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Abstract— This article presents a hierarchy of planners
that can be used to coordinate multiple autonomous ve-
hicles for different applications. The particular archi-
tecture reduces complexity and creates a constrained
representation that in turn generates a wide variety
of complex behaviors. This article will concentrate on
the upper levels of the hierarchy assuming that the au-
tonomous mobility tasks can be executed by the lower
levels of the hierarchy. A particular set of examples for
the US Army’s Demo III project will be presented.
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I. INTRODUCTION

HE problem of coordinating multiple autonomous
platforms has been thoroughly studied in the liter-
ature from operations research to artificial intelligence.
The manufacturing and operations research liter-
ature shows a long history of coordinating multiple
manufacturing cells to optimize factory production [1].
Most of these methods are manufacturing domain de-
pendent and do not always easily transfer to mobile
vehicles in unstructured environments.

Another field of research that has historically created
coordination of mobile vehicles can be found for aerial
platforms. Methods for closed coupled formations of
aerial vehicles to minimize drag have been studied us-
ing linear dynamic models [2], [3], and using non-linear
models [4]. These approaches rely heavily on the dy-
namics of the airplanes to create classical control feed-
back techniques that theoretically warrant the stability
of the formations.

Some attempts at controlling multiple vehicles have
been in structured environments using behavior-based
approaches.

The predecessor to the current system employs a be-
havior based approach was implemented for the Demo
IT project [5]. Since then, the behavior based approach

A. Lacaze is with the Intelligent Systems Division of the
National Institute for Standards and Technology. This
work was partly funded under Cooperative Agreement No.
TONANB7H0020 with the University of Maryland, College Park

has been abandoned and a hierarchical architecture
based on Real-time Control Systems (RCS) is currently
in use for the Demo IIT program. The main objective
of the Demo III program is to create an autonomous
scouting vehicle capable of traversing an unstructured
off-road environment. Behavior-based systems like [5],
[6], [7], [8] share many common components with hier-
archical architectures with some important differences.
They integrate several goal-oriented behaviors simulta-
neously. In most cases several behaviors are generated,
and an arbiter or decision maker weighs these behav-
iors to create an “intermediate” behavior that better
matches the cost criteria. The advantages of these sys-
tems is that they create interesting group behaviors
in simple environments where the coordination can be
done relying on local criteria and therefore require sim-
ple world representations. Some examples of flocking
and schooling behaviors are presented in [9]. The down-
fall of these architectures is that, when applied to com-
plex environments, the implementation of each of the
many possible behaviors becomes cumbersome and sit-
uation dependent; and the arbiter rapidly increases in
complexity.

On the other hand, hierarchical systems create a
more explicit world representation. The cost criteria
are used to evaluate a model of the system travers-
ing the predicted world representation. In most cases
only one behavior is generated at each level. First, a
very coarse behavior is generated, and then this same
behavior is refined at each level of the hierarchy. Pro-
ponents of hierarchical architectures argue that apply-
ing cost evaluation criteria is much easier to resolve
using a complete representation as opposed to dealing
with multiple, sometimes contradicting, sets of behav-
iors. However, complex world representation and the
complexity of testing plan combinations make the im-
plementation of hierarchical systems challenging. Both
architectures contain reactive and deliberative (plan-
ning) components. Hierarchical architectures tend to
lean towards planning solutions because they have a
representation that allows the prediction components
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Fig. 1. Two Demo III vehicles performing an autonomous mis-
sion

necessary for planning. Behavioral approaches tend to
be more reactive in nature, which is sufficient in simple
environments.

Other approaches taken in the literature include us-
ing classical control and stability techniques. How-
ever, since most mobile vehicles are non-holonomic,
they cannot be asymptotically stabilized by smooth
static-state feedback control laws. Some approaches
have been taken using Lyapunov’s second method [10]
and smooth time-varying feedback control laws [11].

