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ABSTRACT
The popularity of simulated annealing for engineering de-

sign applications has grown in recent years, increasing the need
for new techniques that improve algorithm performance.  Simu-
lated annealing is a time-consuming, iteration-intensive algo-
rithm.  One area of algorithm enhancement with high potential
impact is the development of methods for improving the algo-
rithm by reducing the amount of wasted or non-productive
search.  This paper presents an approach to detection of produc-
tive search based on statistical process control (SPC) concepts.
The proposed Detection of Productive Search (DPS) annealing
schedule is compared to three other viable schedules using a
100-city traveling salesman problem.  The DPS schedule pro-
duces results on par with the best from the more traditional
schedules but does so with significantly fewer iterations.

1 INTRODUCTION
Simulated annealing is a global stochastic optimization

technique enjoying increased use in recent years in mechanical
design.  Driving the growth in simulated annealing’s popularity
is its ability to find optimal or near-optimal solutions to prob-
lems with ill-behaved objective functions which resist optimiza-
tion by traditional gradient-based techniques.  Because realistic
engineering problems are often characterized by poorly-behaved
objective functions, simulated annealing has a broad range of
use.  A sampling of recent applications of simulated annealing
includes blank nesting (Jain et al., 1992), tolerance design
(Zhang and Wang, 1993) truss design (Shea and Cagan, 1995),
feature recognition (Dong and Vijayan, 1996), machine design
(Schmidt and Cagan, 1996), assembly design (Kim and Szyk-
man, 1996), tube routing (Szykman and Cagan, 1996), mecha-

nism synthesis (Ullah and Kota, 1996), manufacturability im-
provement (Xue, 1996), and component layout (Szykman and
Cagan, 1997).

In order to find globally optimal or near-optimal solutions,
simulated annealing performs many iterations, tens of thousands
to millions depending problem size.  Because simulated anneal-
ing is a computationally intensive algorithm, there is a strong
need to avoid non-productive search.  Minimizing wasted search
is accomplished through proper selection of various parameters
that control the optimization; these parameters will be discussed
further in Section 3.

Parameter values for simulated annealing are traditionally
determined empirically by repeatedly running the algorithm with
different values until the quality of the solutions produced by
the algorithm ceases to improve.  Furthermore, even when an
algorithm is tuned to produce good results, it still can be wast-
ing search.  Without a measure of productive search, one is never
sure that equally good results could not have been obtained more
rapidly using an untried combination of parameter values.

This paper proposes an approach toward improving algo-
rithm efficiency through detection of productive search based on
statistical process control concepts.  Productive search is defined
as search where the objective function value is changing rapidly
in general, though not necessarily with every iteration.  During
productive search, the average change in objective function
value over multiple iterations is high.  The concepts of “rapid
change” and “high average” are problem dependent.  They can,
however, be defined in a statistical manner by examining trends
in average objective function values over a series of iterations
and observing their behavior with respect to means and standard
deviations of those averages.
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Detecting productive search provides control over the simu-
lated annealing optimization process instead of spreading com-
putational effort uniformly throughout the optimization.  By
allowing the algorithm to do more iterations when search is
productive and fewer iterations when it is less productive,
wasted effort is reduced and the algorithm converges more
quickly.  Unlike other approaches to controlling the simulated
annealing optimization, this approach is generic and requires
neither a priori knowledge about the design problem nor exten-
sive experimentation to tune algorithm parameters for each new
problem.

The next section introduces the nomenclature that will be
used in the remainder of the paper.  Section 3 briefly describes
the simulated annealing algorithm and explains the role of the
temperature parameter and the annealing schedule in the optimi-
zation.  In Section 4, productive search is defined and our ap-
proach to detection of productive search is presented.  Section 5
describes experimental results obtained using the Detection of
Productive Search (DPS) annealing schedule, as well as com-
parisons with other annealing schedules.  Conclusions and a
discussion of areas for future work follow in Section 6.

2 NOMENCLATURE
The following definitions apply to terminology used in this

paper:
 • n , the batch size, or number of random samples taken

from a population of interest, P,
 • m , the number of samples of size n  drawn from a popula-

tion of interest, P,
 • Xij , the value of random variable “j” in the “ith” sample

taken from P,
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= , an estimate of the standard deviation of the

population of sample means (again, not the same as P).
This parameter is also called the standard error.

