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Abstract

We describe results on combining depth informa-
tion from a laser range-finder and color and texture
image cues to segment ill-structured dirt, gravel, and
asphalt roads as input to an autonomous road follow-
ing system. A large number of registered laser and
camera images were captured at frame-rate on a vari-
ety of rural roads, allowing laser features such as 3-D
height and smoothness to be correlated with image
features such as color histograms and Gabor filter re-
sponses. A small set of road models was generated by
training separate neural networks on labeled feature
vectors clustered by road “type.” By first classify-
ing the type of a novel road image, an appropriate
second-stage classifier was selected to segment indi-
vidual pixels, achieving a high degree of accuracy on
arbitrary images from the dataset. Segmented images
combined with laser range information and the vehi-
cle’s inertial navigation data were used to construct
3-D maps suitable for path planning.

1 Introduction

An autonomous vehicle navigating on- and off-road
(e.g., military reconnaissance) must be aware of differ-
ent kinds of terrain in order to make prudent steering
decisions. To maximize safety and speed, it may be
desirable to use any roads in an area of operation for
as much of a point-to-point path as possible. This
special case of general terrain traversal, road follow-

ing, requires an ability to discriminate between the
road and surrounding areas and is a well-studied vi-
sual task. Much work has been done on driving along
highways and other paved or well-maintained roads
[1, 2, 3], but marginal rural and backcountry roads
are less amenable to standard techniques for a variety
of reasons. There may be no lane lines or markings;
the road/non-road border is often spatially fuzzy and
has low intensity contrast; the overall road shape may
not follow smooth curves and the support surface may
be highly non-planar; and the appearance of the road
itself can change drastically: mud, clay, sand, gravel,
and asphalt may all be encountered.
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Figure 1: Experimental Unmanned Vehicle (XUV)
driving in area where data was collected for this paper.

Algorithms that attempt to delineate the road via
region-based segmentation have been fairly successful.
Color [4, 5] and texture [6] are two characteristics that
have been used to differentiate the road from border-
ing vegetation or dirt. Some work has also been done
on using 3-D information to constrain segmentation:
e.g., [7] applied structure-from-motion techniques to
automatically detected and tracked features in order
to follow a dirt road in the midst of dense trees. Visual
and structural modalities are clearly complementary:
vision alone may be inadequate or unreliable in the
presence of strong shadows, glare, or poor weather,
while road boundaries do not necessarily coincide with
3-D structures—the height border between a dirt road
and short grass, for example, is undetectable by most
current methods and sensors.

Classification offers a straightforward way to com-
bine these two sources of information. In this paper,
we report work on road segmentation using a camera
and a laser range-finder mounted on an autonomous
four wheel-drive vehicle, the Experimental Unmanned
Vehicle (XUV) (shown in Figure 1), which is part of
the Army Demo III project [8]. By framing the prob-
lem as one of learning by labeled examples whether
small image patches (registered with laser range in-
formation) belong to the road or background, we can
easily integrate disparate features such as 3-D height
and smoothness with image qualities like color and
texturedness. We have found that fusing these modal-
ities yields better performance than any one method
over a wide variety of individual road images. Clearly,
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Figure 2: Sample road images

though, it is infeasible to learn a separate model for
every image. Learning a single model for the entire
image corpus is a simple solution, but it reduces clas-
sification accuracy because of the variety of road and
background types that must be handled. Therefore,
we propose a method to automatically learn and ap-
ply a small number of different road appearance mod-
els which boosts performance considerably.

In the next three sections we will briefly describe
the background behind our approach, then detail our
experimental procedures and training and testing data,
and finally present results.

2 Road segmentation

We frame road segmentation as a classification prob-
lem in which we wish to identify small patches over the
field of view as either road or non-road on the basis of
a number of properties, or features, that we compute
from them. These features are non-geometric: image
location is not considered for segmentation, only local
image properties. Patches are manually labeled for
a representative set of images (Figure 2 shows some
examples from our data), and a neural network [9] is
trained to learn a decision boundary in feature space.
This model is used to classify pixels in novel images,
from which we can either (1) derive road shape pa-
rameters directly by recursively estimating curvature,
width, etc. from the edges of the road region and
control steering accordingly (analogous to [3]); or (2)
use the laser information to backproject road and non-
road regions into a 3-D map (see Section 4 for an ex-
ample) suitable for a more general path planner [10].

