [80], and a novel wing of mathematics. Interval
mathematics focuses on all these issues [81-82].

Most of the papers in this subdomain are related to theoretical refinement of the spatial [83] and
temporal [84] artifacts of the interval logic determining granulation of a level. Insightful
observations are made within an area of tolerance analysis in an industrial practice of
measurement [85].

2.3 Grouping: Classification, Clustering, Aggregation
Moving information from a higher resolution to a lower level of resolution requires

grouping of this information, which is performed by the virtue of forming sets out of single
objects and considering these sets as objects of the lower level of resolution. When the sets are
formed taking into account only particular features of the objects, the process is called
classification. When all or most of the features are taken into account but the number of
dimensions is reduced by grouping them too, the process is called clustering. When the grouping
is done not by the virtue of similarity but by the virtue of complementarity, the process is called
aggregation. During the last twenty years all these kindred processes have been actively studied.

There is a place for mathematical discoveries related to the possible theory of types foreseen by
B. Russell [86].  The process of clustering is considered a part of the process of fuzzyfication
[87-88]. Clustering presumes dealing with the contextual knowledge [89] and requires using fine
algorithmic subtleties [90]. Reduction of a number of coordinates is performed by selecting the
influential data among the totality of information [91].  The amount of literature on clustering is
formidable. A computer-oriented view upon the domain of clustering gives a concise
representation of this area [665].

Classification is a less demanding procedure than clustering since it doesn’t create new objects
for the lower level of resolution; rather, it bundles together the multiple high resolution features
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in order to create a single feature of low resolution. Numerous computational algorithms could
be considered as alternatives to neural networks algorithms when the supervised classification is
performed [92]. The rules of special classification can be formulated in the terms of fuzzy
membership models [93]. The use of “commonsense” algorithms of ordered weighted averaging
is very frequent[94]. The use of fuzzy techniques for computer grading of fish products is
demonstrated in [98]. Nevertheless, using the standard Bayesian  classification is justified with
Gaussian processes [95].

There is no limit to proposing and applying new algorithms of classification. An entropy-based
approach is proposed in [96]. Classification for smoothing without shrinkage is described in [97].
A hierarchical classifier for implementing an autonomous agent is described in [99]. In this
robot, actions are classified within the framework of joint functioning of planning and reactive
modules of control.

After clustering and/or classification is performed, the generalized parameters of a cluster or a
class should be found. An example of averaging for the purpose of classification is described in
[878]. A traditional approach for finding the generalized parameter or parameters is
“uniformization” of properties of averaging or weighted averaging [666]. An example of
averaging for uniformization can be found in [878] where the texture is classified by using
averaging of the numerical evaluation for the local pattern of the texture. The most important
parameter for distinguishing one averaged uniformed patch from another is the value of the
threshold [879]. The “uniformization” can be performed as a cooperative grouping in a
multiscale setting [667]. The efficiency of averaging approach is described in [668].

Averaging, as a characterization of the degree of uniformity for groups of information units, is a
general tool for evaluating the complexity of computations [880].

Fuzzy set theory is a powerful mechanism for clustering. A further development of the clustering
capabilities as applied to tables, databases, and knowledge representation systems is presented in
the rough set theory [669, 670]. Rough sets are useful for knowledge acquisition under
uncertainty [680].

The process of constructing “chunks” conducted in SOAR [671] is one of the practical examples
of clustering [672].

2.4 Focusing Attention
Focusing Attention (FA) is an operation which is utilized the most in all kinds of control

systems and reflected in literature the least, especially in the area of intelligent control. It is
linked with the fact that focusing attention doesn’t allow for consistent formalization. FA is
rather a result of our preferences, which determine the rough division of all available information
into two classes: one that contains information to be taken into account, and one that contains
information to be neglected. Clearly it requires general thresholding performed upon all available
information. The statistical methods like the one described in [100] are most applicable and are
recommended for choosing the sampling strategy.
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Methods of scoping (determining what is within the scope of user’s interest) always require a
participation of a human, or an introduction of a protocol, which assigns the scope in a
compulsory way (see, for example, [101]). Some attention was paid in the literature to the family
of methods of “windowing”: information is to be taken from a sliding window where the width
and the speed of sliding are prescribed based upon considerations of efficiency and accuracy
[102-106].

The word window in the area of computer vision is understood as related to physical space.
However, the general windowing presumes scoping the information in the arbitrary
multidimensional space like weighted Parzen window [679].

Methods of focusing attention play an important role for increasing productivity of search
algorithms. Finding a limited domain for the subsequent search is called enveloping.

2.5 Combinatorial Search
Any search is a combinatorial search (CS) since formation of combinations is always

presumed. Methods of search are presently well known due to the efforts of professionals in
computer science. Twenty years ago, the term “searching” meant browsing, and different
schedules of browsing could be improved by using the techniques of operation research. Many
methods of search emerged as a result of planning problems formulated as searching for the
minimum cost path on the graph. Pretty soon, it became clear that only exhaustive search is to be
trusted, and algorithms such as Dijkstra algorithm became a part of each programmer’s toolkit.

Control people were exposed to the idea of search at a comparatively late time and were reluctant
to adopt it. Dynamic programming was never welcome within the classical control community
because of a horrendous computational complexity of almost all algorithms of dynamic
programming. AI people found a witty tool of complexity reduction called A*-search [107]. Its
area of application is limited though, because its convergence can be proven only for linear
situations.

In the meantime, exhaustive search was used for planning in so-called configuration space [108].
In 1986 it was demonstrated that substantial complexity reduction could be achieved when the
search is applied in a multiresolutional fashion [109]. In 1987 the same concept was proposed in
the AI community [110] without reference to the original paper [109]. During the subsequent ten
years, the concept of multiresolutional combinatorial search (CS) was confirmed in multiple
applications. In 1996 the same concept was proposed again in [111] for neuro-fuzzy paradigm,
and in [112] by machine learning community.

As a result of using exhaustive search for solving dynamic problems, especially in the
multiresolutional space, the utilization of search algorithms has substantially grown. An
apprehension for using it in problems with dynamics has diminished. Curtailing the space of
search by using envelopes became a standard practice (so, both the SEARCH and the.  In [113]
focusing attention is used to modify and improve the A* algorithm (the authors call it D*).

Different methods of enveloping (FA) are explored in a variety of search (CS) algorithms. In
[114] a bounded look-ahead search is discussed. Actually, this is joint use of search with
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focusing attention (CS+FA). Other methods of merging focusing attention (FA) with search (CS)
are also explored [115].

Another method of increasing efficiency of the algorithm of search is bounding the process of
successor generation. The exhaustive search and its curtailed relatives like A* and D* tend to
increase efficiency by limiting the space of search. But within the limited space they explore all
possible successors. The algorithms of evolutionary programming (EP) and genetic algorithms
(GA) do not explore all possible successors, they try to affect the process of successor generation
[116, 117].

Finally, the search processes can be improved by further exploration of methods of computing
the cost, e.g. in [917]. We would expect that this area has unlimited capabilities of further
development which can be seen from numerous mathematical explorations, e. g. [118, 119]. All
references from this subsection consider search for particular types of combinations — strings.
There are many problems of processing intelligent controllers that are oriented towards different
types of combinations. For example, in many cases of clustering we are interested in obtaining
different topological formations. Instead of strings we often try to receive balls, rectangles, stars,
and trees. Clustering most frequently alludes to the formation of balls. Depending on the
algorithm of searching for a cluster we might end up with balls of different size, and in different
zones of the space. Computer algorithms and architectural issues of combinatorial search are
discussed in [673].

Tabu search [877] is a local search technique aimed at improving a feasible solution to a
combinatorial optimization problem as introduced in [878]. The search begins with an initial
feasible solution, a move is defined to be a modification of a given solution to obtain another
feasible solution. The set of all solutions that can be obtained from a particular feasible solution
by a single move is called a neighborhood of this feasible solution. The move is chosen to
provide the best objective function value of all neighboring solutions. Each neighborhood has the
tabu list, which is comprised of moves that are not allowed to be made at the present situation.
The strategic evaluator updates the list.

2.6 Generalization
Joint application of grouping (Subsection 2.3), focusing attention (Subsection 2.4) and

combinatorial search (Subsection 2.5) amounts to generalization. The latter term is not very well
defined, but this is a process which allows for describing the system at a lower resolution with a
larger scope, with a smaller number of details, and with the consequences penetrating further into
the future. Each lower resolution level of RCS is the result of generalization of information
represented at the higher resolution level. Naturally, the very fact of existence of Generalization
(G) invokes a possibility of an inverse procedure (G-1), which is called instantiation.  Unlike
Generalization that requires Search among different alternatives for a subset that should be
grouped together, the instantiation executes the procedure of search among different alternatives,
looking for the one that should be considered the best representation of the generalized object
under concrete circumstances.

One of the traditional types of generalization, well accepted in the research practice, is
approximation. Methods of averaging for receiving the simplest approximation and using
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standard series decomposition are well known. Less known are randomized local approximations
[120], or adaptive averaging [121], which are instrumental for modeling the unmodelled
dynamics. The usefulness of fuzzy piecewise approximators has been shown in [122]. It looks
like any generalizing (approximating) system should  be fuzzy [123]. Generalization as a search
for the fuzzy attractor is illustrated in [124]. A complete theory of fuzzy approximation for SISO
case is given in [47 and 125].

Operation of generalization produces new objects. The latter belongs to the level of lower
resolution that contains smaller number of entities and thus allows for computational complexity
reduction. The results of generalization have always a lower resolution and lower accuracy than
each of the generalized objects. On the contrary, the results of instantiation frequently produce
more than one object, and the produced objects have higher resolution and accuracy than the
object to which the operation of instantiation was applied.

2.7 Computational Complexity
We have already noticed that many tools under discussion either focus upon or relate to a

problem of computational complexity reduction. Computational complexity is understood as an
estimate for the number of elementary computations required for solving the control problem.
This type of complexity is called Kolmogorov’s complexity [873]. Both Shannon’s and
Kolmogorov’s complexities serve the same purpose: to evaluate the computational complexity
by judging the results of state space tessellation.

Computational complexity and structural complexity are interrelated and a designer should
maintain a very intimate balance between them. In [874] this interrelation is analyzed, and it was
concluded that there are combinations of an algorithmic solution and an architectural solution for
information representation, which minimize the number of computations. Another measure of
complexity takes into account not only the number of information units in the message but also
the syntax of the message [875]. According to Chaitin’s theory, the complexity of a sequence of
symbols (relative to some automaton) is defined to be the length of the shortest binary program,
such that when it is used to instruct this automaton, it produces that very sequence. A technique
was proposed in [876] that can be used for evaluating the joint complexity for a set of
information units that are syntactically interrelated.

This interest in complexity is not purely an academic one. It is driven by practical problems that
very easily can become intractable if one doesn’t take special measures to properly organize the
processes of computation [903], in order to minimize the value of complexity. Planning robot
motion in an uncertain environment is linked with highly complex computations [904]. The need
for searching, like in dynamic programming, led to an increase in complexity as shown in [905],
and the simple measures to reduce the complexity of the search did not give too much relief
[906]. A variety of methods of complexity reduction are proposed regularly, especially in the
area of control [907]. In [908] it was demonstrated that the most powerful tool of complexity
reduction is organizing a controller in a multiresolutional architecture. We will describe later that
construction of a fuzzy logic amounts to introduction of a multiresolutional system. The linkage
extends to similar results in complexity reduction as described in [932].
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It was demonstrated both in [107] and [109] that by using a multiresolutional controller, or a
planning system with multiple levels of abstraction, computational complexity can be drastically
reduced. Further theoretical works refine the initial findings and should be studied to obtain
numerical recommendations in particular cases. In [126] the quasi-linear time complexity theory
is proposed. Some of the linear time algorithms are proposed in [127] for memory hierarchies.
Theoretical analysis of these algorithms is given in [128]. Some practical methods of reducing
complexity in the algorithms of navigation are given in [129].

2.8 Elementary Loop of Functioning
It is imperative to remember that levels of resolution do not exist by themselves. Each of

them should be considered as a part of the close loop. The closed loop control at each level of
resolution is called an elementary loop of functioning (ELF). It contains six or seven modules as
shown in Figure 2.8.1 [130, 131].

Clearly, the control process in ELF depends on the level of resolution for which this ELF is
constructed. All examples from the literature that describe intelligent control systems use ELFs
for representing a closed loop of functioning. We refer here to two examples [132 and 133].

2.9 Multiresolutional (Multiscale, Multigranular) Approach
Multiresolutional world representation was possible due to the development of the

automata theory [134]. From this point of view, the emergence of the theory of fractals was not
the revelation presented in [135]. It was rather premonished by a decade of active research in
hierarchies of languages and automata as applied to biology (see survey in [136]).

Multiresolutional methods of world representation were quickly incorporated by researchers in
computer vision and image processing [137-139]. Similar research was conducted in the area of
finite element algorithms [140]. The effort in finite elements evolved into the broad domain of
multigrid algorithms [141-142]. A development of all these efforts was embodied in a
multiplicity of works and multiresolutional signal processing and wavelet theory [143-145].

Further developments included emergence of the multilayer logic for knowledge representation
[146], probabilistic and robust methods of image segmentation [147, 148], and wavelet based
techniques for pattern recognition  [149]. An interesting problem emerged: whether the level of
resolution should be fixed or the granularity should changed depending on circumstances [150].
Different scales or different resolutions have arrived to the area of control much earlier than the
concept of multiresolutional world representation made it absolutely unavoidable. The concept of
multirate controllers has emerged as a response to the frequent situation when bandwidth
separation of control processes led to a substantial reduction of the computational complexity in
control systems. Examples of multirate controllers can be found in the literature [151-154]. All
RCS controllers are multirate controllers.

2.10 Dealing with Uncertainty
In many definitions of Intelligent Control, the phenomenon of uncertainty is mentioned.

Indeed, without uncertainty the intelligence is not necessary, everything can be successfully
preprogrammed. Therefore “Dealing with Uncertainty” is of key importance for our purposes.
What are the methods of dealing with uncertainty employed within a domain of intelligent
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control? It would be a valid question for each subdomain of the control theory. In this case, it
turns out that all tools, discussed above, were actually developed for dealing with uncertainty.

