
A foundation for interoperability in next-generation
product development systemsq

Simon Szykmana,*, Steven J. Fenvesa,1, Walid Keirouzb, Steven B. Shooterc

aNational Institute of Standards and Technology, 100 Bureau Drive, Stop 8263, Gaithersburg, MD 20899-8263, USA
bDepartment of Computer Science, Byblos Campus, Lebanese American University, 475 Riverside Drive, #1845, New York, NY 10115, USA

cDepartment of Mechanical Engineering, Bucknell University, Lewisburg, PA 17837, USA

Received 25 October 1999; revised 6 October 2000; accepted 4 December 2000

Abstract

United States industry spends billions of dollars as a result of poor interoperability between computer-aided engineering software tools.

While ongoing standards development efforts are attempting to address this problem in today's tools, the more signi®cant demand in next-

generation tools will be for representations that allow information used or generated during various product development activities to feed

forward and backward into others by way of direct electronic interchange. Although the next generation of tools has the potential for greatly

increased bene®ts, there is also a potential for the cost of poor interoperability to multiply. The goal of this work is to develop representations

of information that are unavailable in traditional computer-aided engineering tools to support the exchange of product information in a

distributed product development environment. This paper develops a vision of next-generation product development systems and provides a

core representation for product development information on which future systems can be built. Published by Elsevier Science Ltd.

Keywords: Design modeling; Interoperability; Knowledge representation; Product models; Product data exchange

1. Introduction

Since its advent, computer-aided design and manufactur-

ing (CAD/CAM) has had an immeasurable impact on

product development in engineering industry, and conse-

quently on society as well. As a result of their signi®cance,

CAD/CAM technologies were identi®ed by the National

Academy of Engineering in 1989 (the NAE's 25th anniver-

sary) as an outstanding engineering achievement over the

preceding 25 years, and more recently by the American

Society of Mechanical Engineers as one of the greatest

technologies of the 20th century [1]. As these technologies

mature further, there is little doubt that their impact on

product development will continue.

In the past, product development was often done within

a single company by co-located design teams. In more

recent years, there has been a shift in product development

paradigms. Product development is being done more often

by geographically and temporally distributed design

teams. There is a high level of outsourcing, not only of

manufacturing but also of actual product development

efforts. Product development across companies, and

even within a single company, is often done within a

heterogeneous software tool environment. The Internet

and intranets are supplanting paper and telephones as a

means of exchanging product development information.

As a result of this new product development paradigm,

there is a greater need for software tools to effectively

support the formal representation, capture and exchange

of product development information.

The existing generation of computer-aided engineering

(CAE) software tools has undeniably revolutionized product

development in contrast to methods used before the advent

of these technologies. Nevertheless, the current generation

of product development software tools addresses the needs

of traditional product development processes, and does not

adequately support the needs of industry's new paradigm

described above. People are exchanging information across

distributed design teams and corporate boundaries earlier,

and reusing information to a greater extent. But because

existing software tools do not capture a broad spectrum of

product development information, these exchanges occur

Computer-Aided Design 33 (2001) 545±559

COMPUTER-AIDED
DESIGN

0010-4485/01/$ - see front matter Published by Elsevier Science Ltd.

PII: S0010-4485(01)00053-7

www.elsevier.com/locate/cad

q This work was performed while Professors Keirouz and Shooter were

guest researchers at the National Institute of Standards and Technology.

* Corresponding author. Tel.: 11-301-975-4466; fax: 11-301-975-4482.

E-mail address: szykman@nist.gov (S. Szykman).
1 Senior Research Associate, University Professor Emeritus of Civil and

Environmental Engineering, Carnegie Mellon University.

informally (face-to-face across a table, by phone, by paper).

It is a lack of formal representations for product develop-

ment information that creates a signi®cant barrier to its

effective capture and exchange.

In other words, engineers are getting by not with the

support of existing software tools but despite the lack of

support from them. The current generation of software

tools is not designed to support at a formal level the kinds

of interactions that occur, to the extent that engineers would

prefer. These views are not held exclusively by the authors,

but are representative of industry input obtained at several

workshops held at the National Institute of Standards and

Technology (NIST) in recent years: the NIST Design Repo-

sitory Workshop [2]; Tools and Technologies for Distribu-

ted and Collaborative Design Workshop; and the NIST/ATP

Workshop on Intelligent and Distributed CAD [3].

The CAD/CAM/CAE software industry is ultimately a

customer-driven one. It is, therefore, expected that as

needs (such as those identi®ed previously) mount, a new

generation of tools will emerge to address these needs.

The question that remains unanswered is: at what cost?

Despite the acknowledged bene®ts of today's tools, their

widespread use has in many cases come at great expense

to industry as a whole because of a lack of interoperability

between tools. While these expenses do not approach the

level of savings resulting from the use of CAE technologies,

they do offset the overall bene®ts. These expenses are inevi-

tably passed on to industry customers, and ultimately to

consumers. A study performed by the NIST Strategic Plan-

ning and Economic Assessment Of®ce conservatively esti-

mates the economic cost due to lack of interoperability in

the United States automotive supply chain alone at one

billion dollars per year [4]. The study also estimates costs

in the US aerospace, shipbuilding, and construction machin-

ery industries at about 400 million dollars per year (for each

of those sectors), assuming the interoperability costs are

proportional to those in the automobile industry.

As the complexity of products increases and product

development becomes more distributed, new software

tools will begin to cover a broader spectrum of product

development activities than do the traditional mechanical

CAD systems. Accordingly, the ability to capture, in an

effective and formal manner, additional types of informa-

tion will become a critical issue. This paper develops a

vision of next-generation product development systems

and provides a core representation for product develop-

ment information on which future systems can be built.

This paper does not put forth speci®c technologies that

will be incorporated into next-generation tools, but rather

seeks to address potential interoperability problems

proactively, rather than reactively, by providing this

core as a foundation for improved interoperability

among software tools in the future. The costs of poor

interoperability among today's tools are likely to be

compounded signi®cantly in the future if the problem

remains unaddressed. The work presented in this paper

addresses a fundamental problem whose solution can

impact literally billions of dollars of costs to industry.

The economic bene®ts notwithstanding, the effort of

developing a generic knowledge infrastructure for the

next generation of tools is one that neither industry nor

the CAD/CAM/CAE vendor community is likely to

undertake alone. Historically, software tool vendors

have considered proprietary data representationsÐa

signi®cant source of interoperability problemsÐas part

of their competitive advantage. Working to eliminate

the barriers to interoperability is often viewed by a soft-

ware vendor as something that will make it easier for

customers to purchase and use a competitor's product

rather than those sold by that company. This perceived

threat to a competitive advantage provides a disincentive

for vendors to address interoperability problems. Indeed,

this is one of the main reasons that efforts to integrate data

exchange standards such as ISO 10303, informally known

as STEP (Standard for the Exchange of Product Model

Data) [5] into the existing generation of software tools has

met with resistance from vendors despite requests from,

and clear bene®ts to, their industry customers [2].

While engineering companies in industry stand to bene®t

from work along these lines, they too are unlikely to under-

take such an effort. This is a result of industry research and

development trends that have shifted from basic research

and development (R&D) to project-oriented R&D. This

change makes it dif®cult for a company to use project-speci-

®c budgets to fund work that is acknowledged as bene®cial,

but has diffused impact. What limited funds are available for

generic R&D are generally applied to problems where bene-

®ts can readily be mapped either to a set of related projects,

or to the corporate bottom line, in a short time frame.