Many approaches in the literature concentrate in
“tight” formations for ground vehicles where the exact
location of each vehicle within the formation (parade
like) is seldom used in military situations. The exact
locations within the formation are very loosely followed
in real scenarios and in general are not nearly as im-
portant as the overall sensor coverage, risk evaluation
and distribution [12], [13], [14], [15].

Many applications assume that formations have a
leader. Vehicles in the formation are then steered to a
particular offset with respect to this leader [16], [17].
Other approaches allow for great freedom for the in-
dividual platforms, and the coordination is done for
collision avoidance [18]. Some of these algorithms are
based on the search of the configuration space [19]. [20]
presents a comprehensive survey of robot coordination
methods mainly concentrated for manipulators.

In this paper we will present a hierarchical system ap-
proach to controlling groups of vehicles. By imposing
different constraints in the graph representation, com-
plex militarily valuable behavior will emerge. Figure 1
shows the Demo IIT autonomous platforms being tested
in Fort Knox in October 2000 running a hierarchical
planning architecture. Figure 2 shows one autonomous
platform traversing a challenging environment.

Fig. 2. Autonomous vehicle followed by manned safety
HMMWV

II. HIERARCHICAL ARCHITECTURES

Hierarchical architectures based on RCS [21] make
use of multiple levels of coarseness or resolution to min-
imize complexity. First, very coarse plans are created
that look far into the future and in space. In most
realistic scenarios, plans that look further into the fu-
ture can only be done coarsely, because our knowledge
and ability to predict outcomes rapidly deteriorates the
further out we try to predict. These coarse plans are
then sent to other levels of resolution where a por-
tion of them is refined. This portion is closer in space
and time to the current state, and in general, more
knowledge is available. This process is continued at
each level until we reach a level where very detailed
knowledge, and therefore, accurate predictions can be
done. These higher levels of resolution plan very de-
tailed plans which are short in scope. Lower levels
of resolution create plans and representations that in-
clude large scopes. They are coarse and there are large
amounts of time to plan (and re-plan) because the rep-
resentation of the world tends to change more slowly
at that resolution. At higher levels of resolution, the
representation and plans are much more detailed. The
re-planning cycles are comparatively faster, however,
the scope is small. In general, the levels of the hierar-
chy are designed to create a similar level of complexity
for different levels. Therefore, the number of levels de-
pend on the complexity of the problem at hand [22],
[23]. For simpler systems RCS degenerates into flatter
architectures similar to [24] because only a few levels of
resolution are necessary to deal with the combinatorial
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Fig. 3. RCS hierarchy for a scout platoon

complexity of the problem.

Hierarchical architectures are a very good match for
military applications. Military personnel are very used
to control hierarchies, and clearly understand their op-
eration. Figure 3 shows a simple hierarchy for control-
ling a platoon. In the scenario presented, a platoon is
composed of two sections [25]. Each section has sev-
eral vehicles and each vehicle has its own vehicle level
(similar to a vehicle commander), an autonomous mo-
bility level (similar to a driver), and a primitive level
which controls the vehicle. As in military structures,
the commands flow from the top (platoon leader) to
the bottom driver. In this paper we will concentrate
on the upper two levels of this hierarchy and assume
that the vehicle level and autonomous mobility levels
have already been implemented in such a way that they
can receive and carry out the commands passed by the
upper levels.

III. PLANNING ALGORITHMS

Most planning algorithms start from the following
premises:

1. the universe of discourse can be subdivided into dis-
crete states;

2. there is a starting (or current) state;

3. there are one or more goal states;

4. there is a cost associated with moving the systems
from one state to another;

5. there is a cost associated with being at a state;

6. the planner must find one or more paths that will
take the system from the starting state to a goal state,
minimizing the cost along its motion.