The most radical tool for dealing with uncertainty is not to describe it at all. This means, that the
controller can be built as an adaptive system, which allows for disturbance attenuation [155]. In
this and similar cases, constructing the actual model of uncertainty was carefully avoided, but it
became necessary to introduce the concept of unmodeled dynamics [156]. Particular models of
uncertainty in some cases allow for “nice” mathematical advantages [157].

In systems with specific functions of estimation and identification, the model of uncertainty was
constructed in the terms of a theory of stochastic processes. In [158] a particular case of
estimation is described that employs estimation with focusing attention by a sliding window (see
Subsection 2.4), which is called ARMA, and constructs the model in the terms of auto-regressive
moving average [159, 160] (see Subsection 2.6).

Multiple models of stochastic approximation were used for modeling uncertainty [161, 162], and
many of them alluded to using
a) averaging of the results (see Subsection 2.6);
b) separation of the stochastic sequence into different time-scale channels (see Subsection 2.9);
and
c) the assumption of Gaussian statistics (the latter was overwhelming).

Yet, in numerous cases the statistics were not Gaussian at all, and methods of non-parametric
statistics have been proposed [163]. In other cases of state estimation, the pseudo-linear
regression was suggested [164]. All these theoretical varieties were always associated with an
increase of computational complexity, and there was always a strong desire to escape these
complexities by moving the problem to the lower resolution level by using a more efficient tool
than the theory of probability. Fuzzy set theory turned out to be one of these tools [165-166]. An
illustrative example of using fuzzy logic for uncertainty reasoning is described in [178]. The
adjacent class of problems was associated with the evaluation of possibility [167] where the
estimations don’t have any statistical bases, too. The linkage between statistics and theory of
fuzzy sets is presented in [168].

This blend between theory of probability and theory of fuzzy sets is called fuzzy uncertainty, and
is instrumental in both feedback control [169], computer vision [170], and other subsystems of
intelligent controllers.

Substantial attention in the literature is allocated with elements of the theory related to
conditional probability in cases when statistics are not known or not available. This tool is
related to the theory of belief and used for hypothesis evaluation when the evidence is uncertain
[171]. A special case of belief evaluation is related to a case when we deal with multilevel
preferences, which are typical for RCS value judgement [172].  More complex cases of belief
evaluation are related to representing degrees of belief for objects or events organized into
networks [173]. Updating procedures for the value of belief are described in [174]. These belief
networks  are especially instrumental for determining strings of cause-effects [175].
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Recently, a novel approach to estimation can be found in the literature: when not only the model
of uncertainty should be built, but also a pattern within a set of multiple sources of uncertainties
should be found [176]. Further developments focused both on instantaneous patterns (patterns
existing at a particular moment of time) and on temporal behavior of the sources of uncertainty,
which determine the evolution in time of these patterns. Taking into account these factors would
allow to plan measures how to deal with the sources of uncertainty [177].

In conclusion of this subsection, it would be prudent to notice that all uncertainty issues typically
boil down to a need for using models with discrete variables. Indeed, any uncertainty is
equivalent to the error in a particular variable of interest. Any error is practically a discontinuity
of a representation, i. e. the information of a particular variable is discretized; it demonstrates
gaps in its continuity. This  discretization of information about variables can be modeled by a
special function specifying the discretization of space [179]. Another evidence is the multiplicity
of examples that use a tree representation [180] of uncertainty. It is possible to show that
eventually, it ascends to the wavelet model (see Subsection 2.9).

Recently, a great interest has emerged in the issue of higher order uncertainty, i. e. the
uncertainty in the techniques and results of evaluating uncertainty [681]. Researchers are
studying second order distributions and the subtleties of acquiring these distributions [682]. It
turns out that in the serious cases the higher-order uncertainty might be of key importance for
each decision maker or a decision making subsystem [683].

2.11 Reasoning
All tools applied in intelligent control systems and described in the subsections 2.1-2.10

are tools of reasoning1. The Theory of Automata suggests how to reason about systems that
transform an input string of symbols into an output string of symbols if the transition and output
functions are given as mappings of these symbols into each other. Organizing information in
multiple levels of resolution is a mechanism of reasoning about objects that can be represented
with different accuracy.

Grouping is reasoning about unifying a set of components into a single object. Focusing
attention is reasoning about information streams: which part of it can be neglected.
Combinatorial Search is a reasoning of finding the best string or the best cluster. Generalization
is reasoning about forming new levels of abstraction. Reasoning of temporal processes with
closure requires introduction of the elementary loops of functioning. Organizing overall
information into a multigranular system is reasoning about how to reduce complexity of decision
making. Creation of probabilistic, possibilistic, and fuzzy models is a set of different ways of
reasoning about uncertainty.

Why have a separate section on reasoning? That can be explained as follows. Reasoning is
required for obtaining implications. These are traditionally associated with “deduction.” Yet,
“induction,” “abduction,” and other tools of plausible inference produce implications as well. It
would be useful to find common laws of reasoning for all the above cases of reasoning. The

                                                
1 Reasoning – 1. to use the faculty of reason so as to arrive at conclusions; 2. to discover, formulate, or
conclude by the use of reason (Merriam-Webster).
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expectation of the existence of such common laws is looming. These are two major premises that
support these expectations.

The first premise of reasoning : the practice of dealing with systems is a practice of organizing
information into classes, and gradually constructing hierarchies of these classes, so that the
collected information could be found and used. Thus, the laws of organization of information
should be declared  that would allow reasoning about membership in particular classes.

The second premise of reasoning : the experience of dealing with information demonstrates that
all cause-effect inferences that are of utmost interest to the user cannot be obtained solely from
past experience. Some of them should be anticipated. There is a hope that because of
epistemological redundancy, ingrained into stored information, the inferences of interest are
hidden in the previously stored classification and multiple cause-effect statements. The role of
reasoning is to infer the required cause-effect statements from the already existing ones.

These two premises explain the aspects of further discussion. The development of inferences and
obtaining implications is required for normal functioning of the intelligent controller. First, these
could be simple tautological inferences that allow for the theorem proving and do not necessarily
deliver any novel information. Second, the tools of reasoning must be found that necessarily lead
us to the non-trivial results.

The pragmatic part of this introduction can be formulated as follows: all available knowledge of
the world is represented in two databases: the one with multiple hierarchies of objects belonging
to classes (DB-1), and the second with multiple hierarchies of cause-effect statements (DB-2).
The goal of reasoning by using these two databases is to receive either images of the objects we
lack in DB-1, or statements of cause-effect we lack in DB-2. The expectation is that the laws of
manipulation of information exist and allow for receiving these two desired results.

General Issues
The following general issues should be taken into account while discussing the subtopic of
reasoning:

a) the fact that it is impossible to provide for a consistent 2  reasoning process is one of the factors
that determines the need for a multiresolutional representation: it follows from Godel's theorem
of incompleteness [181];
b) difficulties in obtaining a consistent representation at a level is aggravated by the realistic
situation (presented in natural language descriptions with multiple sources, sets of various
sensors, maps, etc.) where the redundancies and lack of information (“don’t cares”) are dealt
with in a disorganized manner, or even disappear in systems of representation [182];
c) specifics of reasoning in intelligent control systems can be formulated as a need of reliable
implications based upon available representations rather than constructing the representation for
satisfying a set of rules of reasoning without verifying the implications it produces [183];

                                                
2  Consistency – the ability to be stated (asserted) together without a contradiction (Merriam-Webster).
Consistent reasoning process – the one that does not contain contradictions. In logic: a method for
establishing the consistency of an axiomatic theory is to give a model.
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d) a strong factor affecting the techniques of reasoning is practical abandoning of missing data
(in addition to redundancy mentioned in “b”) [184].

Therefore, the systems of reasoning should be flexible enough to incorporate
—quantitative as well as qualitative reasoning,
—generation of limited suggestions, as well as temporal reasoning,
—construction of indirect chaining tautologies as well as constructing direct inference [185],
—employing non-monotonic as well as monotonic reasoning,
—deriving implication from direct experiences as well as reasoning by analogy, and
—utilizing both certain as well as plausible reasoning.

All possible advances in developing these kinds of reasoning should be supported by processes
of comparison and selection and materialized in software packages. Examples of reasoning that
use many of these tools simultaneously are described in [19, 186 and 187]. On the other hand in
most systems there are several parallel processes of reasoning, and their results should be
integrated [685]. The latter problem invokes the need for searching for consensus [686].

The initial and final issue of any reasoning process can determine the validity of the overall
reasoning. Indeed, before we start dealing with chaining the rules, these rules have to be learned
from databases [684].

Qualitative Reasoning
Qualitative Reasoning is a theory of dealing with the weakest possible statements of

class-belonging and cause-effect that have been obtained from qualitative observation. Although,
this type of reasoning is very reliable, it is often insufficient for multifactor on-line decision
making. Its general maxims are presented in [188]. A generation of layered causal models is
presented in [189] for failure analysis. An example of reasoning about motion is given in [190].

Some theoretical advancements in this area are related to further development of belief models
[191] and to theoretical models hypothesis generation in their temporal analysis [192].

Theorem Proving
Most of the problems emerging in Intelligent Control may be formulated in terms of

theorem proving if the latter will be understood as a creative process including the element of
discovery. However, a history of theorem proving demonstrates a strong orientation toward just
construction of the tautology chains like in a well-known AI case of resolution-refutation. A
history of automation of proof is described in [193]. The orientation toward construction of the
chains of tautology can be applied even under uncertainty [194], and in the cases of multistrategy
situations, for example, using knowledge-bases [195].

Classical schemes with resolution-refutation can be applied in parallel inference machines [196].
Practical applications are very broad. An example related to proving safety is given in [197].

Temporal Reasoning
From the very beginning of using logical schemes for control systems based upon

automata models, it was clear that the significance of the temporal transition models couldn’t be
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overestimated [198]. For the purposes of control theory it meant finding the temporal behavior of
automata, e.g., within supervisory schemes [199]. Within the AI paradigm, this was done by
using the logic of actions [200], where cause-effect relations require making statements about
frames, bounded by our focus of attention.

Temporal reasoning should be practiced for all problem of planning under uncertainty [201]. A
very short term planning boiled down to the property of reactivity which is often associated with
particular time constraint [202]. All event-based processes alluded to temporal logic, sometimes
with uncertainty factors, sometimes in the paradigm of fuzzy theory [203]. In both cases the use
of knowledge bases was presumed [204].

Temporal logic allows for integration with normal inference rules [205]. An example of using
temporal reasoning for diagnostics is given in [206]. Within architectures like RCS, concurrent
functioning of event-based controller at a level is a regular operation. The fundamental analysis
of related concurrency issues can be found in [207].

Nonmonotonic Reasoning
The problem of nonmonotonic reasoning emerges in all cases related to dealing with

semantic networks, natural language representation, where epistemic logic is needed [208]. The
regular algebraic theory of computational languages doesn’t suffice [209], since it doesn’t
address the issues of belonging to a particular context. This issue is not addressed in classical AI
presentation either [210].  An important issue of relations between the logical statement and its
context is the issue of belonging to a more general representation of a situation, in other words,
to the lower level of resolution. This evokes the need to understand processes of generalization
and clustering [211, 212].

Technically, the nonmonotonic reasoning constructs a scale of truth where different values of
truth are characterized by different values of confidence in different contexts [213]. Measures of
confidence are not necessarily based on human expertise; the value of “confidence” can be
evaluated by using well-defined analytical expressions from computed variables, or experimental
data. Some results in nonmonotonic reasoning are oriented toward measuring the entropy of
statements of interest [214]. There is a linkage between nonmonotonic reasoning and the
ordering of statements by the values of their possibility [215].

Probabilistic Inference
We have already mentioned that probabilistic reasoning is one of the frequent schemes of

evaluating the reliability of logical statements. This evaluation is based upon qualitative “event
generators”. The recommended inferences are determined by the relative frequency of events
that can be generated by our quantitative model. In [216] a model of probabilistic reasoning is
presented for evaluating the condition of a car, which leads to a hierarchical decision tree in
which probabilistic inference is possible.  An effort to blend the probabilistic event generator
with predictive models in which the size of sample is the variable is given in [217].

Possibilistic Inference
This type of inference employs the apparatus of First Order Logic typical for probabilistic

models to which corrections are introduced by L. Zadeh, D. Dubois and H. Prade [218]. There is
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a substantial overlap between the results on semantics of nonmonotonic reasoning and semantics
of possibilistic reasoning [219].

Analogical Inference
Analogical Reasoning is a precursor to any inductive reasoning when we arrive at

a conclusion by finding a similarity or analogy between evolving prior results. Analogical
arguments are discussed in [220]. The analogy always presumes that there exists some
structural similarity between the observed systems and its representation, or between
several systems of representation. An effort to demonstrate how the analogical similarity
can be used in practice is reported in [221, 222].

Plausible Reasoning: Abduction, Evidential Reasoning
All methods of plausible reasoning allude to insufficient information. V. K. Finn has

developed a persuasive mathematical analysis, which shows that there are cases when the
validity of reasoning under conditions of insufficiency of information can be proven
mathematically [223]. The author uses the model of reasoning that was first introduced by J. S.
Mill and calls it JSM-Reasoning. In [224] it was demonstrated that some methods of JSM-
Reasoning ascend to multivalued logic.

An approximate reasoning based upon using fuzzy logic is described in [225]. There exists an
abundance of methods of reasoning which are called abduction and are actually reasoning by
induction with insufficient statistics. In most of these cases the justification for abduction is
found in some circumstantial evidence taken from probabilistic semantics networks or
possibilistic networks [226]. There are even some software packages based upon this approach
[227]. Abduction is known to be successful in diagnostics [228, 229]. There are papers that try to
develop a theory of circumstantial evidence to justify abduction [230]. A model for evaluation of
circumstantial evidence is described in [687]. A mathematical approach for evaluating a
composite evidence (an evidence that is combined from a variety of sources) can be found in
[688]. Abductive reasoning is compatible with probabilistic temporal prediction [231]. Most of
the computational approaches for all of these methods are discussed in [232].

Neural, Fuzzy, and Neuro-Fuzzy Inferences
All these method of reasoning found broad application in fuzzy logic controllers, usually

including neural network components. National Semiconductor’s NeuFuz system combines
fuzzy logic and neural networks which learn a system’s behavior and generate fuzzy rules. The
system is equipped with a fuzzy rules verifier that validates generated rules and optimizes their
numbers [233]. Systems of this type are abundant in the contemporary industrial practice.
Theoretical explanation for the processes of these type of systems can be found in [234]. The
mechanism of constructing a network of neuro-fuzzy inference is described in [235]. The degree
of resolution of fuzzy logic inference can be evaluated by using theoretical premises [236].