These cultural issues have served as obstacles to the

development of technical solutions to interoperability

problems in existing tools, and run the risk of similarly

affecting the next generation of software systems. The

National Institute of Standards and Technology has US

industry as its primary customer and works to address

problems that have signi®cance to industry, but that compa-

nies are not likely to solve on their own for one reason or

another. NIST's emphasis is on economic impact to industry

and society on a broad level rather than a corporate bottom

line. Furthermore, NIST is not biased toward a particular

class of problems, company, or industry sector, focusing

instead on generic solutions that have broad-based applic-

ability in industry. As a result, NIST is uniquely situated to

invest in an effort to anticipate and address interoperability

needs in next-generation product development systems.

This paper is organized as follows: Section 2 describes

related work done in the area of representation and

modeling of design knowledge, Section 3 discusses intero-

perability issues in the context of product development,

Section 4 presents a vision for next-generation product

development systems, Section 5 presents a representation

for product development information that addresses the

S. Szykman et al. / Computer-Aided Design 33 (2001) 545±559546

needs motivated in earlier sections, and Section 6 provides a

discussion of areas for future research.

2. Related research

Traditional CAD systems are limited to representation of

geometric data and other types of information relating to

geometry such as constraints, parametric information,

features, and so on. The engineering design community

has been developing new classes of tools to support knowl-

edge-based design, product data management (PDM), and

concurrent engineering. When contrasted with traditional

CAD tools, these new systems are making progress toward

the next generation of engineering design support tools.

However, these systems have been focusing mainly on data-

base-related issues and do not place a primary emphasis on

information models for artifact representation [6±10].

Furthermore, although these systems can represent some

kinds of non-geometric knowledge (e.g. information about

the design process, manufacturing process, bills of materi-

als, etc.), representation of the design artifact itself is still

generally limited to geometry. This impacts the utility of a

range of software tools used in engineering industry. As an

example, the lack of a formal product representation that

includes function, behavior and structure has been identi®ed

as a shortcoming of existing PDM systems [11].

Because of industry's increasing dependence on product

information beyond simply geometric data, this work

focuses on the development of an artifact representation

that encompasses broader engineering design content. This

content includes representation not only of geometry, but

also of function, behavior, physical and functional decom-

positions, mappings between physical structures and func-

tion, and various kinds of relationships among these entities.

The product information representation presented in this

paper follows a signi®cant body of earlier work in the area

of artifact representation. The high-level division of artifact

information into the categories of form, function and beha-

vior has its roots in earlier work in intelligent design system

development. Examples of such work in the arti®cial intel-

ligence community include the qualitative simulation work

by de Kleer and Brown [12], behavioral and functional

representation by Iwasaki and Chandrasekaran [13], func-

tional representation by Chandrasekaran et al. [14] and

successive representations from projects such as KRITIK

[15], INTERACTIVE KRITIK [16], the YMIR project

[17], and others. Work done in the design and engineering

community includes CONGEN [18], the MOSES project

[19], the GNOSIS IMS (Intelligent Manufacturing System)

project [20], Function±Behavior±State Modeler [21], and a

Function±Behavior±Structure framework [22].

Although the representation presented in this paper has

some characteristics in common with earlier research, such

as a basic division of artifact information into form, function

and behavior, this work is most directly descended from the

representation developed as part of the NIST Design Repo-

sitory project [23]. That work is based in part on the

CONGEN architecture [18], which made use of the

SHARED object model [24] as a representational founda-

tion. As will be described in Section 5, the work presented in

this paper has drawn not only on the NIST Design Reposi-

tory project, but also several other ongoing efforts at NIST.

3. Interoperability and product development

As cited previously, US industry spends billions of

dollars as a result of poor interoperability between compu-

ter-aided engineering software tools. Ongoing standards

development efforts in various industries are attempting to

address this problem. Among the success stories in stan-

dards development is STEP (Standard for the Exchange of

Product Model Data). While individual companies hesitate

to provide actual costs associated with speci®c processes or

activities, they have been willing to provide a few data

points regarding the use of STEP. The Lockheed Martin

F-22 program shows consistent savings using STEP, includ-

ing a 50% process saving for composites and projected

savings of 27% on tool design for CAD/CAM systems.

The Boeing 767 and 777 programs reported a 75% time

savings in processing designs from engine suppliers using

STEP, and the Boeing C-17 program reduced time to trans-

fer bill of materials data from weeks to minutes using STEP,

with an average of 8000 part data exchanges per night [25].

While these data indicate the utility of data exchange

standards to improve interoperability, viewing these as

cost savings is the result of a perspective skewed by the

context of poor interoperability. This level of savings can

only be achieved because the costs incurred due to intero-

perability problems are very high. In other words, the

remedy to the problem is of great importance only because

the problem itself is so signi®cant. Faced with these

problems today, a retrospective viewpoint leads to the

observation that if interoperability issues had been success-

fully addressed earlier on, industry might have avoided

some of these wasted costs entirely, instead of working to

reduce waste after the fact. It is this observation, along with

a projection of how product development in industry is

changing, that motivates the need to address these issues

in next-generation product development software systems.

While existing standards efforts focus on enabling inter-

operability among tools that address a given product devel-

opment activity (such as geometric CAD), the more

signi®cant demand in next-generation tools will be for

representations that allow information used or generated

in various product development activities to feed forward

and backward into others by way of direct electronic inter-

change. The objectives of the present work are to develop

representations of information that are unavailable in tradi-

tional CAD/CAM/CAE tools to support exchange of knowl-

edge in the new product development paradigm, and to help

S. Szykman et al. / Computer-Aided Design 33 (2001) 545±559 547

avoid a proliferation of proprietary formats in next-genera-

tion commercial software tools. This work is not itself a

standards development effort. Rather, it is an attempt to

identify needs and provide a generic information represen-

tation core that can serve as a foundation for development of

new systems, and, at some point, for future standards devel-

opment efforts. We do not propose technologies that affect

implementation-level development of software tools, but

provide an infrastructure that will facilitate the capture

and exchange of information among commercial tools that

use it as a starting point and build upon it.

4. Next-generation product development systems

The basic assumption underlying this work is that the

change in product development paradigm identi®ed in the

Introduction will lead to a new generation of software tools.

This next generation of tools will be driven by an increased

industry focus on representation, capture, and exchange of

product information and product development knowledge.

Existing computer-aided engineering tools are focused

primarily around geometric CAD and analysis, with some

tools supporting CAM activities such as process planning.

Next-generation systems will enable the capture of a broader

variety of product information, and will support a wider range

of product development activities than do existing tools.

The vision held by some for future product development

tools is that of a monolithic software system. In this vision,

the product development process will be supported by a

single integrated application suite. Such a tool would

attempt to address the needs of the new product develop-

ment paradigm, allowing teams that are potentially distrib-

uted geographically or across corporate boundaries to

access tools and data at different phases of product devel-

opment in order to produce a product (see Fig. 1).

This vision, though not an uncommon one, has a number

of drawbacks associated with it. In general, since a mono-

lithic system is intended to be as complete a solution as

possible, less emphasis is put on interoperability with

other systems. Because interoperability becomes a problem,

collaboration with users of other tools becomes dif®cult.

What has happened in some cases among the existing

generation of tools is that a large company will make a

statement to the effect of: `If you want to do business as

part of our supply chain, you will use this particular soft-

ware tool.' Since monolithic systems tend to be expensive,

among those priced out of the running are many small and

medium sized businesses that form a large segment of the

industry community. These limitations sti¯e competition,

resulting in prices to the customers and end users that are

higher than they might otherwise have been. Such systems

also tend to tie users to one vendor, making the migration to

a new tool suite problematic should a better system come

along at some later point in time. Lastly, a monolithic tool

suite will often result in a sub-optimal set of technologies. It

is unlikely that a system that provides technologies for a

variety of activities will be the best at what it does in all

cases, particularly when a tool that might be the best solu-

tion for one company may not be for another.