3 BACKGROUND
Simulated annealing is a stochastic optimization technique

that was introduced by Kirkpatrick et al. (1983).  At the start of
an optimization using simulated annealing, the algorithm be-
gins at an initial design state.  The algorithm then takes a step
to a new design state by randomly perturbing the current design.
The objective function value of the new state is compared to
that of the previous state.  If the new state is better than the
previous one, it is accepted; if it is worse, it is accepted or
rejected with some probability.  The probability of accepting an

inferior state is a function of a parameter called temperature.
The probability is given by:

P eaccept

C

T  
 

=
−

∆

, (1)

where ∆C is the change in the objective function due to the
move, and T is the current temperature.

Both the temperature and the probability of accepting infe-
rior steps begin high.  Since many inferior steps are accepted,
this results in near-random exploration to find promising re-
gions of the design space.  As the optimization proceeds, the
temperature decreases and fewer inferior steps are accepted, mak-
ing the search more directed.  As the temperature continues to
decrease, algorithm behavior resembles downhill search because
virtually no inferior steps are accepted.  This allows the algo-
rithm to converge to a local optimum in the current region of
the design space.  

An annealing schedule determines the initial temperature,
how many iterations are done at each temperature, how and
when the temperature decreases, and sets the algorithm termina-
tion condition which determines how many temperatures are
used.  The “best” values for annealing schedule parameters vary
from one problem to the next.  There is no unique fixed anneal-
ing schedule that will lead to good performance for a variety of
problems.

In simulated annealing, wasted search can stem from three
possible causes:
 • Extended random search is caused by starting the initial

temperature too high.  Since the probability of accepting
inferior steps (i.e., steps away from a local optimum) is a
function of temperature, this can lead to completely random
search early on rather than search which tends to converge
towards optimal solutions.

 • Excessive search at a temperature occurs when too many
iterations are performed at a given temperature.  Because of
the non-zero probability of accepting uphill steps at any
temperature, there is a limit to how close to an optimum
the algorithm can converge at a given temperature.  Beyond
that point, additional search at a temperature results in non-
productive search, even if the algorithm has not converged
to an optimum.

 • Delayed termination is a result of performing search over
too many temperatures.  Once the algorithm has converged
to an optimum or once the probability of accepting inferior
steps becomes sufficiently small, the improvements made
by search at additional temperatures are small enough that
allowing the algorithm to continue does not significantly
improve the objective function values.  At this point, the
algorithm should be terminated.
Of these three causes of wasted search, extended random

search and delayed termination are the easiest to avoid.  A good
starting temperature can be determined either using a small
amount of trial-and-error experimentation with different starting
values, or it can be calculated as a function of a target initial
acceptance probability and the standard deviation obtained by
generating a sample of random solutions from the design space
(White, 1984).  Determining an appropriate termination condi-
tion to avoid delayed termination can be done simply in a vari-
ety of ways, such as by looking for a certain number of succes-
sive rejections, or a certain number of iterations without accept-
ing any inferior steps.
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Figure 1. Illustration of Inefficient Search.

Dealing with excessive search at a temperature is more
problematic.  It is difficult to detect when productive search ends
since (with the exception of final convergence) objective func-
tion values tend to fluctuate up and down due to the stochastic
nature of the algorithm.  The problem is compounded by the
fact that the “right” number of iterations at one temperature may
be too many or too few at another. This makes it impossible to
determine the ideal number of iterations at every single tempera-
ture in advance.  Too few iterations at each temperature can lead
to convergence to poor local optima, so the typical approach is
to err on the conservative side by performing a larger number of
iterations than needed; wasted search is preferable to bad results.

This concept of wasted search is illustrated in Figure 1,
which contains data from an “inefficient” optimization.  The X
axis represents Ti, the “ith” temperature in the optimization.
The figure shows two curves, the upper curve being a series of
final objective function values at the end of each successive
temperature for the entire run, and the lower curve showing the
number of iterations performed at each temperature, both plotted
as a function of Ti.  The top curve shows the objective function
values starting out high and following a generally decreasing
trend with a few increases representing uphill moves (i.e.,
moves away from a local minimum) that simulated annealing
can make to escape from poor local optima.  Clearly, the most
productive search occurs in the first 15% of the temperatures,
followed by a moderately productive phase for the next 40% to
50% of the temperatures.  The final portion of the optimization
is the least productive but still noticeably decreases the objec-
tive function value.