The ways of fuzzyfication and de-fuzzyfication affect the resulting rules at both levels of
resolution involved in transformation. The legacy influence is demonstrated in [689]. In some
cases, it is possible to avoid taking into account the legacy influence and use similarity based
fuzzy reasoning methods [690].
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2.12 Comparison and Selection
Usually, all methods described in the previous subsections are applied to prepare the

alternatives for the future solutions, and a Selector should exist that makes a final decision on the
preferable choice. Any procedure of clustering requires choosing a preferable cluster. Within a
procedure of clustering at every step we should make a choice: into which available cluster a
particular object should be included. The simple model of selection is based upon comparison
using a particular distance measure [237]. Different techniques should be used depending on
configuration of decision regions, whether they are convex or non-convex [238].

The process of selection can be substantially complicated if the alternatives should be searched
for, and in the same time there is more than one criterion for comparison of these alternatives
[239]. Even more complicated is the process of selection when we have a combination of
multiple criteria and multiple decision makers that are competing with each other [240]. Even if
decision makers cooperate, the problem of voting is what selection frequently boils down to
[241]. In all of these cases the phenomenon of “regret” is supposed to be taken into account
[242]. Methods of gain theory allow resolving some of the conflicts that emerge in the cases with
the multiple decision makers [243].

One of the working tools of the selection process is a procedure of matching. The theory of
matching multiple patterns is presented in [244].  More complicated cases of matching are
typical for systems of computer vision [245]. In all cases of matching, we deal with hierarchies
of features, selections and discriminations [246]. Matching can be a time consuming operation
and affects the complexity of an intelligent controller [247]. Matching is frequently associated
with threshold selection, and relies upon probabilistic methods [248].

Critical cases of comparison and selection are associated with solving the control problem of
identification [249]. This problem is similar to the problem of model construction [250].
Another domain of application is conflicts resolution [251].

The early problems of AI led to the need for comparing problem solving methods [252], while at
the present time multilevel decision making is a problem for novel control architectures [166].  It
may happen that the Selectors of different levels of resolution should be connected to each other
in assigning the strategy of selection.

2.13 Software
All methods of reasoning rely heavily on software packages. Optimizing software for

reasoning sometimes gives substantial financial reward [254]. Most of the available sources of
improvement are hidden in the subtleties of object-oriented databases and interaction between
elements of a program, or a user and a program [255]. This area is very active: there is a
substantial information flow, many conferences, and research departments in various
organizations. However, it is not rich theoretically; at least, no independent theoretical
framework has been declared; also there are papers that are engaged in establishing a theoretical
background for the software improvement [256].
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I.3 Sensory Processing

In Sub-section 2.8, the ELF was introduced as the building block of any Intelligent
Controller. ELF consists of the following subsystems:  Sensory Processing (SP), World Model
(WM), Behavior Generation (BG), Actuators (A) and Sensors (S). All external information is
delivered into the subsystem of Sensory Processing (SP). In the same way as the whole
intelligent system consists of SP-WM-BG which submits control sequences to the system of
actuators, the system SP of sensory processing by itself can be also represented by a block
diagram with its own input processing faculties, its own knowledge representation, and its own
behavior generation, which provides for planning and execution only sensory processing
activities. Naturally, as the overall intelligent control system precipitates into a multiresolutional
architecture, which minimizes its complexity, the subsystem of sensory processing can be
organized into its own multiresolutional system, which minimizes the complexity of its own
sensory processing. The levels of resolution of SP, as we will see, do not necessarily coincide
with the levels of resolution of overall intelligent controller.  Sensory processing is a self-
contained area of scientific, engineering and psychological endeavor, which has developed its
own languages (e. g. as in [257]), its own methods, like space scale representation [258], and its
own ways of dealing with hardware [259].

In this section we will address only the specifics of sensory processing that are related to
intelligent controllers.

3.1 General Issues
A fundamental question explicated or tacitly presumed in all papers on sensory

processing is the issue of the coordinate transformation which eventually maps sensory inputs to
realistic or virtual actuator outputs. In [260] authors argue that “visual inputs are collected in the
coordinate frame of the retina on which the visual environment is imaged, but motor movements
such as reaching are made to locations in external space. Changes in the eye position will alter
the retinal locations of targets while their spatial locations remain constant. As a result, visual
inputs must be transformed from retinal coordinates to coordinates that specify the location of
visual objects with respect to the body to perform accurately directed movements.”

Other transformations can be introduced depending on the system at hand. Indeed, in a mobile
autonomous robot, a system of computational transformations is required between ego-sphere
coordinates and global coordinates [130]. Among other fundamental general issues the following
should be mentioned:

a). Multiresolutional representation which should minimize SP-related computations.
Among the recommended methods the most significant are methods of quadtrees [261] and
multigrid relaxation method [262].  Similar multiresolutional representation is the hierarchical
scene labeling [263].
b). Construction of the fundamental model of sensory representation.

There is no agreement on the preferable form of models. For the case of vision, useful models
are proposed in [264]. These models are supposed to reconcile different visual laws that are
conflicting in some details. In [265] a comparison is conducted of various models by the method
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of simulation. These models are used for both direct and inverse mappings [266]. Models
applicable for motion estimation are discussed in [267]. Inverse kinematics of multi-link
manipulators are analyzed in [581].

3.2 Depth and Range
A problem of determining depth and range with sufficient accuracy is of special

importance for SP and intelligent controllers because of uncertainty, which is associated with
these measures. Using radar and laser range finders doesn’t eliminate this problem; it just moves
it into a different framework [268]. Binocular stereo methodologies frequently rely upon
“sepstral” filtering [269], which uses frequency analysis of some algebraic transformations of
numerical data. Methods of comparison for stereo images are presented in [270]. The method of
focal gradient for estimated distance is described in [271].

3.3 Image Processing
The difference between the 90s and the 80s in the content of the weakly organized

toolbox of Image Processing is in the fact that algorithms became multiresolutional while the
techniques remained the same as before. In the 80s the methods of detecting edges were
precisely formulated (e. g. [272]). This problem is not out of fashion even now [930]. The
multiresolutional technique for edge detection was called a pyramid [273]. In the 90s, the
multiresolutional algorithm of image processing turned out to be regular practice [274, 275]. The
multiresolutional method of quadtree information organization (and later – octree) became
frequent for solving problem of image compression [276].

It became a common practice not to use any analytical forms for encoding spatial relations. The
neural networks for learning complementary relations turned out to be more flexible than stiff
analytical constructions [277]. Level of resolution is now considered to be a factor determining
sampling of images which turned out to be important in a model-based vision [278], and in
various systems of image segmentation as well [279]. More attention is paid to methods of
segmentation when occlusion is expected [280], which often allows for obstacle detection by
using indirect information  [281].  All of this allows for development of new tools of feature
extraction [282].

Various methods of filtering have been introduced including adaptive structures, efficient in a
broad range of probabilistic conditions [283]. Nonlinear methods of filtering have been applied
successfully for enhancement of edges and corners [284]. Integration of image modules was
equipped with novel mathematical methods, which used the concept of fixed zones of attention.
The example with Ames trapezoid window is described in [285]. Sliding window based tracking
of roads and intersections is described in [286].

3.4 Image Interpretation and Understanding
The general approach to image analysis including interpretation and understanding does

not deviate from the joint use of syntactic and statistical methods of pattern recognition outlined
by K. S. Fu [287]. R. Haralick’s methods of mathematical morphology are a good complement to
syntactical models [288]. Elements of the image are frequently identified by using autoregressive
models [289].  There are not too many innovations in the overall systems for interpretation and
understanding. All of them employed standard syntactic methodologies [290], which, in the less
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structured cases, evolve into more general rule-based systems [291]. The issue is surveyed in
depth in Part II, Section 10.

3.5 Motion Analysis
Motion Analysis can provide many powerful clues for image interpretation while creating

additional problems because of blurring and perceptual instability. Neurocognitive views on
motion analysis provide interesting hints suggesting how to deal with this problem in a computer
based system [292]: “The cortical representations of moving images may be transformed from
absolute retinal coordinates into a relativistic coordinate frame using local motion information
intrinsic to the retinal image.” The latter is “ linked to the local velocity field so that common
(reference) image motion is subtracted out during visual processing.” Certainly, this is a
premonition of optical flow analyses and representations.

The information of motion should be supported by a thorough estimation of the absolute position
[293], which sometimes allows for direct recovery of motion [294]. Interestingly enough, motion
estimation and analysis leads to the multiresolutional image representation [295]. This paper
[295] employs the theoretical framework of image pyramids. Later, the inner mechanism of
multiresolutional motion representation is explained in [296] by using well known clustering
algorithms.

Functioning of Motion Detectors is improved by prediction devices [297]. At a particular level of
resolution deformable templates should be used within various spatio-temporal data models
[298]. Similarly, the deformations are introduced not only to elementary units of the image but to
the larger apparent contours [299].

Multiple sources of disturbances are to be taken into account in motion analysis problems. One
of them is associated with the stereo transformation of ego-motion mapping [300]. Dealing with
systematic errors can be learned with experience [301]. Global robustness can be achieved by
methods of theory of nonlinear systems for dealing with state measurement disturbances [302].
In most of the practical problems the sources of error can be treated as multiparameter stochastic
processes [303].

3.6 Concepts of Sensing
The variety of conceptual architectures is converging in the present time to a more or less

uniform view of perceptual organization [304], which confirms the earlier theoretical views on
the structure of images [305].

3.7 Sensor Fusion
The area of sensor fusion is still in transition. Many of the new methods turn out to be

just new methods of approximation [306]. Very often, using multiple sensors requires well-
organized logistical systems similar to one described in [307]. In some cases fusion is easier not
at the level of sensory processing, but after SP is finished and we have to fuse multiple objects
into a unified world [308]. Nevertheless, many of the sensor fusion problems can be successfully
solved by using non-parametric models for blending fuzzy data [309] and methods of dealing
with evaluation of relations in the graph theory [310].
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3.8 Estimation
The theory of estimation based upon on well-established mathematical methods [311].

These methods are being polished in time but maintain the same theoretical core [312]. Practical
applications of these methods can be found in [313]. More sophisticated applications of the same
methods are demonstrated [267]. A host of experimental data is demonstrated in [314].

The advantages of recursive estimation can be demonstrated for the cases when the
comparatively unknown senses are used [315, 316], or not well formalized approaches are used
for object recognition and data organization [317]. For the case of vision, the techniques of
recursive estimation is described in [809].

I.4 World Model

Actually, the problem of World Model is presented implicitly in all previous sections.
Indeed, sensors presume a system of representation, which receives from them the information
updates. Reasoning manipulates with information that either has been previously been stored in
the system of representation or was initially received, reasoned with, and then, stored. It is also
prepared by our prior presentation that the information will be stored in the multiresolutional
form. Most of the issues of representation concentrate around multiresolutional information
representation [318-320].

4.1 Multifrequency Representation
Multifrequency representation is an enhancement of an idea of the Fourier Transform,

which has expanded into a window Fourier Transform or Gabor Transform, and later into
Wavelet Transform. The latter decomposes the signal into a family of functions which are
translations and dilations of one of the possible base functions. Also in [321] wavelets are
considered to be the theoretical underpinning of the pyramid representation as in  [274] or [322].
They all are just further developments of the Fourier and Gabor earlier ideas.

4.2 Quadtrees
Like the previously mentioned wavelet transform, quadtrees don’t really care about

multiple resolutions. Both wavelet transforms and quadtrees have the same resolution at all
levels: the highest possible resolution.  Using the quadtrees is just a convenient technique of
hierarchical referencing the elements of representation [323, 324].

4.3 From Multiple Scales to Scale-Transform
The fact that the concept of scale is very demanding and determines the granularity of

state-space was considered a secondary one in the earlier papers on multiple scales
representation [325]. The attention to scales and the sense of granulation came from applications
such as texture segmentation [326], top-down segmentation for object detection [327], multi-
scale shape representation [328]. Thus, the problem of choosing the optimal scaling method has
emerged [329]. At this moment the computer vision community started reconsidering
determining resolution in the gray level image pyramids [330]. It became clear that more rigid
mathematical methods should be introduced, and the “scale-transform” has emerged [331-333].
Different approaches have been used for morphological filtering with multiple scales [334]. In
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[335] several time frequency representations are compared on the value of resolution that can be
achieved in them.

4.4 Multiple Resolutions in Descriptive Representations
The factor of resolution was traditionally overshadowed by the issue of abstraction [336].

Also, the phenomenon of nestedness was acknowledged among the intrinsic practices of
knowledge-based systems [337], and reflected in the decision tables [338]. The granularity of
detail is very important when the system of constraint satisfaction is being constructed [339]. On
the other hand, while specifying rules of reasoning for inconsistent knowledge bases, the
attention to the level of detail turned out to be a must for overdetermined models [340]. The
multiresolutional character of knowledge was raised as an issue of integrity and security of
knowledge in multilevel semantic networks [341]. For taking care of these phenomena, the value
of resolution should be specified for both space and time at each level of the system [342].
Methods of demonstrating multiresolutional hierarchies were proposed in [343]. The standard
predicate calculus is not sufficient for reasoning in the multilevel system with multiple
resolutions, and useful additions to the rules of reasoning have been proposed [344].

4.5 Implicit Acknowledgements of Multiple Resolutions
Literally, all databases and all knowledge bases have accepted the multiresolutional

approach. An example of hierarchical knowledge organization is given in [345], which can serve
as a source of multiple cases of using the MR concept. The robotic application of a syntactic
system for decision-making [346] contains an implicit use of the multiple resolution concept. A
good example of a behavioral science can be found in [347].  Actually, all sub-module inclusions
in databases testify for connections between two different resolutions [348].

4.6 Multiresolutional Semantics
All cases of multiresolutional connections in databases and knowledge bases are

realizations of multiresolutional semantics. In [349] a semantic method is described in which this
property is mentioned. The same property is described for a relational query language in [350].

4.7 Evolution of the Automata Model
There are several developments stemming from the theory of Automata. The standard

schemes have been further developed by adding the probabilistic evaluators in addition to the
cost or instead of it [351]. In the same way the evaluators could be fuzzy or presented in
multivalued logic. All of these are allowed by the proposed model.