Some software vendors, rather than working to build a

monolithic system, are working with a business model under

which they establish relationships with other software

companies and work to design interfaces between tools to

make integration more seamless. This philosophy has the

potential to offer greater customization of software tool

suites. The drawback, as a practical matter, is that choice

is likely to remain limited, this time to a set of companies

who have established these strategic partnerships.

In our view, the ideal next-generation systems for product

development will be those with which individual compa-

nies, or teams involved in given product development

S. Szykman et al. / Computer-Aided Design 33 (2001) 545±559548

Fig. 1. Monolithic product development system.

activities, can collaborate using a heterogeneous set of soft-

ware tools, and still exchange information meaningfully and

pass knowledge between various phases in the process.

Assuming the interoperability barrier can be overcome,

this vision avoids several of the disadvantages associated

with a monolithic system. Companies would not be required

to standardize on the same software platform in order to

collaborate on product development. Smaller companies

using individual software tools due to limited resources

would still be able to compete to be part of a larger compa-

ny's supply chain. Larger companies would be able to

assemble what they consider to be the best suite of tools

from a selection of existing software products (possibly

from competing vendors), and would be able to migrate

more easily to new tools, although some effort would still

be involved in doing so.

We de®ne the Engineering Context as the entire body of

information and engineering knowledge that evolves

throughout the product development process. Under the

vision of a customizable and ¯exible product development

tool suite, multiple software toolsÐpotentially from

competing vendorsÐare used during different product

development activities at various stages of the design

process, creating, adding to, and modifying the engineering

context. Information generated by some tools during some

activities will be used by other tools at other stages of the

design process. In order to achieve the interoperability

required by this vision, a tool that requires information

created by a different tool must be able to receive that

information irrespective of which tool created it. This, in

turn, requires that the formal representation of product

information (or at least that portion of the engineering

context that is to be shared with other applications) be avail-

able in a standardized form. It is important to note that tools

need not be able to read native data ®les created by other

systems; what is required is only that a tool be able to serve

information in a format that other tools can interpret. Thus,

although vendors would need to agree to use this standar-

dized format for exchange of engineering information, they

would not be required to standardize on native or applica-

tion-internal data formats.

The vision of a ¯exible product development tool suite is

shown in Fig. 2. In some cases, tools from a single vendor

may be designed to share a common database as is illu-

strated with the users in the top half of the ®gure. In other

cases a single tool may have an individual database as

shown in the bottom left portion of the ®gure. The ` £ 's

in the ®gure denote the data exchange interfaces required to

exchange or externally store product information in a stan-

dardized format. Although it is not necessary for vendors to

adopt the standardized representation as their native repre-

sentation, those that do would not require a translational step

to exchange or store data externally. The software tool in the

bottom left portion of the ®gure does not show a data

exchange interface for this reason.

The large database at the bottom of Fig. 2 represents the

engineering context (the cloud represents the fact that the

characterization of the engineering context as a single

database is meant ®guratively and may not be indicative

of its true instantiation). Whether the actual instantiation

of the engineering context takes the form of a centralized

database, a distributed database, a collection of individual

®les created by separate applications, etc., is an imple-

mentation-level issue. The focus of this work is not on

implementation, but on providing a generic core for repre-

senting the engineering context as a basic foundation for

interoperability. Regardless of the form that the engineer-

ing context embodies, for a tool to be able to retrieve and

interpret information generated by other tools in a hetero-

geneous software environment, interoperability issues

must ®rst be addressed at the information representation

and exchange level.

S. Szykman et al. / Computer-Aided Design 33 (2001) 545±559 549

Fig. 2. Product development using a heterogeneous suite of software tools.

5. Representing the engineering context

5.1. Technical approach

The preceding discussion presents a vision that motivates

the development of a foundation for representation of design

information that is non-proprietary and not tied to a single

vendor. From the interoperability perspective, in an ideal

world all vendors would use the same representation making

interoperability problems irrelevant. Realistically, it is not

likely that all CAD/CAM/CAE vendors will agree on a

common product information representation, or even that

they will want seamless exchange with competing systems.

Nevertheless, work toward this goal is still very valuable for

several reasons. First, agreement on requirements and

implementations to any extent is better than none. To what-

ever degree a speci®cation is adopted in multiple implemen-

tations, exchange of information will be that much less

problematic even if a total exchange is not seamless.

Addressing the problem in anticipation of next-generation

systems, rather than in response to failings among those

systems after they have been developed, increases the like-

lihood that common solutions will be adopted. Second,

assuming realistically that some interoperability problems

will exist in the future, it is also probable that some sort of

standards development efforts will ensue in response. The

work being done here can provide a starting point for those

future standards.

For both of these reasons, simplicity is a key requirement

for the representation being developed. Simplicity also

makes a proposed representation more appealing to users.

This is a critical issue since vendors must believe that a

broad market will exist before they would consider using

such a representation. Because of a need for broad appeal

among potential customers, a product information represen-

tation should be domain-independent and should not be tied

to any one product development process.

To address this last point, an effort in modeling design

information ¯ow was undertaken. This effort examined

several product development processes and proceeded to

develop a generic model of the ¯ow of product information

independent of any one design process model. This project

identi®ed common classes of information used by designers,

activities that were common to various design processes

(even though the sequences of those activities were often

not common to different processes), as well as the kinds of

abstractions and transformations of information that

occurred in the product development process. The results

of that effort, described further in Ref. [26], provided signif-

icant input into developing the actual content requirements

for the information representation presented in this paper.

Based on these issues, in order to enable the vision of

next-generation product development discussed earlier, the

goal that was set for this effort was to develop formal repre-

sentation that could form the core of the engineering context

discussed above. This core is intended to be an abstraction

of concepts that are common across many design activities.

The broader engineering context would include this

common core along with additional concepts (objects, rela-

tionships, attributes, etc.) such as activity- and domain-

speci®c extensions and specializations that may not be

common to many activities. The core would provide inter-

operability across activities, while extensions to the core

might or might not require additional translators or inter-

preters depending on the extent of adoption among different

software tools. The requirements for the core were to

develop a knowledge representation that is:

² not tied to a single vendor software solution;

² open and non-proprietary;

² simple and generic;

² extensible by allowing augmentation of the core with

additional concepts to create a broader engineering

context;

² not dependent on any one product development process;

and

² capable of capturing that portion of the engineering

context that is most commonly shared in product devel-

opment activities.

The representation was also intended to provide interoper-

ability among four in-house research and development

projects.

1. The NIST Design Repository project, developing a

distributed framework to support the creation of design

repositories, the next generation of design databases [23].

2. The Design-Process Planning Integration project, devel-

oping interface speci®cations and prototypes to enable

manufacturability analysis during conceptual product

design [27].

3. The Design for Tolerancing of Electro-Mechanical

Assemblies project, working to advance the use of toler-

ancing at early stages of design and to investigate the best

use of available methods of tolerance analysis and synth-

esis [28].

4. The Object-Oriented Distributed Design Environment

project, developing a software prototype of such a

system.

Each project team had been proceeding to develop its own

product model, with little or no interaction among the

projects. A comparison of the product models developed

or proposed by the four projects showed that of the 133

terms (object and attribute names) used in the models, 99

terms (74%) appeared in one model only and only three

terms (2%) appeared in all four models. This comparison

excludes terms that are speci®c to the domain of one project

only, such as process- and tolerance-related terms. It there-

fore appeared that there was not much commonality.