The relative magnitude of the values on the Y axis for the
two curves is unimportant.  What is important is the appearance
of the lower curve (number of iterations) at different stages of
the optimization.  The greatest number of iterations would
ideally be done at temperatures where search is most productive,
and the fewest where search is least productive.  For the ineffi-
cient search shown in the figure, there is no relationship be-

tween search productivity and the number of iterations done at a
temperature.  The dips in the lower curve in the early stages of
the optimization represent lost opportunities; more iterations
could have resulted in decreasing the objective function more
rapidly early on, causing fewer iterations to be required later.
The peaks in the latter stages do not have a significant impact
on the objective function, indicating that more search was done
than was necessary.

Excessive search at a temperature has the greatest potential
for negative impact on the efficiency of the algorithm.  Per-
forming too many iterations at each temperature compounds
wasted computational effort throughout the entire optimization.
Due to the large number of iterations required by the simulated
annealing algorithm, even small improvements in the efficiency
of the algorithm can lead to significant improvements in run
time.  The following section describes an approach to increasing
the efficiency of simulated annealing through detection of pro-
ductive search.

4 IMPROVING SEARCH EFFECTIVENESS
An analogy can be drawn between the idea of productive

search and concepts from statistical process control theory.
Specifically, there is an inverse relationship between detecting
productive search at a given temperature during a simulated
annealing process and detecting statistical control for the process
at that temperature.  A manufacturing process in a state of sta-
tistical control will exhibit only random variation in process
variables.  Statistical process control principles are used to
signal when control of the process achieved and to monitor the
state of a process to indicate when statistical control is lost.

Statistical control is desirable for a manufacturing process
but not for a stochastic search technique.  During a simulated
annealing process, a period of search marked only by random
variation in the current solution state’s objective function
evaluation (i.e., a process in control) is non-productive because
there is no bulk improvement in the solution value.  Periods of

i

Final objective
function value at Ti

Number of
iterations at Ti
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productive search in a simulated annealing algorithm are indi-
cated by marked variation in objective function evaluations over
a range of successive iterations.  This variation may be either
hill climbing or descent (as can be seen in Figure 1); either
behavior indicates that the algorithm is progressively moving
through the space to find a region of improving solutions.

When a simulated annealing process is found to be in con-
trol, a change in algorithm parameters should be triggered so
that a state of productive search can again be achieved.  The
Detection of Productive Search (DPS) annealing schedule pro-
posed in this paper uses statistical process control principles to
signal when the search at a temperature becomes unproductive
and reduction in annealing temperature is needed.  The DPS
annealing schedule is introduced in this section, following a
description of the statistical process control methods adapted for
the DPS approach.

    4 . 1           S P C       ’       s    X            Chart      ing
Statistical process control (SPC) is an analysis method for

the investigation of process variation and corresponding causes.
One very common set of SPC tools are control charts, devel-
oped by Dr. W. A. Shewhart (DeVor et al., 1992; Wetherill and
Brown, 1991).  They are designed to detect process variation
caused by events other than the random variation expected in a
well-behaved process.  The Shewhart X  Chart is used to detect
shifts in the average level of a process.  To do so, random sam-
ples of size n  are taken from the process, key parameter meas-
urements are made ( Xij ) and the means of the sample parameter

measurements ( Xi ) are plotted on a chart.

The Shewhart X  Chart plotting area is divided by action
limits into regions signaling in-control and out-of-control be-

havior.  Action limit lines are typically set at X se± 3 .  These
limits are calculated based on a series of samples and bound the
region in which a process in statistical control is expected to
operate.  If a process is producing a target average value, X , and
exhibiting only naturally occurring variation, there is a 99.74%
probability of enclosing sample mean values ( Xi ) inside the
action limits.  If this process then produces a sample mean
outside of the action limits, the process is assumed to be out of
statistical control and the operators are instructed to look for
other causes that must be corrected to bring the process back on
target.  An X  Chart also typically includes warning limit lines

set at X se± 2 .  An on-target, in-control process has a 95.44%
probability of producing sample means within the warning
limit lines. These lines bound a range of sample mean values
that may signal the beginning of out-of-control behavior.  This
behavior is signaled when two consecutive sample means fall
outside of the same warning limit line.

Non-random patterns of plotted sample means on an X
Chart also signal out-of-control behavior even if they fall inside
the established action limits.  Such patterns include: cycles,
repeating means (usually 6 or 7) on the same side of the target

average value X , or a extended series of plotted points (usually
6 or 7) either increasing or decreasing.  A process is considered
to be in statistical control while there are no out-of-control
indications.

