
XML Representation of EXPRESS Models and Data

 Edward J. Barkmeyer and Joshua Lubell
 Manufacturing Systems Integration Division
 National Institute of Standards and Technology
 100 Bureau Drive, Stop 8260
 Gaithersburg, MD 20899-8260 USA
 +1 301 975 3508
 {edbark, lubell}@nist.gov

ABSTRACT
EXPRESS is a modeling language for use in engineering
data exchange standards that combines the entity-attribute-
relationship and object modeling paradigms. This paper
discusses some issues we encountered when attempting to
represent EXPRESS models and data sets as XML
(Extensible Markup Language). Our experience should be
applicable to other projects concerned with providing
XML-based exchanges of information modeled in
relational or object-oriented languages.

Keywords
Data model, EXPRESS, mapping, representation, schema,
XML.

1 BACKGROUND
EXPRESS [1] is a data modeling language that combines
ideas from the entity-attribute-relationship family of
modeling languages with object modeling ideas of the late
1980s. It became an international standard (ISO 10303-11)
in 1994 for use in engineering data exchange.

The primary EXPRESS concept is the entity type, which
models a domain of conceptual or real-world objects and
the collection of information units that describe them. An
entity type has attributes that model the descriptive
information units, and each attribute has a data type, which
specifies the nature and values of the information unit. Data
types can be the common computational types (Boolean,
integer, real, string, enumeration), or entity types, or
aggregates (set, list, array) of any of these. EXPRESS also
supports defined types, which are new data types defined by
the modeler to be represented by values of any of the other
data types.

As in object models, an EXPRESS entity instance is
considered to have an identity distinct from its modeled

attributes and properties. That is, EXPRESS does not
consider any attribute value or the set of attribute values to
denote the entity instance. An entity instance is considered
to be an object, which is partly represented by the modeled
attributes, and has an unmodeled unique identifier.

EXPRESS has no explicit relationship construct.
Relationships are modeled as attributes whose data type is
an entity type or an aggregate of an entity type. Some
relationships are reified as entity types with role attributes
whose values are the participating entities.

There are important characteristics of EXPRESS that we do
not discuss in this paper. EXPRESS has an elaborate
constraint language in which limitations on the values of
attributes and the populations of entity types, and
relationships among entity instances and values of
attributes can be specified. But this does not affect XML
mapping. For the sake of brevity, the EXPRESS
mechanisms for defining complex inheritance relationships
between entity types are not discussed, even though they
affect XML mapping.

A project is underway in ISO Technical Committee 184
(Industrial Automation) to develop standards for
representing EXPRESS models and data as XML [2]. Some
compelling reasons for doing this are [3]:

• Unlike EXPRESS, XML is widely used and XML
processing software is widely available.

• XML defines a well-tested, standard syntax for
representing structured data.

• The popularity of XML may help to make established
EXPRESS data models more accessible to new user
communities.

Early Bindings and Late Bindings
XML representations of data modeled in EXPRESS may
employ either an early binding or a late binding. In an early
binding, the named components of the XML vocabulary
correspond directly to data types and attributes defined in
the EXPRESS model. For example, consider the following
EXPRESS definition of a point on a plane with x and y
axes:

 2

ENTITY point;
 x, y : REAL;
END_ENTITY;

This EXPRESS definition specifies a point as having two
attributes whose values are real numbers corresponding to
the x and y coordinates of the point. An early-bound XML
representation of a point might look something like

<point id="e1">
 <x>3.1</x>
 <y>5.7</y>
</point>

with id representing the unmodeled unique identifier.