The next step was the development of a core combined

product model that could be shared across projects and

S. Szykman et al. / Computer-Aided Design 33 (2001) 545±559550

extended as needed to suit the concerns of the individual

projects. Although the core model most closely resembles

the model originating from the NIST Design Repository

project, terms from the other three projects were also incor-

porated, showing the synergy provided by broader exposure

and discussion. The examination of multiple independently-

developed models, abstracting out the commonalities, and

distilling their basic information content, led to a more

generic and extensible representation than any one of

them had previously provided. The representation that

emerged is proposed as an information transfer mechanism

for next-generation product development tools, either in the

basic form presented in this paper or as the `foundation' or

base-level representation of the multilevel design informa-

tion ¯ow model presented in Ref. [26].

5.2. The core representation

The core representation consists of classes of objects and

relationships. The full listing of all classes in the core repre-

sentation is shown in Appendix A. In the text that follows,

names are classes are capitalized and names of attributes are

not. The syntax and common characteristics of the classes

are discussed ®rst, followed by their semantics.

The object class hierarchy is shown in Fig. 3.2 Syntac-

tically, all object classes are specializations of the

abstract class DRP_Object, which has attributes

name, information, and sources and destinations of

references and relationships (discussed below). The

abstract class Restricted_DRP_Object specializes the

DRP_Object class and has additional attributes constrai-

ned_by and required_by serving as links to Constraints
and Requirements, respectively. The specializations of

the DRP_Object class are the Artifact, Behavior and

Speci®cation classes; specializations of the abstract

class Restricted_DRP_Object are the Function, Flow,

Form, Geometry and Material classes. The Function
class further specializes into the Transfer_Function
class. The attributes of the object classes are discussed

below in the context of their semantics.

The relationship class hierarchy is shown in Fig. 4. Simi-

larly to objects, all relationships are specializations of the

abstract class DRP_Relationship, with attributes name
and information. The specializations are the Requirement,
Reference, Constraint, and Set_Relationship classes, the

latter further specializing into Directed_Set_Relationship
and Undirected_Set_Relationship classes.

In order to make the representation as robust as possible

without having to prede®ne all possible attributes that might

be relevant in a given set of domains, the core representation

is limited to those attributes required to capture generic

types of product information and to create links and asso-

ciations among the entities shown in Figs. 3 and 4. The

representation intentionally excludes attributes that are

domain-speci®c or entity type-speci®c. Such attributes can

be represented, but are not explicitly built into the schema.

Instead, each object and relationship has an Information
entity associated with it. The class Information is a

container for all detailed information, consisting of a brief

textual description, a textual documentation string (which

typically provides a ®le path or URL referencing more

substantial documentation than is given by the brief descrip-

tion), a methods slot for the methods operating on the

object, and a properties slot that contains a set of attri-

bute±value pairs stored as strings. Domain- or entity type-

speci®c attributes are represented using the properties attri-

bute. This lack of specialization of entities results in a small

number of entity de®nitions that are broadly applicable. As

will be illustrated in an example below, this allows the

representation to be used to represent a 9-Volt electric

motor and a 9-Volt electrical current ¯ow without prede®n-

ing a domain-speci®c attribute called voltage in either of the

entity de®nitions.

All specializations of the abstract class DRP_Object
except Flow have their own decomposition hierarchies,

represented by attributes such as subartifacts/subarti-
fact_of for the Artifact class. In addition, most of the objects

and relationships also have an attribute called type, a

symbolic classi®er. All of the entity classes that have a

type also have an individual hierarchical taxonomy of

terms associated with them. These terms are generic enough

to designate a broad variety of engineering artifacts, and yet

concise enough to provide a manageable standardized voca-

bulary. The type classi®er is a string corresponding to one of

the terms within a given taxonomy. For example, the engi-

neering function `Convert' is one of numerous subtypes of

`Transform_function,' which is in turn one of several

subtypes of `Function.' Another way to view this is that

S. Szykman et al. / Computer-Aided Design 33 (2001) 545±559 551

Fig. 3. Object class hierarchy.

Fig. 4. Relationship class hierarchy.

2 Abstract classes in the ®gure are denoted by `(a)'. An abstract class is a

class for which instances cannot be created, but which exists for the conve-

nience of grouping attributes that are common to all of its subclasses so that

these attributes can be inherited by the subclasses.

several of the entities in the representation have their own

individual generic engineering classi®cation hierarchies that

are unrelated to the entity class hierarchies shown in Figs. 3

and 4.

The motivation for providing typing information and

associated taxonomies on which to draw for artifact model-

ing is twofold. The standardized vocabulary facilitates

indexing and retrieval of product knowledge for design

reuse. The classi®cation of an entity (e.g. an Artifact or

Function or Flow) within its associated taxonomy allows

a software system to reason about these entities based on

knowledge of their type. In other words, knowing that an

entity is an Artifact gives you information at one level, but

knowing that an artifact is a motor allows more sophisti-

cated reasoning. The type attribute is provided as part of the

infrastructure for product information representation with

the expectation that it could be used in these ways in future

software tools. A more substantial discussion of taxonomi-

cal issues and examples of taxonomies for engineering func-

tion and ¯ows are given in Ref. [23]. Discussion of the

mechanisms for indexing, retrieval and reasoning based

on type knowledge in future systems are beyond the scope

of this paper.

Turning to semantics, the key object class is the Artifact.
It represents a distinct entity in the design, whether that

entity is a feature, component, product, subassembly, or

assembly. All such entities can be represented and interre-

lated through the subartifact/subartifact_of containment

hierarchy. The artifact's attributes, other than the common

ones described above, refer to the Speci®cation responsible

for the Artifact and the Form, Function and Behavior
objects constituting the Artifact. A Speci®cation is an

object that contains information relevant to an artifact that

is derived from customer needs. An artifact Speci®cation
drives requirements among one or more other Function,

Form, Geometry, Material and Flow entities via a require-

ment relationship (discussed below). An additional attri-

bute, Con®g_Info, links the Artifact to an element of the

class Con®g_Info, which represents design process-related

attributes of the artifact, such as state, level (as used in Ref.

[26]), and version, in an interactive environment.

The Form, Function and Behavior classes represent the

traditional components of design representations that were

discussed in Section 2. A specialization of the Function
class is the Transfer_Function class, which represents a

transformation between one or more ¯ows (e.g. current,

liquid, energy) and explicitly refers to the Flow entities

involved using input_¯ow and output_¯ow. The Flow
class identi®es the ¯ows involved and references the

Artifacts corresponding to a ¯ow's source and destina-
tion. The Form class refers to the two principal aspects of

the form, namely the artifact's Material and Geometry.

This subdivision was introduced into the core model

because some of the intended applications, such as the

Design-Process Planning Integration and the Design for

Tolerancing projects tend to treat these two aspects quite

differently (e.g. the task of material selection for a given

function and geometry in process planning).

A Requirement entity is a one-to-many relationship

between a Speci®cation and a set of Function, Form,

Geometry, Material and Flow entities governed or other-

wise affected by that speci®cation. Similarly, a Constraint
entity is viewed as an undirected set membership relation

among the constrained Function, Form, Geometry, Mate-
rial and Flow entities. If it is intended to represent a math-

ematical equality or inequality constraint, the properties slot

of the constraint can store the attributes contained in the

constraint as well as the relational operator. The Undirec-
ted_Set_Relationship class simply sets up set membership

relationships among objects, while the Directed_Set_Re-
lationship class identi®es a special member of each set.

Finally, since, as stated above, the representation allows

for hierarchies of Function, Form, Geometry, Material
entities independent of each other and of the artifact's

containment hierarchies, it was found prudent to introduce

the Reference class of one-to-one directed relationships

between referring and referred_to objects as a means of

navigating between elements of such hierarchies.