    4 . 2           Applying     X                Charting          Concepts         to         t h e
    Detection         of         Productive         Search         at         a          Given
    Temper       a       ture    

Applying the X  Chart technique to the detection of produc-
tive search at a given simulated annealing temperature involves
three steps and several associated parameters shown in parenthe-
ses and defined below:
 1. Implementing a batch sampling process (sampling fre-

quency, n).
 2. Calculating and updating action and/or warning limits data

( X , X , se , m).
 3. Checking for out-of-control behavior.

    Step       1:               Sampling       process      .     The frequency of sampling is
set to 1, meaning that the value of the objective function for
every iteration becomes a point in the current batch.  A batch
size, n, of 15 (determined empirically) is used to calculate each
sample mean.

    Step       2:                Maintaining       action       and/or              warning           limits.     Rou-

tines for the calculation of standard statistics X , X , and se  are
implemented.  The number of samples means, m, used to calcu-

late each value of X  and se  is 10.  Because the optimization is
progressively minimizing an objective function, mean, standard
deviation, and standard error values drop with time.  Therefore
these values and the action and/or warning limits must be up-
dated periodically.  Our scheme for detection of productive

search uses a “moving window” meaning that whenever X  and
se  are updated, they are calculated based on the most recent 10
sample means.  Note that at the beginning of each temperature,
a full window of 10 observations is collected to calculate values

of X  and se  for the initial action and/or warning limits, rather
than using the most recent means which were from a different
temperature.

    Step       3:               Testing       for       out-of-control       behavior      .     Not all of the

tests for out-of-control behavior used in SPC X  Charts are
well-suited for our purposes.  For example, in SPC applica-
tions, one sample mean outside of the action limits is a clear
signal of an out-of-control process.  Experiments were per-
formed to determine which of the traditional SPC tests were
appropriate.  The two which were found to be most successful
are:
 • Two out of three successive points outside of warning

limits represented by X se± 2 , and
 • A run of six consecutive points up or down (even if inside

the warning limits).
Once warning limits are calculated, the process is tested for

out-of-control behavior at the end of each batch of iterations.
The batching and testing repeats until an out-of-control signal is
found according to either of the two tests, or until 10 batches
are tested without signaling an out-of-control condition.  If an

out-of-control condition is found, new values for X  and se  are
calculated for the most recent 10 batches.  The warning limits
are updated, a new window is started, and search continues at the
current temperature.  Otherwise, the process is considered to be
in control, indicating that search is non-productive.  In this
case, the temperature is reduced, beginning the testing for non-
productive search again at the new temperature.
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The DPS process parameters of sampling frequency, n, and
m were set at levels that may be considered high for statistical
sampling in general practice.  In manufacturing process control,
because evaluation (i.e., inspection) of every part can be pro-
hibitively expensive, random sampling as well as smaller batch
sizes and numbers of batches are often used instead of 100%
inspection.  With a numerical optimization, the current design
is already evaluated by the objective function each iteration.
Because calculation of statistics involves a minor amount of
computation in comparison, the approach used here bases statis-
tics on every iteration.

    4       . 3           Statistical        Validity        of       the        Approach    
The X  Chart techniques described in Section 4.1 here are

firmly grounded in statistical theory, but their rigor depends
upon four assumptions:
 • The sample group sizes are equal.
 • All sample groups are weighted equally.
 • The parameter of interest is, at least approximately, Nor-

mally distributed.
 • The sample observations are independent of each other.

The first two assumptions are satisfied since the size and
weighting of samples are easy to fix within sampling method.
Although other proposed annealing schedules have relied on the
third assumption (e.g., Huang et al., 1986; Lam and Delosme,
1988); experiments have shown that this assumption is gener-
ally not true for the simulated annealing optimization process
(Schmidt and Cagan, 1996).  However, unlike other annealing
schedules, the DPS schedule makes use of the standard X  Chart
practice of batching observations and working with the means
of batch means rather than means of individual values.  This
mitigates the problem of non-normality because of the Central
Limit Theorem (Devore, 1987).  One of the implications of the
theorem is that the means of random samples of a population
are always Normally distributed regardless of the original distri-
bution.

Counter to intuition, the most important X  Chart assump-
tions are those concerning the nature and handling of the sam-
ples (Wetherill and Brown, 1991).  It can be correctly argued
that a simulated annealing process will not produce objective
function evaluations of consecutive states that are independent
of each other.  During simulated annealing, the probability of
reaching a state having a given objective function value relies
on the value of the current state.  Any series of values of con-
secutive states will exhibit positive autocorrelation.