Another useful development was an introduction of Petri Nets (PN) [352].  PN enhance the
functionality of conventional automata schemes by making the edges of the automata graph
active and controlled. It is hard to judge whether the use of PN will become more widespread. In
[353] they are presented as an alternative to automata as a part of real time control architecture.

4.8 Object-Oriented Bypassing of the MR-Issues
During the last ten years, object-oriented approaches became prevalent in the area of

databases and complex system design [354]. The very concept of the object-oriented system is
based upon an idea of an object “equipped” by references to other objects. These objects either a)
are included into the original object as its component or parts, or b) include within themselves
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the original object as their component or part. The concept quickly became a substitute for the
multiresolutional methodologies especially in the cases when the research or manufacturing team
contained many people with computer science or software engineering background [355, 356].
The roots of the object-oriented approach can be easily detected in the earliest papers on
document databases [357].

4.9 MR-Issues Related to Logic of Representation
The mechanisms of non-monotonic logic turned out to be well suited to multiresolutional

knowledge representation. In [358] W.F.S. mechanism (well-founded semantics) was introduced
for constructing the logical control modules. In this paper, the mechanism of intelligent
branching is proposed as one of the alternatives for inverse generalization (or instantiation). The
mechanism of focusing attention at a level of resolution is described in [359]. This mechanism
allows dealing with hypothetical statements of exceptions to generalizations when the classical
logic cannot be used. The advanced methods of temporal logic applicable to hierarchical systems
of knowledge representation are described in [360 and 361].

Multiresolutional approach is tightly related to fuzzy logic approach as far as world modeling is
concerned. It is not difficult to discover that construction of a fuzzy logic [931] presumes
introduction of indistinguishability zones and levels of resolution.

4.10 Simulation
Taking into account the challenges of multiresolutional systems of knowledge

representation is imperative when simulation is the basis for constructing the models for
subsequent judgement. Some of the models are proposed in [362]. There is a definite need for
symbol grounding via constantly checking the conditions of functioning at the output.  This
generated a need for a service that models the situation in logical (automata) terms. In turn, this
created a need for finding the limits of correct judgement and developing techniques of
evaluating the impact of possible errors [363]. In a variety of complex systems, the qualitative
simulation which allows properly identifying and refining the model structure is applicable
[364]. Similar models of simulation are constructed to verify of our knowledge in the systems
that are represented by analytical equations [365-366].

The simulation systems for knowledge representation are especially important in the cases of
robotics. The package Cimderella for neuro-controller design is described in [367]. The results of
simulating flexible manipulators are presented in [368]. The concept for simulating robust
controllers is described in [369].

I.5 Behavior Generation

Behavior Generation is the central issue in the Intelligent control area. In this section, we
presume that explanations for the unclear terminology can be found in [494, 495].

5.1 Planning
The preliminary familiarization with [912] is desirable.
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Brief Chronology of Evolution
Until recently planning was a domain of activities beyond the scope of a control engineer.

During the last fifteen to twenty years this has rapidly developed, and has become a legitimate
part of intelligent control.

Planning is an intersection of a triplet of weakly related scientific paradigms: Operation Research
(OR), Artificial Intelligence (AI), and Control Theory (CT). OR emerged in the 40s and spurred
the analysis of queues, graph theory and methods of optimization. As an AI extension in the 60s,
the study of planning targeted corresponding processes of human cognition, and the first effort in
explicit analysis of planning algorithms was related to human thought simulation [370]. A.
Newell, H. A. Simon, N. Nilsson and other prominent researchers in AI have developed the
fundamentals for the existing results in the area of robot motion planning.  Traditionally for AI,
planning was not involved in any "dynamics" which was always considered a prerogative of the
Control Theory.

In Sub-section 1.10, the development of the conceptual fundamentals of Intelligent Control is
demonstrated as evolution of CT toward OR via incorporation of planning and toward AI via
using recognition in the loop [371, 372]. This eventually brought to fruition a new direction:
Intelligent Control [373]. As a discipline, Intelligent Control blends OR, AI, and CT. It is
concerned with analysis of planning, particularly for robotics. After this, the mainstream of
specialists in CT realized that the so-called "reference trajectory," which is always regarded as
the input to control systems, should be considered a "plan" and be computed as a part of the
design process. However, the traditional control specialists considered everything related to
Intelligent Control not sufficiently immersed into a rigid mathematical paradigm and therefore
being extraneous for CT. The latter is related to the efforts of developing a theory of planning
that started with STRIPS.

STRIPS [374, 375] and A* [376] became classical fundamentals of planning in robotics. The
subsequent development in the area of robot path planning branched enormously:
a) the problems of representation turned out to be very critical
b) it became clear that both combinatorics of tasks and dynamics of systems are intertwined
c) planning processes tend to develop hierarchically in space via task decomposition and in time

via search trajectories
d) the complexity of computations became the real limitation for the development of theories.

These are the milestones of the evolution in the area of motion and path planning:
• In 1966, J. E. Doran and D. Michie applied graph-theoretic mechanism for path planning

[377].
• In 1968, W. E. Howden introduced the "Sofa Problem" treating the geometric problem of

motion planning [378].
• In 1968, the A* algorithm was introduced by P. Hart, N. Nilsson and B. Rafael [376].
• In 1971, STRIPS was presented by R. E. Fikes, P. Hart and N. Nilsson [374,375].
• In 1979, the concept of search was attempted for dealing with obstacles by T. Lozano-Perez

and M. A. Wesley [108].
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• In 1979 J. Albus introduced the methodology of task decomposition for hierarchical systems;
later it became a part of the RCS methodology with nested planning processes at all levels of
the control hierarchy [380].

• In 1981 T. Lozano-Perez applied "configuration space" to manipulator's planning [381].
• In 1983 C.-S. Lin and P.-.R. Chang proposed a method of synthesizing the motion trajectory

out of pieces of Quartic Splines [379].
• In 1983 M. Julliere, L. Marce, and H. Place outlined their mobile robot with planning via

tessellated space [382]. Both methods of “configuration space” and planning via tessellated
space were focused on finding the trajectory of motion in assumption that the final goal has
only arrived from an upper level of a hierarchy.

• In 1984 M. Vukobratovic and M. Kircanski developed an analytical method of synthesizing
the motion trajectory by using an inverse technique for the case when the number of degrees
of freedom exceeded the number required for performing the operation. This planning was
done with the presumption that the desirable trajectory had been assigned by somebody else
(e. g. had arrived from the upper level of hierarchy of control). [383]

• In 1984, R. Chavez and A. Meystel [384] introduced a concept of searching in the space of
various (non-uniform) traversability.

• In 1985, J. E. Hopcroft, D. A. Joseph, S. H. Whitesides analyzed the geometry of robotic arm
movement in 2D bounded regions [385].

• In 1986, A. Meystel demonstrated that the most efficient (least computational complexity)
functioning of multilevel learning/control systems with search for the planning could be
provided by a proper choice of a ratio of lower level/higher level of resolution [109]. This
concept of planning/control hierarchy became a strong theoretical support for the hierarchical
architecture of intelligent system. The ideas of Multiresolutional Planning were discussed
within the framework of Quadtrees representation [392]. However, the possibility of
planning separately at multiple levels of resolution had not been contemplated before.

• In 1985-87 M. Arbib's school of control via "schemata" came up with numerous schemes of
"reactive" behavior [408]. This gave birth to a multiplicity of robot control concepts, which
explored and exercised reactive behavior generation.

• In 1987 the cycle of research papers related to “visibility lines planning” was practically
completed. Algorithms based upon visibility lines became a standard solution [393, 394].

• Planning of optimum tracking was performed as scheduling of motion for the trajectory that
was preassigned as a contour [386]. Dealing with disturbances was interpreted as a part of
following preassigned trajectory [387].

• During the period 1985-1995, many researchers associated problems of robotic motion
planning with short term (local) reactive behavior (like "obstacle avoidance"). Nevertheless,
interest in search in the state space was perpetuating. Many examples related to this period
are described in the subsequent subsections.

• Simultaneously, with many efforts to resolve the planning problem, another direction in
research was gaining in popularity: to avoid planning at all. The primary focus of robotics
shifted to the area of systems, which do not require any planning (robotics with "situated
behavior"). Thus, the interest in planning diminished (R. Brooks, MIT, R. Arkin, Georgia
Tech) and the curiosity of researchers shifted toward emerging phenomena in non-intelligent
robots.

• It was typical for planning techniques introduced at this time to use potential field
surrounding obstacles. This was convenient because a robot doesn’t need to choose the
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trajectory: it just remembers where the goal is, and the potential fields push the robot into the
least resistance trajectory. In [390], Warren compares planning by using potential field with
planning that employs path minimization. The observation was made that to look for
minimum path trajectory might be a more efficient way of planning the path.

• In 1991, a comprehensive text was published by J.C. Latombe [388], which outlines most of
the theories and experiences approved by the practice in a variety of applications. It
happened a whole decade after the first textbook edited by M. Brady, J. M. Hollerbach, T. L.
Johnson, T. Lozano-Perez and M. T. Mason [389].

• Ten years of research and experience (1982-1991) helped to clarify the important maxim: the
process of robot motion planning can be performed efficiently only by searching within the
state space and thus, determining both the final goal, and the trajectory of motion leading to
this goal. At the present time, search in the state space is a prevailing general technique
broadly applied for the algorithms of planning. Nevertheless, many other concepts and
systems exist too, in a multiplicity of research schools and domains of application.

• In the beginning of the 90s more researchers explore planning the actuator input by inverting
the prescribed output trajectory [391].

• R. Sharma and Y. Aloimonos [395] enriched the theory of configuration space by the
concepts of coordination and by using permutations of the quad-tree elementary blocks. An
attempt to blend configuration space with control dynamics was made in [396]. The same
concept was enhanced by blending the concept of configuration space with the self-
organizing distributed architecture in the system called SOBoS (Self-Organizing Body
Schema). A conjecture was made that this is how cortical maps deal with the problem of
planning [397].  The theoretical background for these efforts was presented [398].

• The last decade is characterized by rediscovering planning techniques that has already been
documented earlier by refining them and adding to them new theoretical facets. In [399] the
technology of planning via visibility lines was reconsidered. Its results confirmed most of the
prior findings. In [400] an effort is made to generalize the techniques of path planning in a
polygonal world by using visibility lines and/or Voronoi Diagrams. In [401] all of the prior
results are enclosed in the framework of minimal geodesics theory, which ascends to
Hamilton-Jacobi types of equations. Old algorithms are reviewed and important corrections
are made [402]. In [403] all these planning problems are put in the paradigm applied earlier
in computer vision where the methods of thinning and skeletonization are used. An effort to
translate all of these problems into AI language is done in [404]. On the other hand, some
advancements are made by the efforts to apply known theoretical methods by using neural
networks tools [405]. Useful practical problems were resolved for the cases of positioning the
robot's arm [406]. Predictive controllers are used to improve performance of the standard
collision avoidance tools [407]. Predictive algorithms of planning are described in [926].

• Scientists following the Wonham-Ramatge school of control theory developed some
components of the theory of planning under the title “Supervisory Control”. This theory took
advantage of the convenience of automata representation, and gradually built up a level of
"supervisory control" which is nothing else but the lower level of resolution in the system of
representation and control. This theory developed all features characteristic of the theory of
planning as formulated for discrete-event systems. Their supervisory level can have “variable
lookahead” policies [409]. In this particular paper, the bounds for searching the automata
behavior are assigned by the “lookahead window”. Search is demonstrated as a flexible and
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easily reconfigurable set of procedures when the automaton is introduced as Petri Nets.
Formulating a temporal logic makes this type of planning traceable and reliable [411].

• The effectiveness of supervisory control strategies for scheduling is described in [881]. In
[882] the same approach is used for flexible manufacturing workcells. It is demonstrated that
nothing more is required than mapping tables of controlled automata or Petri Nets.

• In the discrete-event systems, methods of supervisory control turned out to be convenient for
checking the consistency of hierarchical architectures [883]. This is one of the novel methods
developed by the W. Wonham’s school [75].

Task Decomposition
The concept of task decomposition was first introduced by J. Albus in [380], and

described in detail in [412]. M. Arbib presented supportive ideas in [413]. Substantial
contributions into the task decomposition paradigm were made by their followers, D. Lyons
[414] and R. Simmons [415]. The ideas of task decomposition descend from the framework of
automata theory [942], and can be easily transformed into computer language, which was done
by J. Ish-Shalom [416]. These ideas allow for easy applications in the control hierarchy. Further
theoretical development in the area of hierarchical automata decomposition is presented in [578].
In [417] the results of the research in task oriented planning performed by P. Fiorini and J.
Chang are described. Some of the results of planning research accomplished by NIST fall into
the same category [420-422].

Task decomposition and even hierarchical task organization became an unavoidable stage of
each effort associated with large complex systems. In [418] the results of using this framework
and the corresponding planning system are described for the Space Station Freedom. In [419] the
task decomposition of “grasping” was explored and mathematically analyzed.

Task decomposition fits within the duties of Job Assignment and allows both spatial and
temporal search for the best plan similar to the RCS arrangement [423]. Nested decomposition of
functions can be incorporated by the methodology of colored Petri Nets [424]. The paradigm of
tasks decomposition naturally combines motion analysis and scene representation and easily fits
within the framework of fuzzy logic, analysis and control [425]. No change is required in the
multiagent case. In [426] the configuration description language CDL is introduced for task
analysis based planning in a multiagent case. Analysis of reasons for the multiagent case requires
performance of particular operations similar to those applied in the justification based Reason
Maintenance System [822, 823]. Very similar approach and results are presented in [427]. In
[428], J. Budenske and M. Gini demonstrate persuasively that the task decomposition paradigm
allows for adding all required information about sensors and control rules.

The whole topic of task decomposition and associated kinds of logic are paralleled by the
corresponding developments in the area of entity relational databases and knowledge bases.
Within this domain, task decomposition is a result of so called “structured task analysis”. Well
organized technique of structured task analysis is presented in [909]. Control systems equipped
with these types of databases with various types of logic and optimal learning are described in
[429, 430]
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Geometric Models for Planning
This domain is strongly linked with practical problems. It also generates a variety of

famous theoretical problems: the "sofa" problem evolved into "piano-movers" problem. A
thorough survey is given in [431]. An interesting geometric model based upon Snell's law is
presented in [432].