Specifically, let G = (V,E,s, f,7) be a digraph
where V' is a finite set of nodes, vertices or states. E has
ordered pairs subsets of elements of V' of called edges,
that is, E CV x V. s, f € V, and represent a starting

state and a finish state, respectively. 1(e) is a function
where e = [v1,v2] € E and vy,v3 € V which computes
the cost of traversing e. A planner is an algorithm
#(G@) which returns a directed walk w through G (in-
formally plan). ¢(G) = w = (s,v1,v2,... ,Vn, f) where
vy ...vn € V minimizing )" 1 (e;) where eg = [s,v1],
e1 = [v1,va], ..., € = [Un, f]- &(G) = 0, if there are
no plans from s to f.

In most planning problems for a single ground vehi-
cle:

e 3 f: R xRN — V where R? represents the location
of the vehicle. A subsampled 2 is used for computing
the vertices of the planning graph.

o Y u,v; € V,if L(v;,v;) < thr,3 ¢ = [v;,vj] € E'.
L(.) is a distance measure. In other words, vertices are
connected within a vicinity.

e E = {er, € E' : Constrained(e;) = False} where
Constrained : E — {True, False} is defined to rep-
resent the constraints that the vehicle may have (i.e.
areas not allowed).

Once G is created, there are many optimal and sub-
optimal ¢(G) described in the literature. Specifically,
Dijkstra’s algorithm and A* are commonly used to find
these paths optimally. Both algorithms are easily im-
plemented for replanning so that even the complexity
of the second cycle is lower in the average first plan.

IV. PLANNING ALGORITHMS FOR MULTIPLE
VEHICLES

For two vehicles it is possible to build
fi:RXEXRXxR>V (1)

R* represents the position of the two vehicles. As ex-
pected, the number of elements in V' and in E increases
very rapidly. However, as we will see in the following
examples, this is not a problem for formations. Forma-
tions create large amounts of constraints so that the
number of elements of V' becomes manageable.

For example, let [z,,y,] and [z, ys] be two adjacent
vehicle locations (i.e., L([Za,¥a], [Tb, ys]) < thr). Fig-
ure 4 shows the edges without any constraints associ-
ated with the 4D graph created for planning using the
representation outlined by Definition 1.

At this stage, the number of vertices and edges that
create a graph as defined could easily overwhelm the
computing power, as well as the memory resources of
any modern computing device. In the next few sections
this paper will show how this graph is pruned by using
constraints to create a graph that can be optimally
searched in real time.
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Fig. 4. Edges between two adjacent map locations for two vehi-
cles

V. ADDING CONSTRAINTS TO ACHIEVE SCOUTING
BEHAVIOR

The constraints introduced in the following subsec-
tions are based on the doctrine taught to Army scouts,
and it is based on [25].

It is assumed that only edges and vertices that fit
the constraints are used in the creation of the graph,
as opposed to creating the complete graph and then
pruning it. Although similar conceptually, the amount
of memory and computations required to do the former
is generally orders of magnitude smaller than the later
one.

A. Distance constraints

In most cases for scout maneuvering (and in most
formations), there are distance constraints that must
be maintained for it to be called a formation. In the
case of scouting behavior, two often used constraints
are as follows:

1. vehicles must not be more than [ meters away from
each other. A more complicated measure may actually
force the vehicles in line of sight with each other. The
reasons for this constraint from a military perspective
are clear: cover each other, and if a vehicle gets shot,
the second vehicle should find out where the shot orig-
inated.

2. vehicles must be more than m meters away from
each other. This is done so that both vehicles will not
be disabled by a single detonation.