As can be seen from the above discussion, the core

representation is by no means minimal. The set of object

classes largely re¯ects traditional terms used in formal

design descriptions and models; it was felt that any

further abstraction would have eliminated semantically

meaningful terms. The number of relationship classes

could have been reduced since requirements or constraints

could have been represented using the more generic set

relationships. However, it was felt that the terms `require-

ment' and `constraint' are themselves semantically mean-

ingful and should be retained.

5.3. Example: power drill motor

This section presents an electric motor that is a compo-

nent in a power drill as an example to illustrate the use of the

product knowledge representation core. What follows is a

set of instances of several of the entity classes described

above. The intent of this example is to provide a ¯avor of

how the simple generic entities that comprise the represen-

tation core can be used to model a complex engineering

product, as well as what the entities that populate a product

information base look like. This section does not attempt to

provide a complete representation of the power drill motor

(as is evidenced from the fact that the entities shown contain

pointers to various other entities that do not appear in the

example), nor does it attempt to provide a comprehensive

set of examples that covers every kind of entity discussed

above. Note that although entities in an artifact model

always contain all the attributes de®ned for that entity (see

Appendix A) irrespective of their value, in this example

attributes having default or NULL values have been omitted

for reasons of brevity.

The ®rst entity below is an Artifact representing the

S. Szykman et al. / Computer-Aided Design 33 (2001) 545±559552

drill motor. This motor is a subartifact_of another Arti-
fact representing a power transmission (not shown),

which has several other subartifacts in addition to the

motor, including a chuck and a gearbox. The power

transmission itself is one of several subartifacts of

the power drill itself. It is in this way that the physical

decomposition of an engineering product is represented.

The drill motor itself does not have subartifacts, indi-

cating that it is not further decomposed into subassem-

blies and components. The reason for this is that

although the motor is composed of multiple parts, the

company that manufactures the drill buys the motors as

original equipment manufacturer (OEM) catalog parts,

and thus treats the motor as a single component.

Were this not true, there would be nothing to prevent

the representation of each of the motor components as

subartifacts of the motor.

Artifact

{

name Drill_motor

information Drill_motor_info

type Motor

con®g_info Drill_motor_con®g

function Drill_motor_function

form Drill_motor_form

behavior Drill_motor_behavior

subartifact_of Power_transmission

is_source_of {Motor_rotation}

is_destination_of {Battery_current}

}

The motor shown above includes a reference to a Func-
tion object, providing a pointer from the artifact domain into

the function domain. The next entity represents the motor

Function, which is to `convert'. The input_¯ow and

output_¯ow to the Function are an electrical current and

rotational motion, respectively, shown in the entities that

follow. Each of the Flows has pointers to a source and

destination, which are Artifacts, thereby providing pointers

back from the function domain to the artifact domain. The

information captured in aggregate is that the motor has a

function, which is to convert electrical energy that ¯ows

from the battery pack connector cable to the motor, into

rotational motion whose source is the motor and whose

destination is a gearbox.

Transfer_Function

{

name Drill_motor_function

information Drill_motor_function_info

type Convert

function_of_artifact Drill_motor

input_¯ow {Battery_current}

output_¯ow {Motor_rotation}

}

(continued)

Flow

{

name Battery_current

information Battery_current_info

has_constraint Battery_current_constraint

type Current

source Battery_pack_connector_cable

destination Drill_motor

is_input_of {Drill_motor_function}

is_output_of {Battery_pack_connector

_cable_function}

}

Information

{

name Battery_current_info

properties {ªV� 9 Voltsº}

}

The next two entities below represent a Constraint that is

applied to the battery current requiring that the electrical

input to the motor should be at 9 Volts. This previous entity

above represents a property of the battery current, which

indicates that the voltage of the battery is 9 Volts. Thus,

the constraint is satis®ed.

Constraint

{

name Battery_current_constraint

information Battery_current_cosntraint_information

type Plaintext

constrains Battery_current

}

Information

{

name Battery_current_constraint_information

description ªElectrical input to motor should be at

9 Volts.º

}

Flow

{

name Motor_rotation

has_constraint Motor_rotation_constraint

type Rotational_motion

source Drill_motor

destination Gearbox

is_input_of {Gearbox_function}

is_output_of {Drill_motor_function}

}

The remaining two entities are the motor function

Behavior and its associated Information entity. In this

S. Szykman et al. / Computer-Aided Design 33 (2001) 545±559 553

example a second-order ordinary differential equation

model, written in C, is available to simulate the motor beha-

vior.

Behavior

{

name Drill_motor_behavior

information Drill_motor_behavior_info

type Second_order_ODE

behavior_of_artifact

Drill_motor

}

Information

{

name Drill_motor_behavior

description ªOrdinary differential equation model of

motor behaviorº

methods {ªgeneric_motor_simulation.cº}

}

5.4. Implementation

The product representation core presented in this paper is

being adopted as the basis for software tool implementations

in the Manufacturing Systems Integration Division (MSID)

at NIST. The NIST Design Repository project, geared

toward providing a technical foundation for the creation

of heterogeneous information repositories that support the

representation, capture, sharing and reuse of corporate

design knowledge is an example of such an effort. This

project has developed a prototype implementation that

includes web-based interfaces for authoring, updating and

modifying design repositories [29].

As part of this ongoing effort, a second prototype imple-

mentation is currently in progress. This new prototype will

be built using the product development representation core

presented in this paper. The representation core has been

mapped into a relational data model (i.e. a set of relational

database tables) and an initial relational database has been

generated using Oracle8.3 A simple Javae-based browser

interface is currently available. A distributed client±server

architecture is being developed that will enable web-based

access to design repositories via an editor/browser tool

suite. Web browsers that are Javae- and Javascripte-

capable will be able to access a design repository through

a servlet application (similar to a Javae applet, but which

runs on the server side rather than on the client side) that

communicates with the database.

The NIST Design Repository project has created several

repositories of design information, including artifact models

for an ultra-high vacuum transport system, a cordless power

drill, a hand saw, and a detail sander. Translators are being

developed to convert these artifact repositories to the

product representation core presented in this paper. Once

the above implementation is complete, these repositories

along with any new ones subsequently created will be avail-

able to demonstrate the utility of the product information

core.

In addition to the NIST Design Repository project, three

other projects in MSID (involving tolerance design, assem-

bly design, and design-process planning integration) have

tentatively agreed to make use of the representation core

where suitable. When those projects reach appropriate

levels of implementation, it will be possible to utilize the

core not only for artifact modeling, but also for sharing and

exchange of product information via interactions between

projects.

As was illustrated in the example in the previous

section, the existing representational structure allows

individual behavior models to be attached to various

parts of a product. Other researchers are developing

methods for developing generic interfaces between

multi-domain simulation models to allow composable

simulations that would automatically assemble individual

component models into a system-level simulation. Allow-

ing system-level rather than just component-level simula-

tion would clearly improve a designer's ability to

evaluate or validate a design. We are currently engaged

in discussions with researchers at Carnegie Mellon

University [30] to explore the possibility of demonstrat-

ing the use of these types of models via implementation.

6. Representation of taxonomical and ontological
information

As described in Section 5.2, the type attribute that is

present in the various data objects in the product knowledge

representation core (see Appendix A) serves as a symbolic

classi®er, which can be used to attach additional knowledge

to these objects, as well as for indexing and retrieval

purposes. The discussion presented the motivation for

providing standardized vocabularies in the form of taxo-

nomies, from which types are to be selected. Although a

full discussion of these issues is beyond the scope of this

paper, the representation of taxonomical information merits

a brief mention in the current context of knowledge repre-

sentation.