The efforts in constructing geometric models were related to obtaining collision-free robot paths.
In some papers [433] these efforts are associated with V-Graph algorithm that was first proposed
by T. Lozano-Perez in [381]. We associate the bulk of works on geometrical models with a
different theoretical avenue, which is presented in [434-436]: all of these works use the concept
of space tessellation. Also, geometrical planning was correctly considered to be a part of the
problem of optimal control, however, the analytical solution recommended in [437] was a very
difficult one, and computational rule-based algorithms like the one presented in [438, 439] gave
designers a multiplicity of new practical tools. These methods were extended into a hierarchical
domain and became a part in RCS reference model architecture [440, 441].

Most of the FINDPATH algorithms of the 80s are based upon searching for a minimum path
string of vertices within the so called "visibility" graph (a graph comprising all vertices of the
polygonal objects connected with visibility lines [439, 442-445].

It would be instructive to scan the evolution in this area during the last decade.
• Some intention is expressed to avoid using any planning algorithm in favor of sensor-

actuator “agent” unit. This will be focused upon later in a special sub-subsection on
Visibility-Based Planning. An example of simple solution is given in [446].

• An example of applying VGraph concepts via 3-D space decomposition is described in [447].
• A synthesis of 2-D formulated algorithms of path planning from [434-436] and 3-D VGraph

concept from [381] is demonstrated in [448].
• Further development of the algorithm from [448] is presented in [449]. These results use

representation of obstacles as polyhedral cons. A productive idea called "Window Corner" is
introduced that allows for using a breadth-first search strategy.

• A new method of space transformation is proposed in [450]. It is different from configuration
space of [379] and from visibility graph of [438]. It allows for motion planning of a robot
which moves with translations and rotations .

• An intention to find a single winning rule for most of the situations demonstrates itself in
[451]. Different strategies for reactive navigation were proposed.

• A further development of the overall-planning paradigm is undertaken in [452]. An effort is
made to blend together VGraph-like concepts with the existing results in planning within
multiple traversability spaces [453].

• The need to cover planning for multiple degrees of freedom is reflected in [454]. In [455] a
similar problem is addressed for anthropometric figures. Many researchers raise the issue of
solving problems of on-line planning. This leads to the need for a joint space-time
representation of motion processes and development of efficient methods of scanning a space
of upcoming functioning [456-457].
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Planning for Minimum Time of Functioning
When the cost of functioning is time then the time should be minimized. All problems of

minimum time positioning are solved by using variation methods or Pontriagin maximum
principle [458-459]. When positioning is done in the obstacle-cluttered environment, the method
of slalom situations can be applied and all the past alternatives can be found as topological
passageways, and the final solution is determined by using dynamic programming or searching
in the state-space [460]. For the multilink manipulator this approach is explored in [461]

If minimum time is required while tracking the specified trajectory similar methods can be
applied. The subtle differences are demonstrated in [462, 463].

Nonholonomic Path Planning
 Most robots, especially mobile robots, can be considered single body devices (car-like

robots) or comprised of several bodies (tractors towing several trailers sequentially hooked)
[464, 465]. These robots are known to be nonholonomic, i.e. they are subject to non-integrable
equality kinematic constraints involving the velocity [466].  This generates the need in hybrid
control strategy especially for providing feedback stabilization [467, 468, 474, 475]. The number
of controls is smaller than the dimension of the configuration space [469, 470].

Many cases of nonholonomic constraints are linked with the need of objects to be in contact
[471]. The range of possible controls has additional inequality constraints due to mechanical
stops, for example, in the steering mechanism of the tractor. The problem of finding the shortest
path can be resolved for the case of bounded curvature [472]. A solution based upon a
hierarchical controller is described for the free-flying space robot in [473]. Motion planning is
compared with time varying control system in [476]. It is demonstrated for the nonholonomic
multibody robots that the Controllability Rank Condition Theorem is applicable even when there
are inequality constraints on the velocity, in addition to the equality constraints [477-478, 919].

Planning in Unknown, or Partially Known Environment
Planning in unknown environments is a problem that defies our orientation to derive the

search process from the concrete knowledge of the environment. There are two fundamental
approaches applicable for dealing with situations with limited and absent knowledge. One of
them is linked with name of A. Willsky [479] and explores general evaluation of motion through
random fields with a different fraction of stochastic component in the available information.
Another direction is oriented toward finding a “good“ strategy that works even if nothing is
known about the environment. This direction is linked with the name of V. Lumelsky [480. 924].
Both strategies are linked with the need to make decisions in the presence of risk [481].

The strategy of finding a universal rule is more popular because it fits within a paradigm of
forming reactive behavior [482]. Indeed, the map of a maze might be unknown, but the strategy
of behavior in a maze should exist [483]. Even in the case of a multilink manipulator we can
require having a "winning" strategy of actions under conditions of lacking or absent information
[484]. Also, other ways of dealing with unknown environment are being explored [485, 486].
Yet, there is an area of research oriented toward finding the most general rules of dealing with
different types of environment [487-489]. By and large, the research in this area converges to the
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hierarchical schemes of world representation [490] and focusing attention with the help of a
concept of “virtual window” [491].

Planning in Redundant Systems
 Non-redundant systems have a unique trajectory of motion from one state to another. A
redundant system is defined as a system in which more than one trajectory of motion is available
from one state to another. It can be demonstrated for many realistic "system-environment" pairs
that they have a multiplicity of trajectories linking an initial state to a goal state, and these
trajectories can have different costs. These systems contain a multiplicity of alternatives of space
traversal. An example with a multi-limb robotic system is presented in  [492], and an automaton
proposed to deal with this case is described in [493].

Redundancy grows when the system is considered to be a stochastic one. The number of
available alternatives grows even higher when a multiplicity of goal tessellata of a particular
level of resolution is also considered under the condition of assigning the goal at a lower
resolution level, which is the fact in multiresolutional systems such as RCS [494, 495].

In non-redundant systems there is no problem of planning: only one trajectory of motion is
available. Since the trajectory of motion to be executed is a unique one, the problem is to
determine this trajectory and to provide tracking of it by an appropriate control system. Many
research results demonstrate that redundancy can be considered an important precondition a) for
the need of planning, b) for performing planning successfully [496-499].

Planning for Situations with Moving Obstacles
This group of results is actually an evolution of the domain of redundant systems. The

roots of strategies for solving collision–free trajectories are derived from the search in
configuration space [381, 500]. Complexity of these algorithms is evaluated in [501].  Within the
framework of control theory, the collision-free trajectories were obtained by sewing together
convenient pieces of analytically represented trajectories [502]. Also, optimality was not
necessarily provided.

The problem of dealing with multiple robots can be resolved within the unified approach from
[503]. The evolution of this methodology within the domain of moving obstacle path planning
was performed by R. Conn and M. Kam [504]. The results of computation do not provide the
optimality of motion.

Planning for Multiple Robots
This is a further development of the topic with moving obstacles. However, this is a more

complicated subject because each of the robots has its own goal, and all these goals must be
achieved under some conditions of total optimality. The optimum motion planning for multiple
robots with independent goals is presented in [890].  This technique descends from the
configuration space approach, uses the Game Theory for decision making, and allows for
multiple resolution application. The simplified case of the optimality is related to the requirement
of cooperation. In [505] it is demonstrated that time scaling can be applied beneficially.
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If planning is based upon task decomposition (see e.g. [415]) then for a two-arm manipulator
system the solution of the problem is described in [506]. The need for exhaustive search can be
avoided by using multiple heuristic rules, which check interference between different sub-
systems of the manipulator, and apply the collision-avoidance strategy of planning incrementally
[507].  The condition of minimum time would require using one of the known analytical
techniques like in [508]. New heuristics can be learned during the process of planning before the
motion actually starts [509].

CMU suggests resolving the problem of multiple robot planning by using the D* algorithm
[510]. The latter is a modification of the A* algorithm when the algorithm functions on-line in
unknown environments [511]. The authors call their algorithm D*, in a sense dynamic A*,
please note, that this term dynamic has nothing to do with dynamics of control, or dynamics of
mechanical motions. It means solving the problem on-line while the situation changes.

In [512] a multiresolutional scheme is proposed for multiple robot control and in [914] for
planning in a rough terrain without references to the existing literature on multiresolutional
planning. Schemes of local searching for multi-manipulator situations are explored in [513]. In
both [514] and [515], the effort is made to provide for meaningful multi-robot behavior by using
the concept of reactive control. Various methods of force distribution turned out to be important
for solving this problem [574]. A promising architectural paradigm applicable for mobile robots
is presented in [942].

Multiple robots can be considered within the framework of the theory of cooperative robotics,
which first was outlined as a field of distributive artificial intelligence [891]. A similar but more
advanced, framework was proposed by T. Fukuda and S. Nakagawa [892]. This was used as a
theoretical basis for the development of cellular robots (CEBOTs) [893, 894]. J. Beni proposed
the concept of SWARM, which represented the self-organizing swarm type of environment [895,
896]. The distributed system of control ACTRESS was developed by providing cooperation
among multiple robots [897]. SWARM consisted of a very large number of robots; CEBOT
allowed for smaller number of robots-participants; ACTRESS was created for groups of several
robots. The smallest amount was allowed by the concept of GOFER [898]. Comparison of all
architectures is given in [899]. The taxonomy for multiple robots system was proposed in [900].

Uncertainty and Probabilistic Techniques for Path Planning
From the very beginning of the era of Intelligent Control and Robotics, errors in

functioning were admittedly the worst enemy of the development of this area. Control system
specialists knew the difference between noise, disturbances and errors, however, they were not
always successful in counteracting these factors. The problem of compliance emerged
immediately with the birth of the first industrial robot. The argument was: “We cannot stop
exactly against the hole, thus, the construction should be compliant to compensate for this
mistake.” One of the techniques of providing compliant motion is described in [516].

Most of the techniques for searching the minimum-cost paths on the graph are deterministic
ones, and introduction of uncertainty became a new source of challenge [517-519]. An approach
to motion planning with uncertainty for mobile robots is introduced in [520]. Given a model of
the robot's environment, a "sensory uncertainty field'' (SUF) is computed over the robot's



48

____________________________________________________
A. Meystel, Intelligent Systems: Annotated Bibliography             Part I

configuration space. At every configuration, the SUF is an estimate of the distribution of possible
errors in the "sensed configuration'' and it is computed by matching the data given by the robot
sensors against the model. A planner is using SUF to generate paths minimizing the expected
errors. SUF has been explored for a classical line-striping camera/laser range sensor.

It is typical to use fuzzy sets for evaluation of uncertainty. In [521] an interesting example is
described which combines flexibility of fuzzy sets as a tool of evaluating uncertainty and Petri
Nets as automata technique for computing plans. In [915], an implementation of probabilistic
techniques to the problem of path planning is demonstrated.

Online planning relies on information that becomes available to the sensors during execution, to
allow the robot to correctly identify the states it traverses. The set of states should be chosen; the
motion command should be associated with every state, and the state evolution should be
evaluated. The interdependence of these tasks can be avoided by assuming the existence of
landmark regions in the workspace, which could be considered "islands of perfection,'' where the
position sensing and motion control are accurate [522].

Algorithms of Planning
Planning constructs the goal states, and/or the preferable strings of states connecting the

present state with the goal states. One of the successful techniques is associated with task
decomposition [415]. Task decomposition is related to the consecutive refinement, i.e. to
consecutive increase of the resolution of representation for both actions and states. Hierarchical
planning which originates in task decomposition is described in [925]. The first component of
the planning algorithm is translation of the goal state description from the language of low
resolution to the level of high resolution. Frequently, it is associated with increasing the total
number of the state variables. In all cases, it is associated with increasing the scale of
representation, or with reduction of the indistinguishability zone, or the size of the tessellatum
associated with a particular variable.

Each algorithm of planning should start with finding the objects of attention which are usually
points in the space that will be used as the feature nodes of the search-graph. When these points
are chosen as the nodes of a coordinate grid the result of search can be unsatisfactory because of
idiosyncrasies of the alternative trajectories as described in [453]. As an improvement, it is
proposed that these nodes be shifted by adding or subtracting the random value value to or from
the coordinates of the node [523, 524]. Otherwise, all points should be distributed randomly as
suggested in the original paper [109].

Search has many alternative algorithmic choices. In some of them, the A* algorithm is used
[375, 376]. It is known that the A* algorithm is computationally more efficient than exhaustive
search. This is why it was selected as a prototype for many other solutions, e.g., the D* algorithm
[511]. Nevertheless, in the most advanced versions of search algorithms, applied in practice
[525, 526], the decision was made to use the exhaustive search and its Dijkstra incarnation. The
reason for this is the peculiarity of A* in non-linear systems. In the space divided into multiple
segments with different traversability, the A* algorithm can be easily confused. Since in most
planning systems the reduction of complexity is taken care of by using a multiresolutional
paradigm, Dijkstra-search should be recommended as the best practical solution.
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The second component is the simulation of all available alternatives of the motion from the
initial state, IS, to one or several goal states, GS, and selection of the "best" trajectory.
Procedurally, this simulation is performed as a search, i.e. via combinatorial construction of all
possible strings (groups). To make this combinatorial search for a desirable group more efficient,
we reduce the space of searching by focusing attention, i.e. by preselection of the subset of the
state space for further searching.

In a limited number of works, some of the designers choose “greedy” algorithms which require
neither evaluating the total cost from the beginning, nor evaluation the total cost to the end.
Search based upon “greedy” algorithms is frequently deceptive because the final trajectory
obtained is a result of local preferences. This is the case recommended in [527]. Many
recommendations using the concept of simplified dynamic programming are based upon
computing only local costs and have the same limitations as “greedy” algorithms. Some
examples of planners with neural network based local cost evaluation are given in [528, 529].

Methods of determining node candidates in a polygonal world are presented in [922]. Methods of
planning in the cases of redundant manipulation are described in [920]. Thus, all planning
algorithms consist of two components: a) a module for exploration of spatial distribution of the
trajectory, and b) a module for exploration of the temporal distribution. No algorithm of planning
is conceivable without these two components.

The need for planning is determined by the multi-alternative character of the reality. The process
of planning can be made more efficient by using appropriate heuristics determined by the
specifics of a concrete design specifications.