Spe(:iﬁca‘u% vek € EI; € = [[Z’a, Yb, T, yd]a [xea Yf,ZTg, yh]]:

Fig. 5. Two vehicles traversing a terrain following tight distance
constraints

Constrained(eg) = True
fo L([.’L'a, yb]; [xcayd]) >1lv L([-'L'a,yb], [mcayd]) <mYV
L([xe; yf]a [xg; yh]) >V L([xe; yf]; [xg; yh]) <m

2)

Depending on the ! and m chosen, this set of con-
straints reduces the space of search by a considerable
amount. Figure 5 shows two vehicles traversing an ar-
tificially created terrain. The blue and red trails start-
ing at the origin, represent the paths generated by the
two vehicles. The underlying grid represents a two di-
mensional projection of the 4 dimensional graph stretch
over the terrain. The map is 5 km in size, and the vehi-
cles must be within 500 m of each other. It is possible to
see from the figure that the vehicles travel mostly par-
allel to each other when the terrain permits, and they
travel in a column when the terrain does not. There
are no constraints or change in cost evaluations for the
different behaviors. They travel this way because it is
optimal with respect to the cost function.

Figure 6 and 7 show two vehicles traversing a arti-
ficially created maze-like and GPS generated elevation
maps. The first picture shows the two vehicles with
I = 500m and with [ = 1500m (m was selected as to
keep the number of nodes constant). Note that nei-
ther vehicle is following an optimal path. The paths
followed by both vehicles are optimal overall. In this
context, optimality refers to the fact that no other path
that the two vehicles follow will give a lower cost within
the given graph and constraints. This is different from



Fig. 6. Two vehicles traversing a terrain following tight distance
constraints

Fig. 7. Two vehicles traversing a terrain following relaxed dis-
tance constraints

the standard approach where an optimal path is found
for one vehicle, and the other vehicles are constrained
to the path found for the first one. In our case, the
paths of both vehicles are optimized simultaneously.
There are no heuristics that being used by the system
(other than the constraints) that change the behavior
of the system by optimizing the cost function. Very
different behaviors automatically emerge depending on
the terrain.

B. No Stopping Allowed

In some cases it may be necessary to only allow ve-
hicles to stop or slow down in particular areas, and
continue their moving the rest of the time. These con-
straints can be implemented as follows, Ve, € E';e;, =

[[xaa Yb, T, yd]) [.Z'e, Yf,Tg, yh]]:

Fig. 8. Two vehicles traversing a terrain following relaxed dis-
tance constraints and a same path distance constraint

Constrained(ey) = True

iff (o= Nyp =yg) V (Tc =29 Aya =ys) V
L([xa, yo), [zc, yal) > 1V L[za, o], [e, ya]) <m Vv
L([ze,yyl, [2g,ynl) > 1V L[e, ysl; [24,yn]) <m

3)

Figure 8 shows the results of applying these con-
straints. The starting points for one of the vehicles
was modified to meet the 500m minimum distance con-
straint. By comparing Figure 5 to Figure 8§, it is possi-
ble to see that one of the vehicles is following an optimal
path while the second one is moving out of the way of
the first vehicle to meet the distance constraints.

C. Leap Frog

A commonly used strategy for scouting vehicles is
a “leap frog” traversal, referred to as boundary over-
watch or traveling overwatch. In these cases, only one
vehicle moves at a time, while the other takes an ob-
servation position over the first vehicle. If one of the
vehicles is shot, the other vehicle will be paying close
attention to identify the direction of the fire and other
details of the encounter.

These constraints can be implemented as follows,
vek € El; €r = [[.’L’a, Yb, T, yd]a [me; Yf,Zg, yh]]:



Fig. 9. Two vehicles traversing a terrain following tight distance
constraints and leap frog constraints

Constrained(er) = True

iff (xa! = ze A ys! =yf)v(mc! = Zy /\yd:yf)v
LLOS((%a,yb), (€, ya) VILOS (e, y5), (x4, yn))
L([zas yb]; [7c,ya]) > 1V L([Ta, Yb); [Tc, ya]) <mV
L([ze, ysl, [zg, ynl) > 1V L([ze, y#], [zg, yn]) <m

(4)

where LOS((z4,yp), (Zc,y4)) = true if and only if
(z¢,y4) can be viewed (or cleared) from (z,,ys). LOS
stands for line of sight. Figure 9 shows the results
of applying these constraints. In this example, only
one vehicle is allowed to move at the same time. If
the cost for stopping is increased assuming that the
vehicles have to take cover, the vehicles perform longer
leaps. They generally stop at locations that give good
visibility so that the other vehicle can perform long
leaps and still be in the line of sight of the other vehicle.
This explains the number eight pattern that can be seen
in the path by the vehicles in the Figure 9.