The schemata currently used for representing taxonomi-

cal information are shown in Appendix B.4 The Taxonomy
object contains a root node, which is a string that speci®es

the kind of object to which the taxonomy corresponds (e.g.

the `Function' taxonomy). The next attribute in a taxonomy

S. Szykman et al. / Computer-Aided Design 33 (2001) 545±559554

3 Use of any commercial product or company names in this paper is

intended to provide readers with information regarding the implementation

of the research described, and does not imply recommendation or endorse-

ment by the National Institute of Standards and Technology.

4 The representation of taxonomical information is under development

and is not currently considered to be part of the product knowledge repre-

sentation core.

is families, which consists of a list of Family objects. Each

family can consist of multiple families, which can them-

selves consist of families, etc., thereby de®ning a hierarch-

ical tree of types and subtypes.5 Each family has a name,

parents (a list of families of which this family is a subtype),

and descendants (a list of families that are subtypes of this

family), and an attribute called synonyms, to be described

below.

The following description illustrates the family±subfam-

ily relationships: the top level of the function taxonomy that

has been developed as part of this research consists of six

types of function families, one of which is Usage_function.

This family itself consists of three families of functions, one

of which is Sink (i.e. Sink is a descendant of Usage_func-
tion, and Usage_function is a parent of Sink). The Sink
family consists of several unary families (meaning that they

do not have any subtypes), one of which is Absorb. (The

complete function taxonomy contains over 130 terms and

can be found in Ref. [23].) If a taxonomy is thought of as a

hierarchical tree-like structure, families that have descen-

dants are nodes that have children, while the unary families

that have no children correspond to the leaf nodes.

A Family also has a de®nition and a formal_de®nition.

The former is intended to be a purely human-processable

(natural language) de®nition while the latter is intended to

be computer-processable. Whereas a taxonomy can be

thought of as a classi®cation of terminology, a taxonomy

that also includes formal de®nitions for terms is often

referred to as an ontology. In the context of ontology-related

research, the advantage of formal computer-processable

de®nitions is that they provide the potential for software-

based reasoning or inferencing based on these de®nitions.

The focus of this work is on enabling representation of

product development knowledge and not on ontologies.

There is, therefore, no prescribed format for representation

of the de®nition or the formal_de®nition; both are repre-

sented as strings, providing a means for associating de®ni-

tions with each of the terms in a taxonomy without

constraining users to any given representation for those de®-

nitions. Although this work does not involve research on

ontology representation or mechanisms for automated

reasoning, the goal is to provide a representational infra-

structure that would support researchers who are working

in these areas.

The next attribute of a Family is default_properties.

Since this representation is not limited to implementation in

inheritance-based object-oriented systems, a list of default

properties can be developed for types in the taxonomy as

needed. This provides software developers that use this repre-

sentation the ability to create a system that simulates object-

oriented mechanisms (if they choose to do so) when an imple-

mentation is built on a non-object-oriented infrastructure, as

is the case with many if not most of the product development

tools in industry. A system that assigns default_properties
to objects as they are created simulates the object-oriented

concept of objects inheriting attributes from generic class

descriptions when they are instantiated.

The last concept supported by our representation of taxo-

nomical information is that of synonyms. It is common in

product development for people with different backgrounds

or in different organizations to use different terms to refer to

the same concept. In a hierarchical classi®cation of terms, it

may even happen that two terms which have the same mean-

ing are repeated in different branches of a taxonomy. Thus, a

third type of object, the Group, is shown in Appendix B.

Each Group has a name, and an attribute called families,

which is a list of Family objects that are considered to be

synonyms. Returning to the Family schema, each family has

an attribute called same_as, which is a reference to a

Group that identi®es synonyms of a given family. Without

this direct reference, synonyms for a speci®c term could still

be found, but it would require actively searching a poten-

tially long list of groups for the appearance of that term.

Finally, referring back to the Taxonomy schema, the attri-

bute synonyms is used to maintain a list of all the (syno-

nym) groups that exist within a given taxonomy, so that a

complete list of synonyms can be quickly brought up for

browsing without performing a complex search.

7. Areas for future research

This paper presents a core representation for design infor-

mation that is intended to serve as a representational foun-

dation for next-generation product development systems.

The work is motivated by the high costs of poor interoper-

ability in the current generation of CAD/CAM/CAE soft-

ware tools. These costs are currently on the order of billions

of dollars, and threaten to grow further as functionality of

tools increases and their usage extends beyond traditional

geometry-based design activities. The research that led to

the development of this core representation drew high-level

needs from a vision of next-generation product development

systems, drew speci®c content-level requirements from a

related effort in design information ¯ow modeling, and

was synthesized after an analysis of several indepen-

dently-developed design artifact representations.

Although this paper does not address the speci®c technol-

ogies that will be incorporated into next-generation tools,

this research does attempt to provide a foundation for those

systems by providing a simple and generic representation

infrastructure. Speci®cally, automated reasoning will be

easier using formally-represented product information

than informal or unstructured information such as text-

based documentation. The structure of product information

S. Szykman et al. / Computer-Aided Design 33 (2001) 545±559 555

5 Families can be thought of as de®ning a hierarchy of classes and

subclasses, though we intentionally avoid using this term because it

means different things to different people. We also do not wish to imply

that representations of product knowledge or taxonomies used in this work

must be built upon formal inheritance-based object-oriented systems, as

this is not the case.

that is captured, such as physical decomposition, functional

decomposition, and mappings between the two, will further

support reasoning about designs. The development of multi-

ple taxonomies of engineering terminology (an ongoing

activity in the NIST Design Repository project) for use

with the type classi®cation attribute will greatly facilitate

the indexing and retrieval of product information from engi-

neering databases. Again, the actual development of

mechanisms for indexing and retrieval of product databases

is an area for future research.

Also related to the processing of information in the core

representation is the treatment of an object's attributes as

strings containing attribute±value pairs in the property

slot. This approach stemmed from the initial objective of

the NIST Design Repository project, which originally

dealt with the storage and retrieval of archival information

rather than interactive product development. The bene®t

of this method is the generic nature of the object class

hierarchy, which allows the representation of a broad

number of concepts without specialization into a large

number of subclasses. The lack of specialization of entities

may be a bene®t at the representation level in terms of

simplicity, but may turn out to be less suitable as a

mode of information transfer for tools where rapid and

seamless interoperation is needed, as in the design envir-

onment sketched in Fig. 2. The use of the core schema in

such environments needs to be investigated further. One

promising approach to examine is to treat the core as a

`virtual global schema' and append to its objects domain-

speci®c attributes and additional objects and relations,

which need to be known only by the tools or agents actu-

ally involved in transactions.

In the near term, implementation efforts in the NIST

Design Repository project will continue toward the develop-

ment of a second prototype built upon the representation core.

In this implementation, the engineering context is stored in a

single relational database. At the representation level, there is

nothing constraining the engineering context to this form; in

practice the engineering context may be a centralized data-

base, a distributed database, or possibly a `virtual' knowledge

base that resides within the databases of several different

software applications. A software tool for authoring and

browsing taxonomies and ontologies using the representation

described in Section 6 is also under development.

The ®nal signi®cant area of future work is to gather feed-

back and buy-in from the community of both researchers

and end-users. Researchers at several universities are contri-

buting to the NIST Design Repository project or making use

of representations developed for the project. In addition to

continuing these interactions, NIST held an industry work-

shop in the summer of 2000 to gather additional information

regarding needs associated with interoperability in next-

generation product development systems. The intent of

this workshop was to bring together both software vendors

and industry end users to obtain feedback on work to date as

well as input into future activities.