Local Planning: Potential Field for World Representation. Genetic Search.
The most pervasive method for navigating with minimal planning effort is using potential

field construction around the obstacles [530, 531]. Potential field presumes adding to the world
representation properties that will increase the cost of moving in particular directions. An
approach to robot path planning is proposed in [532] consisting of building and searching a
graph connecting the local minima of a potential function defined over the robot's configuration
space. The planner based on this approach allows solving problems for robots with many more
degrees of freedom. The power of the planner derives both from the "good'' properties of the
potential function and from the efficiency of the techniques used to escape the local minima of
this function. The most powerful of these techniques is a Monte-Carlo technique that escapes
local minima by executing Brownian motions. The overall approach is made possible by the
systematic use of distributed representations (bitmaps) for both the robot's workspace and
configuration space.

Genetic search is one of the tools for local planning. In some environments it gives positive
results and can be recommended for use [533, 534]. The concepts of receiving smooth
trajectories locally are presented in [921].

Global Planning: Search for the Motion Trajectories
After reviewing all the above solutions, one can see that the most general way of

planning is by global searching. It consists of the following stages:
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1. Populate the World with randomly assigned "points" that become vertices of the
search graph.

2. Connect them in the vicinity (neighborhood); this reduces the graph connectivity.
3. Determine the cost of edges.
4. Run the graph search algorithm (e.g. Dijkstra algorithm or A*).
There are some problems that can be resolved in each particular case. Indeed, the

"density" of future vertices of the search graph has to be selected. The concept of "vicinity"
(“neighborhood”) should be discussed, and its value should be properly evaluated. Different
techniques of pruning the search-tree should be discussed. This area is explored in [535-539].

Several randomized path planners have been proposed [540, 541]. They are recommended for a
variety of robots. A general planning scheme is introduced that consists of randomly sampling
the robot's configuration space. The choice of candidates to become graph nodes can be
determined by a relation between the probability of failure and the running time. The running
time only grows as the absolute value of the logarithm of the probability of failure that we are
willing to tolerate.

Architectures for Planning
All earlier architectures anticipated the need in a hierarchy derived from the primal

decomposition—spatial and or temporal [380, 542]. A multiresolutional hierarchy was
anticipated in [412, 109], and then described in [130, 543, and 544].

Behavior based architectures are described in [545] where two different behaviors are blended. A
rough, superficial, quick one was blended with a thorough, precise, slow one. For both behaviors
some local generalized representations were required. Description of a similar architecture is
found in [555]. The concept of blending behaviors has demonstrated its benefits so far only in
small scale problems. Its exploration started long time ago [556]. In [546] blending is explored
for a different set of behaviors: reflexive, purposive and adaptive. In this case the goal of the
architecture was to avoid representing the world.

The architecture of decision-making is implied by the principle of hypotheses testing as
demonstrated in [547]. Some of the architectural solutions do not have an explicit structure of
consecutive refinement; many researchers prefer to talk about general purpose planners and
specialized reasoners [548]. Obviously, in this case we deal with a nested multilevel decision
making.

The researchers in the area of fuzzy sets gradually arrived at nested hierarchical solutions
presented in terms of fuzzy control theory [549]. L. Zadeh anticipated nesting of fuzzy control
rules in 1973 when he suggested some special rules of inference [550]. Hierarchical fuzzy
controllers are now broadly proposed for robotic manipulators [551]. The general
characterization of these controllers can be found in [544]. Analysis of the role of hierarchical
design for fuzzy logic controllers is described in [579]. A similar hierarchical architecture based
upon neural networks is presented in [580].
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Architectural issues are entering the focus of attention in the area of control [552]. Comparison
of several versions of cognitive architectures is given in [553]. Software issues are addressed in
[554]. Software questions of real time hierarchical control have been analyzed in [577].

Applications of Planning Methods
 The following applications are presented in literature:
• Trajectory Planning for Spray Painting Robots [557]. The motion is planned so to provide the

fastest coverage of the surface with reliable overlap of the brush strokes.
• Planning for Flexible Manipulators is based upon computing total manipulator strain energy

and motion evaluation along the elastic coordinates [558].
• Planning has been developed for dexterous manipulators with sliding contacts. Polygons

where sliding may occur are computed based upon geometrical and mechanical consideration
[559]. The required friction to control the sliding is computed.

• Motion of spider-robots is planned taking into account the configuration of multiple legs
while maintaining stability [560].

• Planning for the job-shop boils down to determining a rational schedule. The stochastic cases
are considered in [561]. Network application for the same problem is demonstrated in [562].

• Stewart Platforms have specifics planning challenges: multiple parallel actuators have to
develop mutual coordinated motion following a particular preplanned trajectory [563]. Using
search for solving this problem is recommended in [564].

• Many papers in the area of planning are dedicated to flexible manufacturing. Stability and
performance for a stability case is addressed in [565]. Utilization of Petri Nets is
demonstrated in [566]. Blending Petri Nets and Heuristic Search is described in [567]. The
whole cell control is analyzed in [568]. Performance and dependability are jointly analyzed
for cellular manufacturing systems [576]. Fuzzy decision making for scheduling is proposed
in [569]. Knowledge-based approaches are addressed in [575].

• Part of the planning for computer integrated manufacturing systems is the robot selection and
workstation assignment (RSWSA). RSWSA seeks an optimal mix of robots to serve all given
workstations such that each workstation’s resource demands are satisfied, no robot capacity
constraints are violated, and the total system cost is minimized. In [570], in order to roughly
determine the initial feasible solutions, the “greedy” algorithm is applied, and then the
solution is improved analytically.

• An example for using similar methods of planning for large scale marketing channels in the
tile industry is demonstrated in [571].

• For simplifying complex air traffic control problems the motion of the airplane is fuzzyfied
up to the level of salient maneuvers description [572]. Each of these maneuvers invokes a
separate process of planning, which is described in [573].

Planning for Assembly Operations
Assembling is a more general job than path planning. Actually, solving the task

decomposition problem together with corresponding path planning procedures form the complete
assembly operation. Initially, papers related to assembly operations focused upon the so called
pick-and-place operations. Designers were concerned with performing these operations in a
smooth manner, and spline-sewing the trajectories was a conventional approach [582]. The
complete fundamental methodology of planning the sequence of assembly operations can be
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found in [583]. The computer algorithm for automated development of assembly sequences is
described in [584].

The richness of the environment makes assembly procedures very amenable to the techniques of
knowledge engineering. The process planning for electronic assembly is described using
information organized in a knowledge base [585]. Even the sensing procedures should be
specifically planned in the assembly environment [586]. NIST started working on a part of this
issue (planning of the inspection) [587]. The very process of assembly planning should be
equipped by the feedback loop and visualized as a multiscale enterprise [588, 589]. Integration of
planning and control is in the focus of attention of researchers [929].

Many issues have emerged in the practice of applying planning algorithms in assembly. It would
be interesting to see what kind of issues can be anticipated in similar cases in other areas.
• Forces in the gripper should be taken into account during the path planning of a manipulator

[590].
• The assembly sequence planning is affected by the elements of human participation at the

particular stages of assembly [591].
• An effort to automate the process of assembly programming based upon solely logical rules

was demonstrated in [592, 593]. However, the consistency of the purely logical type of
approach was shown only for simple cases.

An experience of multiple robot assembly in [594] has illustrated that most of the functioning
processes were based upon strong reliance on heuristics taken from direct human experience.
• The difficulties in using logical sequences demanded further development of the temporal

framework for representation; some results were presented in [595].
• In [596], it was demonstrated that planning of the assembly requires performing stability

analysis.
• For assembly planning in systems with visual guidance, special techniques of calibration

were proposed in [597]. (More on the systems with visual guidance see in Section 6)
• The theory of constraints in assembly planning was proposed in [598].
•  special problem of assembly planning in which the sole action of pushing is used is

addressed in [599].

5.2 Execution
After the plan is developed, it is submitted to the subsystem of execution. The latter

determines the inputs that should be generated and submitted to the actuators. Typically the
inputs are found by applying the operator of “PLANT-INVERSE” to the plan. In most cases the
analytical representation of a plant is invertible because all plants are stabilized before the
planning started. If the plant is assigned not analytically but as a computational algorithm the
inverse algorithm is easy to obtain.

The input to the actuators obtained as a result of inverse is incorrect, because the plan is
computed without knowledge of the situation and has errors, because the model contains sources
of disturbances, and because the whole system is subjected to many sources of noise. Thus, the
EXECUTOR contains the subsystem of feedback compensation that compares the planned
trajectory with the real trajectory and computes the signal for compensation.
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In order to do this, the current signals and parameters should be estimated and even predicted.
All these components of the executor can be realized in a different way, some of the popular
solutions are presented below. Actually, the problem of integrating planning and control is a
problem of constructing the corresponding multivalued logic [927].

Popular Solutions
• The concept of joint feedforward/feedback organization of the controller came into broad

practice in the 80s. In [600] the continuous system with the near-optimal function is
analyzed.

• This type of solution needed reliable methodologies of simulation that were performed
sometimes by backward differentiation [601], or in the cases of important constraints, by a
diligent geometrical analysis [602].

• The feedforward/feedback setup was recommended in all systems in which an externally
given plan was supposed to be “tracked” [603].

• As soon as this simple conceptual approach was supposed to be applied in multilink
manipulators, the situation became more complicated. First, the input was always formulated
in the terms of torque in order to escape the need for modeling the dynamics of actuators.
Nevertheless, even in this case the problem was difficult and required solving a non-linear
optimization problem using knowledge of the Jacobian of the constraints and the gradient of
the objective function.  Second, it was clear that using only information of joint torques was
not enough, and jerk constraints were introduced [604]. Jerks as inputs are proposed in [458].

• The ability of encapsulate various problems into a single model led designers to the decision
to use adaptive robust control systems similar to the one presented mathematically in [605].

• If the functioning was a combination of discrete events, the framework was available for
sequential or even concurrent simulation [606]. This paradigm could be utilized partially for
continuous control systems equipped with discrete time observers [607].

• Still the unmodelled dynamics played a substantial role. It was addressed either by using
fuzzy logic controllers [608] or constructing compliant systems [608, 609].  In some cases,
designers were taking measures to provide smoothness of motion for the trajectories that
were inadequate.  A popular tool was minimization of acceleration at critical points [610].

• Finally, various modifications of well known controllers were implemented:
a) Controllers with gain-scheduling [611];
b) Fuzzy PID controllers [612];
c) Analog-digital fuzzy logic controllers [613];
d) Sliding mode fuzzy controllers [614, 619];

e) Controllers with prediction [615]; prediction and adaptation in PID controllers was addressed
in [620];

f) Various Neuromorphic Controllers [616, 617].
Among the practical design methods utilized for all controllers, a family of methods emerged
using various approximation techniques especially in the state-space representation [618]. Non-
linear methods of design become popular, too. A non-linear design for the sliding mode
controller is described in [621].

Properties of Controllers
• A survey on the controllability of fuzzy logic controllers is presented in  [622].
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• Methods of stability analysis for controlling the flexible multi-body system is presented in
[623]. Stability of muscle-skeletal systems is analyzed in [624]. Analysis of the stability of a
robot under model mismatched conditions is given in [625]. Stability in a fuzzy controller is
addressed in [626, 937, 938].

• Optimum control of production rate is presented for a manufacturing system producing a
single commodity. The author focuses on finding two factors of optimality, optimal policy of
control and optimal inventory level [627].  Time optimal control systems for the point-to-
point motion continue to be in a focus of attention of the researchers [628].

• The issues of performance and how to improve it are described in [939].
• The desire grows to characterize control systems by a longer list of specifications. The

following factors are considered candidate components of the vector of specifications.
a) Accuracy and stability of voluntary limb movements [629]
b) Accuracy and stability in redundant systems with flexible components [630]
c) The profile of error of tracking the planned trajectory [631]
d) Robustness against the modeling error [632]
e) Measure of connection between variations of control parameters and the time of
response [633]

Applications
We will start with listing applications of numerous moderately intelligent systems and then

will focus on more intelligent visually guided control systems (mobile autonomous robots and
autonomous systems are presented in a separate section).
• OSU has developed a nonlinear controller for a two-link flexible robot that is equipped with

an acceleration feedback [634].
• JPL proposed a neuro-controller for redundant multilink manipulator which can be directly

applied as an executor for a system with obstacle avoidance [635].
• Another JPL result is a controller for an advanced tele-operator that allows for convenient

cooperation between a human operator, the master arm and the slave arm [636].
• The same research group developed a controller for a dual arm system. This controller

reconfigures itself depending on a task which should be performed [637].
• A distributed controller was developed in a joint effort between Belgian and German

universities. It controls a system with distributed parameters better than is allowed by
existing solutions with non-linear filters [638].

• Another group at JPL has developed an intelligent controller for joint manipulation of two
arms grasping the same object simultaneously. It presumes upper level planning and it
develops a high level of cooperative compliance [639].  A method of extending the task
space control is described in [640].

• Training simulators is an area where intelligence must demonstrate a high level of
compliance. A controller with three loops was developed at JPL which allows for extremely
high levels of compliance in response to a variety of forces [641].

• In some cases the whole set of requirements cannot be provided just by the planning or
execution subsystems. In this limited number of cases part of the intelligence should be
delegated to the actuator. A sophisticated actuator was developed at JPL. It allows a range of
strokes from three centimeters at a frequency of 1Hz down to .2 cm with frequency of 1kHz.
The accuracy of controlling the length of the stroke is .0001 cm [642].
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• The problem of welding is one of those for which the appropriate intelligent controller has
not yet been fully developed. In [928] a system with predictor of properties and variables is
decribed. At the J. C. Marshall Space Flight Center a system for automated welding has been
proposed. It takes into account the following factors: seam configuration, weld real time
model, weld computer controlled parameters, wirefeed control with assigning position by
feedforward and feedback, multi-access motion, torch rotation with plasma control, and bead
profile [643].

• Kyoto University, Japan has developed a controller for a master-slave manipulator with high
quality coupling. Theoretical analysis and experimental results are given in [644].