We have two sensors available—a laser range-finder
which gives dense depth values and a video camera—
with differing fields of view and capture rates. By
registering the images obtained from each sensor both

spatially and temporally (our procedure is explained
in the next section), we can formulate an image pair

that contains correlated information from both. We
have chosen four basic kinds of features to distinguish
road patches from plants, rocks, tree, grass, and other
off-road zones—two from the laser half of the pair and
two from the image half. They are:

Height Vertical distance of laser point from the ve-
hicle support surface.1 This should allow bushes and
trees to be eliminated regardless of visual appearance.

Smoothness The height variance in the neighbor-
hood of a laser point. Roads should be locally flat,
while tall grass and loose rocks are bumpier.

Color A color histogram [11] is computed over each
image patch. Roads are expected to be more-or-less
consistent in their mix of colors —generally brown
or gray—while the background is expected to exhibit
more green and blue colors to allow discrimination.

Texture Gabor filters [12] are computed over each
image patch to characterize the magnitude and domi-
nant direction of texturedness at different scales. The
road should be more homogeneous or anisotropic (e.g.,
tracks, ruts) than bordering plants.

3 Methods

Real-time video, laser range data, and inertial nav-
igation information were recorded on the XUV as it
was tele-operated along a variety of dirt and asphalt
roads at Fort Indiantown Gap, PA in July, 2001. Data
spanning approximately 73 min of late-morning driv-
ing at 8-24 km/h was captured in 14 distinct sequences
totaling 131,471 video frames.

The analog output of the camera, a Sony DXC-
390,2 was converted to DV before capture and then
subsampled, resulting in a final resolution of 360 ×
240 for image processing. The laser range-finder, a
Schwartz SEO LADAR, acquires a 180 × 32 array of
range values at ≈20 Hz covering a field of view of 90◦

horizontally and 15◦ vertically.

For training, 120 video frames were randomly cho-
sen and the most-nearly synchronous laser range im-
age was paired with each. Of these, nine image pairs
were eliminated due to missing data in the laser im-
age (a hardware artifact) and four because the vehicle
was not on a road. This left 107 image pairs for train-
ing and testing. Road regions (some roads had two
tracks separated by grass) were manually marked in

1Throughout this paper, +Z is forward with respect to ve-
hicle direction, +X is right, and +Y is up. The height h and
tilt angle θ of the sensors are known and accounted for.

2Certain commercial materials and equipment are identified
in this paper to specify experimental procedures adequately.
Such identification does not imply endorsement by NIST.



each camera image with polygons.

3.1 Features

Feature vectors were computed for each image at
10-pixel intervals vertically and horizontally, with
roughly a 20-pixel margin to ensure that filter kernels
remained entirely within the image. This resulted in
640 feature vectors per image. Centered on each fea-
ture location, three different sizes of subimage were
examined for feature computation: 7×7, 15×15, and
31×31. A total of fourteen feature sets, or segments of
the full feature vector, were used for learning. These
consisted of:

Six color feature sets Two kinds of color features
were computed over the above three scales: a standard
4-bins-per-RGB-channel joint color histogram (43 to-
tal bins), and an “independent” color histogram con-
sisting of 8 bins per channel (8 × 3 total bins).

Two texture feature sets Texture features con-
sisted of the odd- and even-phase responses of a bank
of Gabor filters histogrammed over the 7×7 and 15×15
scales (8 bins per phase with limits defined by the max
and min filter response on each particular image). For
each phase, the Gabor filter bank consisted of three
wavelengths (2, 4, and 8—resulting in kernel sizes of
6 × 6, 12 × 12, and 25 × 25, respectively) and eight
equally-spaced orientations.