In a late binding, the named components of the XML
vocabulary do not directly correspond to EXPRESS data
types. Instead they correspond to EXPRESS metadata
objects — entity, attribute, data types. For example, a late-
bound XML representation of a point could look like

<entity id="e1" name="point">
 <attribute name="x">
 <real_value>3.1</real_value>
 </attribute>
 <attribute name="y">
 <real_value>5.7</real_value>
 </attribute>
</entity>

Although late bindings are more verbose than early
bindings, a late-bound EXPRESS-to-XML mapping is
better suited to XML applications involving multiple
EXPRESS information models. If an early-bound strategy
is used for such applications, there must be a distinct XML
tag set for each EXPRESS model. That is, one needs a
separate XML namespace for each EXPRESS model. This
complicates implementation. A late binding, on the other
hand, allows for a single tag set to be used for all
EXPRESS models, since the XML vocabulary defined by
the tag set corresponds to EXPRESS metadata objects
rather than to objects defined in the model.

Early bindings, on the other hand, are most useful for XML
applications implementing a single EXPRESS model. They
are less verbose, more human-readable, and simpler to
process than late bindings, and they are also better
equipped to make use of XML tooling. For the purposes of
this discussion, we focus mainly on early bindings since
early-bound EXPRESS-to-XML mappings seem to be
preferred in the EXPRESS user community.

2 ISSUES
The following are some issues that arise when attempting
to reformulate EXPRESS models as XML.

Name Mapping
In EXPRESS, the name of a data type or attribute is a
sequence of letters, digits and underscore ("low line")
characters, beginning with a letter. This means that any
EXPRESS name is a valid XML name. Fortunately, the

hyphen character is not permitted in EXPRESS names, but
it is permitted in XML names. By using the hyphen, we
can create binding-specific XML names that are guaranteed
not to conflict with names defined in the EXPRESS model.

Name Scoping
The name of an EXPRESS entity type is required to be
unique across the model, but the name of an EXPRESS
attribute is only required to be unique over the entity type
and the types from which it inherits. Therefore, EXPRESS
attributes with the same name and different data types can
exist in the same model. That is, attributes of two different
EXPRESS entity types can have the same name and have
values with entirely different representations. If the
EXPRESS attribute is mapped directly to an XML element
and the document is to have a Document Type Definition
(DTD), the content model of that element must
accommodate all of the possible data type representations.
But that content model doesn't properly constrain any
instance of that element, and validation under such a DTD
is not very meaningful. For example, if the entity

ENTITY axis_labels;
 x: LIST OF STRING;
 y: LIST OF STRING;
END_ENTITY;

appears in the same model as point above, the declaration
for element x in the DTD would have to be:

<!ELEMENT x (#PCDATA | string-value*)>

If the XML document is to have a DTD, therefore,
EXPRESS attribute names cannot be mapped directly to
element tags. The ISO project has actually explored three
approaches to solving this problem:

Mapping EXPRESS Attributes to XML Attributes
Under this approach, the EXPRESS attributes are mapped
to XML attributes of the element corresponding to the
entity type. Our XML representation would appear as:

<point x-id="e1" x="3.1" y="5.7"/>

This approach ensures that EXPRESS attribute names are
unambiguously specified in XML, but it also requires that
metadata XML attributes be differentiated from their
EXPRESS siblings. Hence, the point's XML identification
attribute is named x-id rather than id. A more serious
problem with this approach is that XML attributes cannot
support all the possible representations of EXPRESS
attribute values. This is discussed below in the section on
aggregate types.

Mapping EXPRESS Attributes to XML Elements
Under this approach, the XML element tag has the form
entity-name.attribute-name. And our data would
appear as:

 3

<point id="e1">
 <point.x>3.1</point.x>
 <point.y>5.7</point.y>
</point>

Although XML attribute names are guaranteed to be
unique, this approach results in very cumbersome element
names and complicates XML processing.

Discarding DTDs Altogether
In this approach, EXPRESS attributes are mapped to
elements whose tags are the EXPRESS attribute names, as
in our original early-bound definition for point. This results
in an XML mapping of the EXPRESS model that, in the
general case, cannot usefully be specified as a DTD. The
XML mapping can, however, be specified using a non-
DTD XML schema language that permits context-sensitive
element types, such as RELAX [4], TREX [5], or XML
Schema [6]. Although this approach combines the
advantages of the first two approaches, it requires the use
of XML validation methods that are not as time-tested and
well understood as DTDs.