VI. COORDINATING LARGER NUMBERS OF
VEHICLES

In order to coordinate large numbers of vehicles,
the dimensionality of the proposed approach becomes
large. Although the number of constraints grows, this
may not be enough to create small enough graphs for
real time usage. In order to coordinate larger number
of vehicles, following the examples given by the military
organizations, we make use of hierarchical structures.
Figure 10 is a schematic of the approach. At the top of
this hierarchy, the platoon level creates a very coarse
plan for all sections. Representation methodology, and

planning strategy are the same at this level. The main
differences between the levels are the coarseness of the
representation as well as features of interest, cost eval-
uations and constraints.

In the example shown, the platoon level not only
has distance constraints, but other sets of constraints
do not allow sections to overlap with each other (fol-
lowing military doctrine). The graph is 6 dimensional
where each pair of dimensions represents a rough lo-
cation of each section. For the figure, the enemy is
assumed to be to the left of the image, therefore, the
leftmost section carries out a “leap frog” movement,
while the two rightmost sections organize into more re-
laxed formations.

Following the lessons evolved in military doctrine,
if a larger number of entities need to be coordinated,
more levels would be added to the hierarchy. It is possi-
ble to describe hierarchies as sets of rules that constrain
the space of search and therefore reduce complexity.
This example shows that hierarchical tools designed for
human entities can easily translate to artificial systems.
In this example, if the paths for all six vehicles would
have been searched in one level, the number of nodes
and edges required to create a similar path would have
overwhelmed the memory as well as the computational
capabilities of the system. In general the results would
not deviate from the optimally found in the 12D space.

Opponents of hierarchical systems often mention
that hierarchies have a “bottleneck”. In most cases
these problems are caused by poor system design.
Complexity of planning and representation determine
the number of levels to be used for any particular sys-
tem. If a level carries too much burden, then, more
levels can be created to alleviate its complexity. On
the down side, hierarchies create “bureaucratic” costs
of communicating representations and commands be-
tween levels. In general, these added costs are negligi-
ble compared to the savings [22].

VII. CONCLUSIONS

Autonomous vehicles have been a central point of
attention in recent years. The ever increasing num-
ber crunching capabilities of modern computers, as
well as the recent advancement in sensor technology
are paving the way for the implementation and de-
ployment of groups of autonomous vehicles. Therefore,
the need for robust formation control will become an
important factor in future military applications. This
paper presented a viable solution for the planning of
formations of vehicles that closely resembles military
organizations. It presents a departure from the behav-
ioral approach commonly found in the literature, with
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Fig. 10. Platoon Level and section levels.

Fig. 11. A platoon formed of 3 sections with 2 vehicles each
performing different section behaviors

some specific advantages:

o The system performs formation planning for multiple
vehicles at the same time, as opposed to planning for
one and having the others attached by control laws. In
the paths created by these graph search techniques are
not susceptible to the local minimums that can easily
be found in ad hoc heuristics (bridges and multiple ob-
stacles) because of their larger scope of temporal and
spatial representation.

e The performance of the system is optimal within the
graph representation and the constraints allocated.

e All levels shown in the examples can be easily imple-
mented in desktop computers and allow for real-time
operations at the shown resolutions. The shown exam-
ples create about 5 x 10 edges, seconds to create, plan
and re-plan the graphs.

o The representation allows facilitates the generation
of constraints to generate complex behavior that can
result into into tactically correct behaviors.
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