Six laser feature sets As Figure 3 shows, not
every image location has laser information associated
with it. Only those feature vectors with adequate laser
information (> 1 point projecting into its subimage)
were included in training with any feature subset that
was not exclusively image-based. For eligible loca-
tions, the mean and covariance were computed of the
X, Y, Z coordinates of the n laser points projecting to
the local 15 × 15 or 31 × 31 image neighborhood. As
features we used the mean Y value, the variance of Y ,
and the Y mean and variance over the two scales. The
Y mean allows discrimination based on height relative
to the base of the vehicle’s tires, while the Y variance
was included as a simple measure of smoothness.

3.2 Calibration and classification

The camera’s internal parameters were calibrated
using J. Bouguet’s Matlab toolbox [13]. The external
orientation between the camera and LADAR was ob-
tained by correlating corresponding points imaged by
each device over a number of scenes and then comput-
ing a least-squares fit to the transformation according
to the procedure described in [14]. A generic model
was used for the internal calibration parameters of
the Schwartz LADAR though they are known to vary
fairly significantly from device to device, limiting the
accuracy of the camera-laser registration. Rectangular

Figure 3: Sample laser-camera registration. Laser
pixel distance is proportional to darkness.

areas of erroneous pixel depths (such as the anomalous
stripe in the road in Figure 4(a)) were occasionally in-
troduced by the Schwartz device’s method of acquiring
each scene as a series of smaller image facets.

The Matlab Neural Network Toolbox [15] was used
to train the neural networks in this paper. Each neural
network had one hidden layer consisting of 20 hidden
units; weights were updated using conjugate-gradient
back-propagation with the “tansig” activation func-
tion. During training, the classification accuracy of a
particular neural network was estimated using cross-
validation, where 3

4
of any given data set was used as a

training fold and the remaining 1

4
for testing, rotating

the testing fraction four times. The quoted accuracy
is the median of the four testing accuracies.

4 Results
We experimented with a number of different train-

ing regimes to assess the utility of the various modali-
ties (laser, color, and texture) both independently and
in combination, on individual images and on the sam-
ple corpus as a whole.

4.1 One model per image

A separate neural network was trained on each of
the 107 random camera-laser pairs {Ii} for each of the
feature sets described in the previous section. Taking
the mean accuracy of each feature subset over all im-
ages, the best performers by modality were the 31×31
independent color histogram, the 15 × 15 Gabor his-
togram, and the 31 × 31 laser Y mean and variance.
The percentage mean accuracies over all images for
these best individual performers, as well as for feature



Features S Min Std DD DS SD k = 4
C 97.0 81.3 3.2 93.7 93.6 75.4 94.8
T 88.6 78.4 3.9 77.8 78.8 52.3 81.3
L 84.8 70.1 5.0 78.1 78.1 69.6 —

C + T 97.3 75.0 2.7 94.7 95.5 62.6 96.1
C + L 96.1 88.0 2.0 89.5 90.2 71.3 91.6
T + L 91.2 81.0 3.7 81.3 81.5 54.2 84.1

C+T+L 96.6 91.2 1.8 91.0 92.8 59.6 93.3

Table 1: Mean feature subset performance for vari-
ous training and testing regimes. Features: C=color,
T=texture, L=laser. Data sets: S=107 individual
images; D=25% all-image digest (1st letter=training,
2nd=testing).

sets comprising combinations of them (color and tex-
ture, texture and laser, etc.) trained in the same way
are shown in the S column of Table 1.

Color was clearly the most informative of the modal-
ities, though texture and laser alone did fairly well3.
Combining texture and laser features with color did
not appreciably change the mean accuracy, but it in-
creased consistency of performance. The standard de-
viation of the accuracy Std was cut almost in half
going from color alone to color, texture, and laser to-
gether (C+T+L), and the minimum accuracy Min

(i.e., on the image eliciting the worst performance for
that feature set) went up nearly 10%. This pattern
was repeated for the other modalities, indicating that
adding features often resolved scene ambiguities.