Visual Guidance
Visual Guidance is an intermediate step toward partial and/or total autonomy3. It emerged in

order to increase the intelligence of control system without requiring creation of a rich world
representation system, several levels of planning, and multiple learning capabilities. Visual
guidance is oriented toward creation of a “minimalist smartness”: the ability to perform smart
and agile motion using minimal control tools. The following are examples of visual guidance.
• Probably, the first results on visual servoing were developed by A. Sanderson and his

students in 1983-84. Practical results for visual servoing for two cooperating manipulators
are presented in [645]. Two cases are discussed: a) with static camera and b) with dynamic
sensor placement. An effort was made to optimize the system under multiple objectives.

• Visual guidance in manipulation is usually coupled with the operation of grasping [941]. The
results of developing a system for visually guided grasping are presented in [646]. The
authors focus on their goals of making the system applicable in unstructured environments.

• Visual compliance is the most widely used area of visual guidance. Indeed, compliance
usually presumes solving local problems dealing with errors. In [647] a control system for
visual compliance is described, which was tested for grasping operations using a PUMA
robot.

• Further development of the visually guided grasping is presented in [648]. It was
demonstrated that the effort is successful when two cameras are involved in a visually guided
control loop, and both cameras are calibrated.

• An example of visual guidance of a mobile robot is given in [649]. The system can perform
obstacle avoidance using single camera vision and ultrasonic sensors. It invokes necessary
rules within a relatively uncluttered environment where all possible combinations of visual
artifacts are pre-interpreted.

• The subtle and very important issues of jointly calibrating the camera and the performing
machine are analyzed in [650] for the case of hand-eye visual guidance. Sensitivity analysis
made the methods of non-linear optimization applicable to the intelligent controller.

The "intelligent observer" (IO) is introduced in [691] as a mobile robot which moves through an
indoor environment while autonomously observing moving targets selected by a human operator.
The robot carries one or more cameras, which allow it to track objects while at the same time
sensing its own location. It interacts with a human user who issues task-level commands, such as
indicating a target to track by clicking in a camera image. The user could be located far away

                                                
3  Certainly, the kinds of guidance are possible using other modalities of sensing. We focus here upon
visual guidance as a rich and representative example of the sensor-based guidance.



56

____________________________________________________
A. Meystel, Intelligent Systems: Annotated Bibliography             Part I

from the observer itself, communicating with the robot over a network. As the IO performs its
tasks, the system provides real-time visual feedback to the user. A prototype of the IO has been
implemented, which integrates basic versions of four major components: localization, target
tracking, motion planning, and robot control. Initial experiments have been performed using this
prototype, which demonstrate the successful integration of these components and the utility of
the overall system.
  
A particular problem of computing robot motion strategies is outlined in [692]. The task is to
maintain visibility of a moving target in a cluttered workspace. Both motion constraints (as
considered in standard motion planning) and visibility constraints (as considered in visual
tracking) are taken into account. A minimum path criterion is applied. Predictability of the target
is taken into account. For the predictable case, an algorithm that computes optimal numerical
solutions has been developed. For the more challenging case of a partially predictable target, two
on-line algorithms have been developed that attempt to maintain future visibility with limited
prediction. One strategy maximizes the probability that the target will remain in view in a
subsequent time step, and the other maximizes the minimum time in which the target could
escape the visibility region.

Recently, it was demonstrated that image flow can be used for local obstacle avoidance. The
results of this advancement are presented by NIST in [913]. Other techniques of using optical
flow for recovery of relative motion, and, eventually, for navigation are described in [916].

I.6 Intelligent Control of Mobile Robots

Surveys of Architectures of Intelligent Vehicles can be found in [540, 693]. In the
subsequent subsections only those materials that appeared during the last decade or those omitted
from the surveys because of its scope limitations are included. The organization of this section is
influenced by the recent results on autonomous mobile robots [495].

6.1 General Issues
Before the 80s control of vehicles was not a central issue in the literature of automatic

control. This domain is also full of unsolved problems related to optimization [694]. In order to
determine the trajectory assigned for tracking, a plan was submitted, and the first approaches to
planning were based on analyzing the map by image analysis techniques [695]. In both articles
mentioned above the problem was to be solved by human supervisors. In [696] the whole process
of planning and navigation was analyzed in a manner that suggests automation.

The problem of navigating an unmanned mobile robot through a 2 1/2D-World was addressed in
[697]. A symbolic structure was used with iso-elevation lines in the map.  Most of the issues of
updating the sensor-based map from the image flow were described in [698]. A detailed analysis
is presented in [913]. Part of this material was incorporated later in 4D-RCS [495]. The concept
of 4D-RCS Architecture was a synthesis of the 4D-approach of dealing with image sequence
understanding [812] and  of RCS.

In [699] it was demonstrated that motion practically doesn’t affect dynamic equations of two
manipulators installed on the same mobile platform and performing cooperative functioning. The
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issues of steering were addressed in a number of papers: with a proposed control theoretic model
of driver-steering behavior [700], with the dynamic equations of steering control [701], with a
different number of wheels that perform the process of steering [702].

A set of theoretical developments was related to motion planning of intelligent vehicles. Various
combinations of polygonal obstacles with polygonal a vehicle were analyzed in [703], and the
value of complexity was evaluated for computing graphs of interaction between vehicle and
environment. The evolution of this work has resulted in algorithms that structure space for
planning software [704]. It was understood that planning should play the anticipatory role and
algorithms for path prediction were developed in [705].

A substantial part of intelligent vehicle control is dependent on its on-board communication: the
communication bandwidth strongly affects the results of map updating and therefore the results
of navigation. This dependency was analyzed in [706] and algorithms that implement preferable
strategies were proposed.

A formidable problem of all intelligent vehicles is perception of the 3D world around them.
Automatic stereo triangulation or stereo vision is an attractive approach to on-board range
finding. L. Matthies and C. Anderson in [707] proposed a mathematical analysis, some analytical
models and computational algorithms. Fusing sonar and vision based measurements for
topological mapping of intelligent vehicles is described in [708]. The significance of
constructing landmarks was emphasized in [936].

In the period of 1985 through 1995 many research groups were working on coordinating
movement and manipulation for a mobile robot equipped with a multilink manipulator. A good
integration of prior research is presented in [709], where results are obtained for a PUMA
installed on a LABMATE mobile platform.

In recent years, attention has been devoted to the study of vehicle motion. Numerous papers have
been published on the topic of motion control of nonholonomic systems.  These include works
by Brockett and Dai [723], Samson [724], Murray and Sastry [725].  Many have also been the
publications in the field of motion planning of nonholonomic systems. J.C. Latombe's
publication on robotic motion planning [726] and the subsequent collection of works published
by Laumond [727] show extensive research in the field of planning of optimal trajectories.

Nevertheless, a detailed model of the dynamics of a vehicle, with rear propulsion and front
steering, is never represented. Very often, actuator dynamics are considered as unmodeled
dynamics. In most of practical cases this assumption is unnecessary: the dynamics of actuators is
known.  This assumption prevents one from understanding the effects of the coupling properties
present within the system.  It would be desirable to have more precise representations of vehicle
dynamic systems by taking into account the combined behavior of the actuators for propulsion
and steering.  Only after such model is derived, a planning algorithm can be proposed based on
state-space search for trajectories that minimize a cost. In the literature, one can find only the
preparation to solving the real problem. Problems of World Model maintenance are addressed in
[933]. Multiresolutional issues involved in updating the world representation are addressed in
[934]. The problem of consistency for knowledge-based representations is described in [935].
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Planning in intelligent vehicles with nonholonomic constraints has created a new set of research
results. G.-P. Laumond’s research group has contributed novel algorithms tested in mobile robots
of the Hilare family [710]. Nonholonomic camera-space a manipulation is addressed in [720]. A
technique of nonholonomic planning for a vehicle moving among obstacles is presented in [721].
In [722] systems having holonomic and nonholonomic constraints are compared.

The following research results, which appeared over the last three years, should be mentioned:
• In 1996, a control architecture for automated guided vehicles was proposed that employs

feedforward control jointly with a predictor-corrector scheme [711].
• In 1997 a technique for hierarchical refinement of skills and skill application was proposed

for intelligent vehicles by M. Kaiser and R. Dillmann [712].
• E. Tunstel, T. Lippincott, and M. Jamshidi from the NASA Center for Autonomous Control

Engineering demonstrated and tested the hierarchy of fuzzy rules that are required for
generating consistent behavior of an intelligent vehicle.

• It was demonstrated that a planner-navigator based upon evolutionary programming allows
for “near-optimal” planning results. In [714] algorithm was proposed with all components:
the chromosome, the initialization process, the evaluation function, and the operators used.

• In 1997 several important results were obtained related to the further development of fuzzy
controllers as applied to intelligent vehicles. In [715] the design methodology is presented for
stabilizing a fuzzy controller applied in an articulated vehicle (which changes its
configuration during the motion). One more scheme of fuzzy controller for collision
avoidance is presented in [716] actually repeating the results from [453]. A combination of
fuzzy controller with genetic algorithm was presented in [717].

• In 1998 several important results were obtained in the area of representation for intelligent
vehicles. In [718], a system with triangular tessellation was applied for hierarchical world
modeling. In [719] an evidential approach is applied to world representation of an
autonomous vehicle equipped with sonar sensors.  Novel results obtained at NIST for a
multiresolutional world representation are given in [972].

6.2 Indoor Mobility
The first indoor robots with autonomous navigation were created for research and

educational purposes. One of them, HERMIES-IIB (Hostile Environment Robotic Machine
Intelligence Experiment Series IIB), was used for testing navigation algorithms at Oak Ridge
National Laboratory [801], another, DENNING, was used by CMU for testing purposes [802].
The third robot was LABMATE whose descendent HelpMate has successfully survived until
now (the description see below). “Aimy” was developed recently for studying navigation
processes with an infrared detector system [810]. Another education oriented robot is Nomad
2000, which combines features of both DENNING and HERMIES. NOMAD was used also for
testing TESEO, a neural network based computer system with generalization capabilities. This
will be focused on in Part II of this report, in the section Learning [42].

Papers surveyed in this subsection cover the period from 1990 to 1999 and represent the
evolution of numerous results described previously in Section 5.
• In 1990 A. Arkin and R. Murphy presented the results of indoor application of their earlier

research results obtained in the Georgia Tech Laboratory for Mobile Robotics [729]. They
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built upon prior results by G. Giralt and R. Chatila at LAAS-CNRS (France), U. Rembold at
the University of Karlsruhe (Germany), D. Allen at the Cranfield Institute of Technology
(UK). The goal of the effort was to demonstrate docking behavior and ability to navigate in a
cluttered environment. The concept of the intelligent controller implements the authors’ prior
ideas of blending multiple behaviors and using potential fields. Joint functioning of the vision
system and controller is described in [730].

• In 1991, G. Saridis’ concept of three-level intelligent controller (organization, coordination,
and execution levels) was implemented in the Petri Net coordination model that was tested in
the indoor environment of comparatively complicated configuration [731].

• In 1992, the DARPA SIMNET, based upon a world representation acquired from the
Defense Mapping Agency, allowed populating the virtual environment with a large number
of autonomous vehicles called Semi-Automated Forces (SAF). The SAF human operator
provides higher level supervision to the autonomous units, while lower level control, such as
obstacle avoidance, formation keeping, bridge crossing, road following, etc., is the
responsibility of the automated system. The SAF vehicles are simulated mobile robots
operating in a complex environment driven by their intelligent controllers and manned
simulators [732]. The present version of this system is called ModSAF.

• In 1993, D. Kortenkamp and his colleagues developed and tested the indoor mobile robot
CARMEL. Their obstacle avoidance algorithm uses the vector field histogram (VFH). This
algorithm creates a histogram grid that is a certainty grid representation of the objects
surrounding the robot using the robot’s sonar sensor [733]. The algorithm is based on an
original psychological model of cognitive mapping applied to a mobile robot [734]. The
theory of Stereo and Ego-Motion Mapping applied in this cycle of works is presented in
[735]. Other works of the same group of authors can be found in [736-738].

• Very similar structures of control were reported in numerous papers during the period of
1994-96. Some of these works are presented in the terminological tradition of conventional
control theory, come are described as fuzzy controllers. In [739] a mobile robot with
ultrasonic sensor array demonstrated collision avoidance. By equipping the fuzzy controller
with a neural network, the system becomes more sensitive and more agile [740, 741].

• In 1995, the HelpMate, the autonomous mobile robot courier for hospitals was reported
[742]. It was a further development of the earlier products by Transitions Research
Corporation (J. Evans and J. Engelberger). The architecture of HelpMate follows the RCS
conceptual structure: it has modules of Planning and Execution, and its controller and the
topography knowledge base as the World Model. It uses structured light for vision sensors.

• In 1996, the autonomous robot AURORA was demonstrated [743]. This robot is equipped
with ultrasonic sensors and performs a regular job of spraying plants following a schedule.

• Following the pioneering results in [742] another hospital robot was proposed in [744],
equipped with subsystems of learning for assignment acquisition and for obstacle avoidance.
Teleoperation is recommended as a main mode of operation while automated tracking of the
learned trajectory is attempted as a further development.

• The interest in “blending” behaviors still continued. The Oxford version of the robot with
multiple behaviors was called distributed real-time architecture. Unlike the most of behavior-
based architectures it is equipped with a meta-planner and demonstrates successful obstacle
avoidance behavior [745]. Similar solutions were developed earlier by T. Mitchell [746], L.
Kaelbling [747], and E. Badreddin [748], which differ from A. Arkin’s results with blending
of behaviors [749] by having upper level planning or a blackboard for prior simulation [750].
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• An indoor robot, Robee, was developed for exploring visual behavior based on the centering
reflex observed in freely flying honeybees [751]. This behavior is used to drive a robot
through a corridor with parallel walls while controlling the forward speed and avoiding
obstacles. Robee was produced using TRC LABMATE (see more in [742] and [752]). In the
meantime, the HelpMate Robot has undergone further developments and is being
manufactured by HelpMate Robotics, Inc. (http://www.helpmate robotics.com) of Danbury,
CT. This is an intelligent system with a multilevel RCS-like architecture. Ten years of
development of this intelligent commercial autonomous mobile robot are described in [753].
The design issues for intelligent mobile robots working in a healthcare environment are
discussed in [754]. An application platform for development and experimental validation of
the healthcare related mobile robots is described in [811].

• Another reflex-based control was tested for collision avoidance purposes [911]. This reflex is
achieved by assigning protection zones around the robot and is similar to using DAR-zones
(“dynamic avoidance regions”) as described in [453, 970].