Acknowledgements

The authors would like to thank Jocelyn Senfaute for his

comments on the product knowledge representation core,

and for aiding in re®ning and maintaining the information

models presented in this paper.

Appendix A. The product knowledge representation core

Notes:

² An abstract class is a class for which instances

cannot be created, but that exists for the convenience

of grouping attributes that are common to all of its

subclasses so that these attributes can be inherited by

the subclasses.

² As described in Section 5.2, the type attribute for

objects and relationships is a string that is required

to be one of the terms within a taxonomy associated

with that kind of entity. Abstract classes do not have

types since instances for abstract classes do not exist.

² In addition to the entity de®nitions shown below, a

separate set of entities also exists for the organization

of terms into taxonomies used for entity type classi-

®cation. As the focus of this paper is not on taxo-

nomies and terminological issues, these entity

de®nitions are not presented here.

² `[x]' represents a pointer to an entity belonging to the

class x.

² `{string}' represents a list of strings.

² `{[x]}' represents a list of pointers to entities belong-

ing to the class x.

² `' indicates that an attribute value and any constraints

on that value are inherited from an abstract class. For

example, an artifact has an attribute called name that

is inherited from the abstract class DRP_Object.
Because the name of any DRP_Object is required

to be unique and not null, the name of any artifact

is as well.

² `#' indicates that the rest of the line is a comment.

² `# (UNIQUE)' is a comment indicating that a string

must have a unique value.

² `# (NOT NULL)' is a comment indicating that the

®eld is required.

Abstract Class DRP_Object

{

name string # (UNIQUE, NOT NULL)

information [Information] # (NOT NULL)

references {[Reference]}

is_referenced_by {[Reference]}

is_member_of {[Set_Relationship]}

is_special_member_of {[Directed_Set_

Relationship]}

}

S. Szykman et al. / Computer-Aided Design 33 (2001) 545±559556

(continued)

Abstract Class Restricted_DRP_Object # (inherits from DRP_Object)

{

name (I)

information (I)

constrained_by {[Constraint]}

references (I)

is_referenced_by (I)

is_member_of (I)

is_special_member_of (I)

required_by {[Requirement]}

}

Class Artifact # (inherits from DRP_Object)

{

name (I)

information (I)

references (I)

is_referenced_by (I)

is_member_of (I)

is_special_member_of (I)

type [Artifact_Family] # (NOT NULL)

is_speci®ed_by {[Speci®cation]}

con®g_info [Con®g_Info] # (NOT NULL)

function {[Function]} # (NOT NULL)

form [Form] # (NOT NULL)

behavior {[Behavior]}

subartifacts {[Artifact]}

subartifact_of {[Artifact]}

is_source_of {[Flow]}

is_destination_of {[Flow]}

}

Class Function # (inherits from Restricted_DRP_Object)

{

name (I)

information (I)

constrained_by (I)

references (I)

is_referenced_by (I)

is_member_of (I)

is_special_member_of (I)

required_by (I)

type [Function_Family] # (NOT NULL)

subfunctions [Function]}

subfunction_of [Function]

function_of_artifact [Artifact] # (NOT NULL)

}

Class Transfer_Function # (inherits from Function)

{

name (I)

information (I)

constrained_by (I)

references (I)

is_referenced_by (I)

is_member_of (I)

is_special_member_of (I)

required_by (I)

type (I)

subfunctions (I)

subfunction_of (I)

function_of_artifact (I)

input_¯ow {[Flow]}

output_¯ow {[Flow]}

}

Class Flow# (inherits from Restricted_DRP_Object)

{

name (I)

information (I)

constrained_by (I)

references (I)

(continued)

is_referenced_by (I)

is_member_of (I)

is_special_member_of (I)

required_by (I)

type [Flow_Family] # (NOT NULL)

source {[Artifact]}

destination {[Artifact]}

has_external_source Boolean # (NOT NULL, Default

FALSE)

has_external_source Boolean # (NOT NULL, Default

FALSE)

has_external_destination Boolean # (NOT NULL, Default

FALSE)

is_input_of {[Transfer_Function]}

is_output_of {[Transfer_Function]}

}

Class Form # (inherits from Restricted_DRP_Object)

{

name (I)

information (I)

constrained_by (I)

references (I)

is_referenced_by (I)

is_member_of (I)

is_special_member_of (I)

required_by (I)

type [Form_Family] # (NOT NULL)

subforms {[Form]}

subform_of [Form]

geometry [Geometry] # (NOT NULL)

material [Material] # (NOT NULL)

form_of_artifact [Artifact] # (NOT NULL)

}

Class Geometry # (inherits from Restricted_DRP_Object)

{

name (I)

information (I)

constrained_by (I)

references (I)

is_referenced_by (I)

is_member_of (I)

is_special_member_of (I)

required_by (I)

type [Geometry_Family] # (NOT NULL)

subgeometries {[Geometry]}

subgeometry_of [Geometry]

geometry_of_form [Form] # (NOT NULL)

}

Class Material # (inherits from Restricted_DRP_Object)

{

name (I)

information (I)

constrained_by (I)

references (I)

is_referenced_by (I)

is_member_of (I)

is_special_member_of (I)

required_by (I)

type [Material_Family] # (NOT NULL)

submaterials {[Material]}

submaterial_of [Material]

material_of_form [Form] # (NOT NULL)

}

Class Behavior # (inherits from DRP_Object)

{

name (I)

information (I)

references (I)

is_referenced_by (I)

S. Szykman et al. / Computer-Aided Design 33 (2001) 545±559 557

(continued)

is_member_of (I)

is_special_member_of (I)

type [Behavior_Family] # (NOT NULL)

subbehaviors {[Behavior]}

subbehavior_of [Behavior]

behavior_of_artifact [Artifact] # (NOT NULL)

}

Class Speci®cation # (inherits from DRP_Object)

{

name (I)

information (I)

references (I)

is_referenced_by (I)

is_member_of (I)

is_special_member_of (I)

type String # (NOT NULL)

requirements {[Requirement]} # (NOT NULL)

speci®cation_of_artifact [Artifact]

(NOT NULL)

}

Class Con®g_Info

{

name String #(UNIQUE, NOT NULL)

information [Information] # (NOT NULL)

type String # (NOT NULL)

con®g_info_of_artifact [Artifact]

(NOT NULL)

}

Class Information

{

name String # (UNIQUE, NOT NULL)

description String

documentation String

methods {String}

properties {String}

}

Abstract Class DRP_Relationship

{

name String # (UNIQUE, NOT NULL)

information [Information] # (NOT NULL)

}

Class Requirement # (inherits from DRP_Relationship)

{

name (I)

information (I)

type String # (NOT NULL)

requires {[Restricted_DRP_Object]}

(NOT NULL)

requirement_of_spec {[Speci®cation]} # (NOT NULL)

}

Class Reference # (inherits from DRP_Relationship)

{

name (I)

information (I)

type String # (NOT NULL)

referred_object [DRP_Object] # (NOT NULL)

referring_object [DRP_Object] # (NOT NULL)

}

Abstract Class Set_Relationship # (inherits from DRP_Relationship)

{

name (I)

information (I)

members {[DRP_Object]} # (No fewer than 2

DRP_Objects in list)

}

(continued)

Class Undirected_Set_Relationship# (inherits from Set_Relationship)

{

name (I)

information (I)

members (I)

type String # (NOT NULL)

special_members {[DRP_Object]} # (NOT NULL)

special_member_role String

member_role String

}

Class Directed_Set_Relationship# (inherits from Set_Relationship)

{

name (I)

information (I)

members (I)

type String # (NOT NULL)

special_members {[DRP_Object]} # (NOT NULL)

special_member_role String

member_role String

}

Class Constraint # (inherits from DRP_Relationship)

{

name (I)

information (I)

type String # (NOT NULL)

constrains {[Restricted_DRP_Object]}

(NOT NULL)

}

Appendix B. Representation of taxonomical information

Class Taxonomy

{

root String # (UNIQUE, NOT NULL)

families {[Family]} # (NOT NULL)

synonyms {[Group]}

}

Class Family

{

name String # (UNIQUE, NOT NULL)

parents {[Family]}

descendants {[Family]}

de®nition String

formal_de®nition String

default_properties String

same_as [Group]

}

Class Group

{

name String # (UNIQUE, NOT NULL)

families {[Family]} # (NOT NULL)

}

References

[1] Petroski H. Time-sensitive material. American Scientist

2000;88(1):18±21.