For example, each row of Figure 4 shows the most
difficult images to classify using laser alone and tex-
ture alone. The left column shows the segmentation
obtained by the best-performing neural network of the
training folds for that individual modality. The right
column shows the results of segmenting the same im-
age with the C+T+L classifier’s best training fold neu-
ral network. The laser classifier’s defect in Figure 4(a)
is most obvious: the asphalt road and grassy strip to
the right are in the same plane and both quite smooth,
which is why the segmentation erroneously extends to
the treeline on the right. The color and texture discon-
tinuity between the two regions is much clearer in (b).
The texture classifier presumably has trouble with its
image in (c) because of the similar patterns of light and
shadow in the trees and on the road; adding color and
laser information nearly eliminates these problems.

3As a baseline for performance assessment, the mean pro-
portion of feature vectors labeled “road” over all 107 images
was 47.7%. Considering only those feature vectors containing
adequate laser information (for the 31× 31 subimage size), this
fraction was 55.7%.

(a) Laser (b) C+T+L

(c) Texture (d) C+T+L

Figure 4: Segmentation of hardest road images for
independent modalities vs. joint classifier

4.2 One model for all images

To test learning a single road model for the entire
corpus as well as the generality of the individual im-
age models, a digest D was created from the set of 107
images by randomly selecting 25% of each image’s fea-
ture vectors and concatenating them. Of D’s 17,120
feature vectors, 8,168 or 47.7% were labeled as “road.”

Training was performed on D for the seven feature
sets from Table 1 exactly as if it were a larger ver-
sion of an image Ii. Results are shown in the DD

column of the table. The power of the digest to faith-
fully represent the images themselves can be seen in
the similarity of the accuracies obtained by training
and testing on the digest alone (DD) to training on
the digest and computing the mean accuracy over all
of the individual images (DS). Performance with a
single model for the entire digest declines somewhat
across all of the feature sets from the mean accuracy
of separate models for every image (S). This effect is
most pronounced for texture, indicating that on-road
and off-road textures are more similar for the entire
image corpus than, say, on-road and off-road colors.

The poor generality of the single-image models
learned in the previous subsection is demonstrated by
testing them on D; the mean performance over the
107 images is given in column SD of the table. Ac-
curacy drops dramatically because of the presentation
of road and background types not seen in the single
image training.

As an example of the utility of the laser information
beyond segmentation, a road map constructed from
one manually-driven sequence over roughly 300 me-
ters (1825 frames) is shown in Figure 5. As the vehicle
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Figure 5: Road map constructed with single-model
feature set C classifier. Units are meters.

traveled from the lower-right to the upper-left corner
of the map, the image was segmented at 10 frame in-
tervals using the single-model, color-only classifier C.
The labels of feature locations with associated laser-
derived depths were projected into a 1-meter resolu-
tion grid square world map using position informa-
tion from the vehicle’s inertial navigation system. Ne-
glecting height for clarity, the map shows the degree
of roadness/non-roadness of each grid square along a
green/red continuum, with color saturation indicating
confidence (proportional to the number of labels pro-
jected to the square, up to 5). White grid squares were
not mapped.

Overall, the road is mapped quite clearly despite
shadows and changes in road composition. Three dif-
ficult views along the route at map positions a, b, and
c (blue dot=position, purple dot=viewing direction)
are shown in Figures 5(a)-(c). The left road edge is
not as sharp as the right at position a because the road
dirt extends into the trees. Road is found in a large
forward area at position b because the vehicle is at an
intersection before turning right. Finally, the trans-
verse road boundary is easily found on the opposite
side of the T-intersection at position c.