The authors believe that the last is the best choice — that
DTDs are of little value in validating data that is to
conform to an object model or relational model.

Hierarchies
EXPRESS models have no intrinsic hierarchical structure.
Nothing in an EXPRESS model identifies an entity instance
as part of, or belonging to, a higher-level entity. One might
assume that an entity-valued EXPRESS attribute would
model a subsidiary relationship, except that that same
syntax (entity with attribute) must also be used to model
many-to-many relationships and reified relationships. And
since EXPRESS does not distinguish among entity types
that model independent objects, entity types that model
relationships, and entity types that model simple
information units that comprise multiple data elements
(such as an address), there are no clues in the EXPRESS
model to suggest which entity types can be mapped to
hierarchical constructs in XML. An EXPRESS model is a
network of largely independent entity types connected by
relationships somehow modeled using attributes whose
values are entity instances.

Accordingly, an EXPRESS data set is mapped into a
sequence of XML elements representing EXPRESS entity
instances. Each entity element has an XML ID attribute,
providing the unmodeled unique identifier for the entity
instance (described above). Assuming EXPRESS attributes
are mapped to XML elements and not XML attributes, the
element representing the entity contains elements
representing its EXPRESS attributes. In addition, every
entity-type also maps to a reference element — an XML
element type with an XML attribute of type IDREF and
empty content. An occurrence of this element represents a
reference to the entity instance with the given ID value. For
example, an instance of a triangle EXPRESS entity type

modeled as

ENTITY triangle;
 p1, p2, p3 : point;
END_ENTITY;

in a data set containing point instances with unique
identifiers e1, e2, and e3 might look like

<triangle id="triangle1">
 <p1><triangle-ref ref="e1"/></p1>
 <p2><triangle-ref ref="e2"/></p2>
 <p3><triangle-ref ref="e3"/></p3>
</triangle>

or, with EXPRESS attributes mapped to XML attributes,
might look like

<triangle x-id="triangle1" p1="e1"
 p2="e2" p3="e3"/>

In short, the XML document is a collection of “flat”
elements representing independent entity instances linked
together by IDREFs, because no hierarchical structure can
be deduced from the EXPRESS model.

To make better use of XML's inherent hierarchical
structure, the project is developing representation methods
allowing instances to be contained within other instances
[7]. This entails some formal annotation of EXPRESS
models to cue the mapping to useful hierarchical data
structures in XML. Some uses of these annotations might
belong to the model itself, while others relate to particular
uses of the model. In any case, this means that we must
enhance the EXPRESS model with XML hierarchical
concepts. And we must also map EXPRESS attributes to
XML elements (rather than XML attributes) in order to
provide a basis for the hierarchical structures.

Aggregate Types
An EXPRESS attribute whose data type is an aggregate
type should be represented in XML as a sequence of base
elements where base is the XML element type
corresponding to the base type of the aggregate. For
example, consider a polygon modeled as a sequence of
three or more vertex points. The EXPRESS model would
be

ENTITY polygon;
 vertices : LIST [3:?] OF point;
END_ENTITY;

and an XML instance might look like

<polygon id="poly1">
 <vertices>
 <point-ref ref="e1"/>
 <point-ref ref="e2"/>
 <point-ref ref="e3"/> ...
 </vertices>
</polygon>

This creates a need for XML element types that correspond
to all the possible data types that can appear in an aggregate

 4

type, which are in fact all the possible data types. That
includes simple data types as well as all new data types
declared in the model. Because EXPRESS requires that all
these type names must be different from all entity type
names and must be unique across the model, these can be
mapped to identical XML element names. But because the
base types of aggregate types could also be aggregate types,
it is necessary to create an XML element type for each
aggregate type that occurs in the model. The names of these
types could be derived from the EXPRESS syntactic
designators for aggregate types, taking measures to make
sure the names do not clash with user-defined names. For
example, a list of strings could be marked up as:

<list-value type="string">
 <string-value>foo</string-value>
 <string-value>bar</string-value> ...
</list-value>