[2] Szykman S, Sriram RD, Smith SJ, editors. Proceedings of the NIST

Design Repository Workshop, Gaithersburg, MD, November 1996,

1998.

[3] Mitchell M, Szykman S. Intelligent and distributed engineering

design: program synopsis. Available online at ,http://www.mel.nist.-

gov/msid/groups/edt/ATP/synopsis.html . , 1998.

S. Szykman et al. / Computer-Aided Design 33 (2001) 545±559558

[4] NIST. Interoperability cost analysis of the US automotive supply

chain, NIST Strategic Planning and Economic Assessment Of®ce,

Planning Report #99-1, available online at ,http://www.nist.gov/

director/prog-ofc/report99-1.pdf . , 1999.

[5] ISO 10303-1: Industrial Automation Systems and IntegrationÐ

Product Data Representation and ExchangeÐPart 1: Overview and

Fundamental Principles 1994:1994.

[6] Bliznakov PI, Shah JJ, Urban SD. Integration infrastructure to support

concurrence and collaboration in engineering design. Proceedings of

the ASME Design Engineering Technical Conferences and Compu-

ters in Engineering Conference, Paper No. 1996;96:1996.

[7] Hardwick M, Loffredo D. Using EXPRESS to implement concurrent

engineering databases. In: Proceedings of the 1994 Lancaster Inter-

national Workshop on Engineering Database Symposium, Boston,

MA, September, 1995. p. 1069-1083.

[8] Kim TS, Han S-H, Shin YJ. Product data management using AP203 of

STEP standard. Proceedings of the ASME Design Engineering Tech-

nical Conferences and Computers in Engineering Conference, Paper

No. 1996;96-DETC/DAC-1069:1996.

[9] Shah JJ, Jeon DK, Urban SD, Bliznakov P, Rogers M. Database

infrastructure for supporting engineering design histories. Compu-

ter-Aided Design 1996;28(5):347±60.

[10] Wood III WH, Agogino AM. Case-based conceptual design informa-

tion server for concurrent engineering. Computer-Aided Design

1996;28(5):361±70.

[11] Bilgic T, Rock D. Product data management systems: state-of-the-art

and the future. Proceedings of the ASME Design Engineering Tech-

nical Conferences, Paper No. 1997;DETC97/EIM-3720:1997.

[12] de Kleer J, Brown JS. Assumptions and ambiguities in mechanistic

mental models. In: Grentner D, Stevens AL, editors. Mental models,

New Jersey: Lawrence Erlbaum, 1983. p. 155±90.

[13] Iwasaki Y, Chandrasekaran B. Design veri®cation through function

and behavior-oriented representations: bringing the gap between

function and behavior. In: Gero JS, editor. Arti®cial intelligence in

design '92, Boston: Kluwer Academic Publishers, 1992. p. 597±616.

[14] Chandrasekaran B, Goel A, Iwasaki Y. Functional representation as

design rationale. IEEE Computer January 1993:48±56.

[15] Goel A, Bhatta S, Stroulia E. KRITIK: an early case-based design

system. In: Maher M, Pu P, editors. Issues and applications of case-

based reasoning in design, New Jersey: Lawrence Erlbaum Associ-

ates, 1996.

[16] Goel A, Gomez A, Murdock JW, Recker M, Govindaraj T. Explana-

tory interface in interactive design environments. In: Gero JS, editor.

Arti®cial intelligence in design '96, Boston: Kluwer Academic

Publishers, 1996.

[17] Alberts LK, Dikker F. Integrating standards and synthesis knowledge

using the YMIR ontology. In: Gero JS, Sudweeks F, editors. Arti®cial

intelligence in design '94, Boston: Kluwer Academic Publishers,

1992.

[18] Gorti SR, Gupta GJ, Kim GJ, Sriram RD, Wong A. An objected-

oriented representation for product and design process. Computer-

Aided Design 1998;30(7):489±501.

[19] Henson B, Juster N, de Pennington A. Towards an integrated repre-

sentation of function, behavior and form. In: Sharpe J, Oh V, editors.

Computer Aided Conceptual Design, Proceedings of the 1994

Lancaster International Workshop on Engineering Design. Lancaster:

Lancaster University EDC, 1994. p. 95±111.

[20] Ranta M, MaÈntylaÈ N, Umeda Y, Tomiyama T. Integration of func-

tional and feature-based product modellingÐthe IMS/GNOSIS

experience. Computer-Aided Design 1996;28(5):371±81.

[21] Umeda Y, Ishii M, Yoshioka M, Shimomura Y, Tomiyama T.

Supporting conceptual design based on the function±behavior±state

modeler. Arti®cial Intelligence for Engineering Design, Analysis and

Manufacturing 1996;10:275±88.

[22] Qian L, Gero JS. Function±behavior±structure paths and their role in

analogy-based design. Arti®cial Intelligence for Engineering Design,

Analysis and Manufacturing 1996;10(4):289±312.

[23] Szykman S, Racz JW, Bochenek C, Sriram RD. The representation of

function in computer-based design. Proceedings of the ASME Design

Engineering Technical Conferences (11th International Conference

on Design Theory and Methodology), Paper No. 1999;DETC99/

DTM-8742:1999.

[24] Wong A, Sriram RD. SHARED: an information model for coopera-

tive product development. Research in Engineering Design

1993;5(1):21±39.

[25] PDES. STEP success stories. PDES Inc. presentation, available online

at ,http://pdesinc.aticorp.org/success-stories.ppt . , 1999.

[26] Shooter SB, Keirouz W, Szykman S, Fenves S. A model for the ¯ow

of design information. Proceedings of the ASME Design Engineering

Technical Conferences (12th International Conference on Design

Theory and Methodology), Paper No. 2000;DETC2000/DTM-

14550:2000.

[27] Feng SC, Nederbragt WW, Kaing S, Sriram RD. Incorporating

process planning into conceptual design. In: Szykman S, Racz JW,

Sriram RD, editors. The representation of function in computer-based

design. Proceedings of the 1999 ASME Design Engineering Techni-

cal Conferences (Fourth Design for Manufacturing Conference),

Paper No. DETC99/DFM-8922, Las Vegas, NV, September, 1999

[28] Roy U, Sudarsan R, Sriram RD, Lyons KW, Duffey MR. Information

architecture for design tolerancing: from conceptual to the detail

design. Proceedings of the ASME Design Engineering Technical

Conferences (25th Design Automation Conference), Paper No.

1999;DETC99/DAC-8704:1999.

[29] Szykman S, Racz JW, Bochenek C, Sriram RD. A web-based system

for design artifact modeling. Design Studies 2000;21(2):145±65.

[30] Diaz-Calderon A, Paredis CJJ, Khosla PK. Automatic generation of

system-level dynamic equations for mechatronic systems. Computer-

Aided Design 2000;32(5±6):339±54.

S. Szykman et al. / Computer-Aided Design 33 (2001) 545±559 559