4.3 One model per road type

The lesser performance of a single neural network
trained on a digest of all of the images versus that

of individual networks for each image is presumably
due in large part to the greater overlap of road and
non-road feature vector distributions in the former
method’s training set. Partitioning a digest D into
pieces d1,d2, . . . such that the road and non-road fea-
ture vector distributions are more widely separated
within each di than in D, then training on each di,
would likely reduce the difficulty of the classification
problem. Observing that the within-image contrast
between road and non-road was strong across the sam-
ple images, we made the following important assump-
tion: that similar road types are correlated with simi-
lar background types in each image. This implies that
clustering road types is roughly equivalent to cluster-
ing background types, and that all of the background
types within such a cluster would on average be more
dissimilar to the road types in the cluster than those
of the digest as a whole.

We tested this hypothesis by using k-means clus-
tering [16] to group the 107 sample images for the
best color feature set C, the best texture feature set
T, and the best color and texture feature set C + T4.
Roads were not clustered with laser feature informa-
tion because the major variation in road types for this
data is visual: dirt, gravel, and asphalt have marked
differences in color and degree of texturedness, but
all roads were approximately smooth and at the same
height relative to the vehicle.

Ideally, every road-labeled feature vector in an im-
age would define a “road signature” and thus the space
in which clustering is done, but this fails because (a)
the number of feature dimensions would exceed the
number of sample images, and (b) after training is
done and the system is in operation, feature vectors
will not be labeled (that being the point of segmen-
tation). First, to reduce the dimensionality principal
component analysis [16] was performed on the road-
labeled digest feature vectors R ⊂ D to obtain a
transformation that orthogonalized feature space and
removed those principal components that contributed
less than N% of the variation. A fairly large N was
chosen because of the small number of samples (e.g.,
N = 15% for C, compressing 24 features down to 2;
N = 4% for T, reducing 384 features to 3; and N = 3%
for C + T, taking 408 features to 5). Second, a small
subset of feature vector locations was chosen to repre-
sent the road signature of each image, as shown by the
points in Figure 6, with the goals of (a) maximizing
the a priori probability of them being labeled road

4The algorithm was run 50 times with random seeds for each
k = 2, 3, 4, 5 and feature set; the result exhibiting the lowest
within-cluster scatter to between-cluster scatter ratio was used.



Figure 6: Probability of a feature location being la-
beled road over sample images, with “road signature”
locations overlaid.

based on the sample images, and (b) an even distri-
bution to capture spatial variation of feature values
across the road region.

After clustering for each k, D was divided into
pieces d1, . . . ,dk according to which image each block
of 160 feature vectors was taken from, and a sepa-
rate neural network was trained on each di. For every
cluster i, the associated best neural network (i.e., from
the training fold with the highest accuracy) was then
tested on all of the sample images in that cluster. A
consistent performance increase of up to several per-
centage points over the single-model classifiers in the
DS column of Table 1 was obtained across all of the
feature sets and values of k, with k = 4 (performance
shown in the last column of Table 1) yielding the great-
est average improvement. The quality of clustering
would likely be better with more sample images.

5 Conclusion

We presented a road segmentation system that inte-
grates information from a registered laser range-finder
and camera. Road height, smoothness, color, and tex-
ture were combined to yield higher performance than
individual cues could achieve. By clustering the roads
into a few different types and training a neural net-
work for each, accuracy on the entire image corpus was
improved over a simple single-model approach while
still retaining good generality. Laser range informa-
tion was invaluable both as a feature for segmentation
and for fusing labeled images into a 3-D map, though
better laser-camera registration would likely have pro-
duced higher classification performance.

The segmentation procedure described here assumes
that the vehicle is on a road and is traveling along it.
For vehicles which may operate off-road, road detec-
tion is a necessary precursor to road following. Using
visual and laser feature sets similar to those exploited
here, an additional classifier could be trained to rec-
ognize scenes containing roads in order to turn on or
off the road segmentation module. Our data set con-
tains GPS position information for the vehicle; com-

bined with an a priori map of roads in the vicinity
this would provide a strong additional cue for training
a road detection classifier.

For maximum generality, the data set used for train-
ing needs to be augmented to capture the visual and
structural effects of temporal variations such as time
of day, weather, and season. Different road models
could be learned for these conditions; fewer such mod-
els might suffice if parametrized by continuous vari-
ables such as sky brightness or sun angle.
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