• In 1998 J. Borenstein described the OmniMate robot [755]. This robot is a multidegree-of-
freedom mobile platform with omni-directional motion capabilities. The OmniMate was
made at the University of Michigan from two LABMATE platforms. The results of this
research allow anticipating nonsystematic odometry errors caused by bumps, cracks, or other
objects on the floor.

• Another well-known indoor robot is the YAMABICO robot. It is equipped with both vision
and ultrasonic sensors. In [649] its ability for self-localization was explored. Similar
exploration of self-localization capabilities was investigated for the MACROBE [756], which
is equipped with laser range finder [757]. In [902] it was demonstrated that active maneuvers
have to support the processes of localization. The problem of self-localization was also
explored in [758]. An indoor mobile platform Robuter was the testbed. This platform has a
differential steering car-like kinematics and is equipped with an odometric system that
supplies the a priori pose estimate.  In general, the configuration of wheels and steering
mechanism is of crucial importance for controller design. In [759] an omni-directional
autonomous platform is described as an option for indoor application. A unique set of
analytical expressions is proposed for this holonomic system.

6.3 Outdoor Mobility

Mobile Robots
In the 80s, there were only a few practical developments in the area of autonomous mobility.

• In the USA, the well known results that contained elements of autonomy were the
experiments in road-following. These experiments were performed at Carnegie Mellon
University on the vehicles NavLab and Terregator [760, 761]. Another outdoor mobile robot
with a primitive path finding system and road following operator was created by FMC
Corporation. It was a robot-tank [800].

• The experiments in on-line path-finding performed on IMAS (Intelligent Mobile
Autonomous System) developed by Drexel University [540 and 762-764, 803, 804]. The
IMAS solution [540] was based upon a multiresolutional controller with three levels of
resolution: Planner-Navigator-Pilot. This architecture was analyzed [109] and further
discussed in [762]. This concept was first introduced in [803, 804]. At the pilot level the
“behavioral” controller utilized blending of two behaviors [970]:
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a) those of a quick, shortsighted decision maker and
b) those of a farsighted, accurate decision maker [773].

• The experiments in outdoor autonomous security robot functioning designed by the Naval
Ocean Systems Center were successful [765].  They allowed to clarify many requirements for
“centry-robots” specifications.”

• National Institute of Standards and Technology was involved in the development of the
outdoor Field Material-Handling Robot based upon a precursor of the present RCS
Architecture [808]. Early solutions of mobile robots can be found in [943-947].

• In Germany, the first vehicle with an autonomous system of control equipped with fast and
efficient computer vision was put on the road in the end of 80s [766-768].

• In Japan, the first reports about autonomous vehicles appeared in the end of the 80s [769,
770]. Most of them have a very primitive control system which presumes tracking the path
which was externally assigned.

• Most of the research in autonomous mobility was associated with the intention to improve
the understanding of and testing the subsystems to be utilized and the architectures to be
explored. In [771] an architecture is proposed extending prior solutions in vision guided
motion. In [772] a control algorithm was proposed for the computer controlled vehicle
system.

• Simple road following, which seemed to be so close to wall following, raised numerous
problems of logical reasoning. These problems are engrained in the realistic context of the
medium and are related to micro deviations in what should be considered as an edge of the
road, macro changes in the edge, interruptions, puddles, etc. [774]. Evaluation of
inconsistencies in representing a road edge is presented in [806]. Focusing Attention by
active gaze control is described in [807]. The subtleties of controlling the complicated
process of road following are described in [775]. The detailed description of the production
system utilized for road following at the University of Maryland is presented in [776]. In the
final version of their vehicle [777], this research group utilized the control system Planner-
Navigator-Pilot with three levels of resolution. Another research result that utilized the
Planner-Navigator-Pilot architecture was presented in [805].

• In the meantime, it was not so simple to execute the desirable curve under planned trajectory
because the dynamics and kinematics of the propulsion and steering subsystems were not
totally clear. In [778] the requirements for the “dodging” along the path are formulated for
the case when a robot deals with moving obstacles. This problem has generated a multiplicity
of research works that consider the links between steering and propulsion during the process
of terrain navigation. The steering actuator dynamics were represented taking into account
the first order lag of the steering actuator. The results were simulated, and the good quality of
this model was confirmed in [779]. The processes of propulsion and steering were analyzed
in [780]. These controllers should be supported by a proper estimation information [781].
The results improve, if between each pair of nodes in the string of the best plan, the shortest
path is found on the surface of terrain [472]. The wind is taken into account in [782].

• A number of research results are dedicated to propulsion and steering of chained mobile
systems, sometimes called “articulated vehicles”. In [783] the results of design, analysis and
control are presented for the Japanese articulated body mobile robot CORYU-2, which is
composed of seven segments with total length 3.3m and total weight 330kg. Analysis of the
steering controller for this vehicle is presented in [910]. Energy consumption has been
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evaluated for different plans. General mathematical analysis of the chained mobile systems is
given in [784], and the trajectory generation for the N-Trailer problem is presented in [785].

• Another interesting result related to Japanese researchers was reported in [821]. It became
clear that a system with vision estimation for control purposes requires dealing with the
structure of the image, not just with a vector of variables.

• It was about time to start a concerted effort focused upon creation of unmanned ground
vehicles. The projects DEMO I and II started in 1990. In 1996 the first outline of this large
project came into existence [786]. This spurred much research that produced significant
results (see DEMO III in [973]). They include: development of 4D RCS methodology [495],
and new methods of sensing, representation, and control that are being adopted by many
organizations.

• Among the latter developments the following seem to be of serious importance:
a) the laws of causal ordering for the distributed mobile systems were analyzed in [788];
b) the protocols of the mobile computing for the rovers [789] were developed and mobile
communication networks were studied [790];
c) further development of localization systems for outdoor robotic vehicles  [791];
d) novel control architectures were proposed for EXECUTORS of the mobile robots
under disturbances [792];
e) an expert knowledge-based system was developed for traction control of a truck [793].

• Similar growth of research results in this area has been noticed in the activities of the mobile
robotic groups abroad:

a) a novel path tracking algorithm was developed for a wheeled mobile robot with
dynamic constraints [794];
b) a new analytical controller that contains a system of supervision and subsystems of
longitudinal and lateral control is reported in [795];
c) new versions of planners have been developed, which claim optimality, and also
employ genetic algorithms [796];
d) a novel neural network-based predictive controller was developed for mobile robot
navigation [797];
e) new linearization tools were introduced for fuzzy logic controllers for autonomous
vehicles [798];
f) stability issues in mobile vehicles with steering were analyzed and a design technique
was proposed for a mobile robot with fuzzy controller [824]
g) new “behavioral” controller was developed for a farming  autonomous robot [799].

• A separate but a very important area of research is related to “auxiliary” parts of the
intelligent controller for autonomous vehicles: parts related to their bodies, not to their
minds. Listed here are the following results that exemplify research of this type:

a) It is customary to consider mechanical parts of the vehicle as external to the control
system. In [825] the adaptive suspension vehicle is described, where the suspension
system is equipped with sensors and subordinate support systems that affect its
stability and modes of operation. It is possible to anticipate that in future vehicles the
mechanical parts will be equipped with sensors that form an analog of a
proprioceptive subsystems in living creatures and work at all levels of controllers.

b) For a vehicle suspension system with hydraulic actuators a special device is proposed
which combines property of a valve and a sensor. This research should make a
suspension system smarter [826].
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c) The higher resolution details of motion control are discussed in [827] where the
coordinated throttle and brake actuation is proposed.

d) Similar research is described in [828] where the problem of joint functioning for
brakes and throttle is coupled with a problem of fuel optimization.

e) The engine of a vehicle should have intelligence of its own. In [829], a system of joint
engine control estimation and diagnosis is described.

f) The problem of tire-road friction estimation is one of the fundamental in autonomous
vehicle control. In [830] a system is described which monitors this value of friction
via measuring the wheel slip.

g) The geometry of motion should be taken into account more thoroughly if one wants
to receive more reliable and accurate minimum path control [918].

Intelligent Highway
The goal of an intelligent highway is a result of the reality of automotive problems in the

countries with advanced economy [852]. The concept of intelligent highway is outlined in [853].
A similar set of activities in Japan is reported in [854].

One of the key elements of the intelligent highway problem is the phenomenon of traffic self-
organization in particular, formation of platoons or groups of vehicles that move together as a
result of complicated self-aggregation processes. The possibility of controlling the platoon
formation is discussed in [855].  The authors explore the possibility of forming the traffic by
using decentralized control laws as suggested in [856]. The same problem is approached in [857]
by using methods of fuzzy logic control.

The transitional maneuvers are addressed in [858]. The high resolution processes of highway
entry make their contribution to the overall traffic control problem [859]. The problem of lane
change is analyzed in [860]. A language for dealing with the problem of collision-free navigation
is proposed in [861] for autonomous mobile robots. This language reflects traffic priorities in
dynamic environment.

An issue of mixed traffic is discussed in [862]. This can be considered a first step toward a really
intelligent transport system. It allows for having both automatically and manually controlled
vehicles on a road. Two levels are considered: the low resolution level analyzes the current
scenario and infers the control objectives while the higher resolution level optimizes the control
solution for the upper level objectives. In order to solve this model for mixed traffic the model
attempts to mimic the behavior of human drivers in vehicle following and lane changing.

6.4 Legged Vehicles
Legged mobility is associated both with indoor- and outdoor intelligent vehicles. Legged

mobility requires an intelligent control system with higher intelligence because the leg
configuration is more complicated than the wheel transmission, and the model of motion
(walking or jumping) is more sophisticated than the one exercised by wheeled or tracked
vehicles. The Ohio State University was the pioneer of walking machines in the US [863]. The
two level control system for OSU Hexapod vehicle is described in [864]. An  important high
resolution problem in legged vehicles is assignment of the manner of walking or “gait control”.
A system with automatic gait control for a quadruped is described in [865]. A larger and more
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complicated machine demanded for more complicated suspension. The OSU also developed the
adaptive suspension vehicle (ASV). This gigantic hexapod was successfully tested. However, the
motion of the vehicle was slow, and no further research is presently conducted [866].

Of course, a development of a biped is a more challenging problem since the conditions of
mechanical stability are more difficult to satisfy and the agility of walking requires for an
increase in the number of degrees of freedom on the overall walking system. In [867] a
simplified walking biped is discussed whose equilibrium is taken care of by controlling by
potential energy conserving orbit. Apparently, it can be achieved only by introducing elements of
learning [868].  Advanced results in development of the biped robot have been obtained in
Nagoya University in Japan [869].

Further control solutions are being explored for the legged vehicles. In [870] a two-level control
system is proposed for the quadruped robot. In [871] a self-organizing multiagent model is
proposed for the folding-legged uniped robot. In [872] joint statically/dynamically stable walking
processes are analyzed for the quadruped robot.

6.5 Various Media Intelligent Vehicles

Waterborne Vehicles
Control solutions for both autonomous and non-autonomous ship navigation follow the

results obtained for terrain navigation [831]. Underwater vehicles have more distinctive features
because their list of requirements differs from the ones formulated for terrain vehicles [832].
Nevertheless, they follow the Planner-Navigator-Pilot technical solution and most of the results
can be categorized as RCS architecture [901]. More distinctions can be found in the Executor at
the highest level of resolution. The mathematics of the trajectory tracking is outlined in [833].
The autopilot with reconfigurable controller is described in [834]. The tracking controller with a
subsystem of prediction is described in [835].

Airborne Vehicles
The typical intelligent procedure is performed within each autopilot solution. Similar in

significance, but not as wide spread operation is the formation of optimal maneuvers in optical
plane. An example of the control-theoretic result is given [836]. Multiple solutions of this type
are being applied and explored for STOL and V/STOL operations in special aircrafts4. The
survey of all existing solutions that are contemplated for the intelligent flight control can be
found in [837]. The intelligent parts of the controllers are divided in outer loops and inner loops.
Outer loops take care of all declarative functions, inner loops are responsible for all procedural
and reflexive functions. In this paper [837] the need for intelligent control is explained solely by
the functions of human psychology and physiology that should be supported automatically.

A class of intelligent controllers is generated by the need to equip missiles with autopilots. At the
present time the plan to follow is computed externally but the tracking is done by the autopilot
[838]. A survey of unmanned aerial vehicles can be found in [975].

                                                
4  Vertical and/or Short Take-Off And Landing (V/STOL and STOL).
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Underground Vehicles
NIST experience in RCS control of mining vehicles is presented in [839]. In [840] the

recent results in applying fuzzy logic and neural networks for autonomous excavation is
described in [840]. The authors have thoroughly analyzed a set of salient tasks associated with
the process of excavation and developed a controller that takes care of all of them. In [841] the
problem of autonomous navigation is addressed for the underground mining vehicle. The system
is equipped with odometry, inertial sensors including triaxial accelerometer and gyros, ultrasonic
sensor and a laser sensor

Intelligent Vehicles for Space Exploration
Two types of robotic devices are associated with the space exploration problem: robots

that should work in free space and planetary rovers.

SPACE ROBOTS
Intelligence systems of the first group are determined by the specifications presented in [842]. A
multiplicity of research results was produced in the wake of this request. Spaceborne multilink
manipulators are supposed to both move things and to move themselves [843]. The controller is
designed to work under significant variation of the system parameters because of the changes in
configurations. Further development of the same research is reported in [844]

PLANETARY ROVERS
CMU Robotics Institute in the 80s actively pursued rovers for Mars exploration. The legged
robot Ambler is one of the results of these activities [845]. Many of explored technical solutions
were similar to those recommended for the earth robots [846].

In 1987-88, Pathfinder, a broad program was outlined by NASA [847]. This program had similar
sister-efforts in Europe that resulted in architectures similar to RCS [693, 848].

Brachiation Moving Devices
This area is just emerging. It is related to an unusual medium: interlaced tree branches.

Brachiating Intelligent systems are supposed to move through the clutter of branches by
swinging their bodies and grasping the next branch properly selected so that the “best” path is
followed and safety conditions are satisfied [849]. It will be described in more detail in the
section Learning in Part II of this report, because CMAC is the core part of the brachiation
controller [850]. The algorithm of the brachiation controller is described in [851]. These
comparatively simple devices can work successfully only if they are equipped with a good
learning system (e. g. as in [884]). These issues are discussed in Part II of this report.
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