It is the handling of aggregates that makes the use of XML
attributes for EXPRESS attributes a problem. One cannot
put this complex content in an XML attribute. Aggregates
of some simple types can be represented by XML attributes
(as NMTOKENS or IDREFS), but many other aggregates
must be represented by marked up text. And the members
of such an aggregate must appear as instances of the XML
element type corresponding to the base data type, as above.
But when the EXPRESS attribute is mapped to an XML
attribute, there is no XML element to hold these data
elements as content. A solution proposed by the project was
to give XML ID attributes to the elements that correspond
to EXPRESS aggregate types, as if they were entity types.
For the EXPRESS attribute whose value is an aggregate,
the corresponding XML attribute has type IDREF.
Unfortunately, this adds a level of indirection and causes
the XML document to be difficult for humans to read and
for software to process.

For example, consider an instance of the axis_labels
EXPRESS entity appearing earlier, where the x attribute
has the value (“foo”, “bar”) and the y attribute has the value
(“baz”). Mapping EXPRESS attributes to XML attributes
produces XML like:

<axis_labels x-id="a1" x="l1" y="l2"/>
<list-value x-id="l1" type="string">
 <string-value>foo</string-value>
 <string-value>bar</string-value>
</list-value>
<list-value x-id="l2" type="string">
 <string-value>baz</string-value>
</list-value>

We conclude that the aggregate value requires a
hierarchical structure that cannot appear as an XML
attribute value. And for consistency of representation of
EXPRESS attributes, that form should be used in all cases.

3 CONCLUSION
The above discussion demonstrates some of the problems

of what we see as a common desire: to provide XML-based
exchanges of information that has been carefully modeled
in relational or object-oriented languages. The underlying
problem is that there is a significant mismatch between the
important concepts in these modeling languages and the
important concepts in XML. Relational ideas include
“flattened” table rows and keys. Object modeling concepts
include inheritance, polymorphism, and pointers. XML,
however, emphasizes hierarchical structures and
annotation. Specifying the mapping to XML using a non-
DTD schema language and datatyping vocabulary bridges
the gap somewhat, but not completely. Recognizing this,
the project plans to develop a standard mapping from
EXPRESS models to XML Schema and to investigate
configuring the mapping to take advantage of XML’s
hierarchical structure.

ACKNOWLEDGEMENTS
The authors wish to acknowledge the members of the ISO
TC184/SC4 “XML representation of EXPRESS schemas
and data” committee, whose collective efforts led to many
of the ideas presented in this paper.

REFERENCES
1. ISO 10303-11:1994. Industrial automation systems and

integration - Product data representation and exchange
- Part 11: Description methods: The EXPRESS
language reference manual.

2. ISO TC184/SC4/WG11. ISO/PDTS 10303-28:Product
data representation and exchange: Implementation
methods: XML representation of EXPRESS schemas
and data. Revision N140. 2000-10-16. On-line at
http://www.nist.gov/sc4/wg_qc/wg11/n140/.

3. W. Eliot Kimber. XML Representation Methods for
EXPRESS-Driven Data. National Institute of Standards
and Technology. GCR 99-781. November 1999. On-
line at
http://www.nist.gov/sc4/wg_qc/wg11/n095/nistgcr99-
781.pdf.

4. ISO/IEC DTR 22250-1. Document Description and
Processing Languages—Regular Language Description
for XML (RELAX)—Part 1: RELAX Core. 2000
October. On-line at http://www.xml.gr.jp/relax/.

5. James Clark. TREX - Tree Regular Expressions for
XML. 2001-02-13. On-line at
http://thaiopensource.com/trex/.

6. World Wide Web Consortium. XML Schema Part 1:
Structures. W3C Candidate Recommendation. 24
October 2000. On-line at
http://www.w3.org/TR/xmlschema-1/.

7. ISO TC184/SC4/WG11. XML representation for data
sharing (CEB Binding - Draft 3.0). Revision
N1362000-09-29. On-line at
http://www.nist.gov/sc4/wg_qc/wg11/n136/.