The risk of using X  Charts on autocorrelated data is that
the autocorrelation introduces additional variation that might be
misinterpreted as the presence of variation due to assignable
causes in a process that really is in statistical control.  The chart
is likely to lead to false alarms, particularly with the use of
standard warning limits (Wetherill and Brown, 1991).  In stan-
dard SPC uses, false alarms will send the process operator on
wild goose chases looking for phantom assignable causes.  In
this DPS application, a tendency to trigger an out-of-control
condition means the search will act as if it were productive
when it may not be, extending the search at the current tempera-
ture longer than may be necessary.  Continuing search when
faced with ambiguous search signals is a more conservative
course of action since additional search will not negatively
impact the quality of solutions whereas insufficient search can.
As a result, using X  Chart strategies with autocorrelated data

does not impair the DPS approach.  Alternatively, statistical
process control methods tailored for autocorrelated data can be
modified for the DPS application and these are mentioned in our
comments on areas for future work.

5 APPLICATION OF DETECTION O F
PRODUCTIVE SEARCH TO SIMULATED
ANNEALING

The key to the DPS approach algorithm efficiency im-
provement is detecting the end of productive search to reduce
excessive iterations at a given temperature.  To test the value of
the DPS annealing schedule, it was applied to a traditionally
challenging optimization problem.  The DPS schedule results
were then compared to those from three other annealing sched-
ules

    5 . 1           The        Traveling        Salesman        Problem     
The traveling salesman problem (TSP) is often used to test

the effectiveness of combinatorial optimization algorithms
because it is an NP-complete problem.  In the TSP, the task is
to determine the minimum-length closed tour by which a
salesman can travel to each of a number of cities, stopping at
each city only once, and returning to the start city.  The prob-
lem used in this analysis is a 100-city TSP published by Krolak
et al. (1971).  Problem input is the Cartesian coordinate loca-
tion of each of the cities.  A valid solution to the problem is a
list of cities in the order in which the salesman will travel.  The
objective function value or “cost” of any solution is the Euclid-
ean length of the closed tour.  The best solution found by Kro-
lak et al. is a tour of length 21,282.  It was generated by a
hybrid, heuristic and computational technique which was not
automated but required iterative interaction between the human
and computer.  The globally optimal solution to the problem is
not known.

The simulated annealing algorithms tested here all operate
using the same procedure to generate potential tours.  An initial
tour is randomly selected and becomes the initial starting point
for the simulated annealing algorithm.  All subsequent tours are
produced by perturbing the previous accepted solution.  Here a
perturbation consists of randomly selecting two cities in the
tour and switching their positions.

    5       . 2           Annealing        Schedule        s        Examined:        GC,        CR ,
    EC        and        D P S

Four different annealing schedules (described further below)
were applied to the TSP in a variety of scenarios designed to
compare their effectiveness:
 • GC: Geometric Cooling
 • CR: Consecutive Rejection
 • EC: Equilibrium Condition,
 • DPS: Detection of Productive Search.

The GC annealing schedule is a similar to the one used in
the original implementation of the simulated annealing algo-
rithm (Kirkpatrick et al., 1983).  The schedule named EC is
based on the adaptive annealing schedule proposed by Huang et
al.1 (1986).  Annealing schedule parameters with the exception

                                                
1This annealing schedule is a statistically-based schedule which origi-

nated in the electrical engineering field for applications to VLSI circuit layout.
The approach assumes that objective function values are Normally distributed
(which generally is not the case) and sets up target values for the number of
points that should fall inside and outside of a band that is centered about a
mean objective function value and who’s width is a specified number of
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of the number of iterations at each temperature, were standard-
ized as much as possible and were set for each schedule as fol-
lows:

   Initial        Temperature.     The initial temperature for all sched-
ules is calculated using the following equation (White, 1984):

Ti     
ln

= −
3σ

P , (2)

where P is the desired probability of accepting a state that is
more than three standard deviations worse than the current one,
and σ is the population standard deviation of objective function
values.  A value of 0.9 was used for P.  To approximate σ for
the population, a sample of randomly-generated tours was cre-
ated and the standard deviation was calculated to be about
20,000.  The average length of the randomly-generated tours
was about 170,000.

    Temperature        Reduction.     In the GC schedules, the tempera-
ture is reduced geometrically; a new temperature is calculated by
multiplying the current temperature by a constant:

T T Mnew current  *= , (3)

where M is the temperature reduction multiplier.  Values of .8,
.9 and .986 were used.

For the other schedules (CR, EC, and DPS), the new tem-
perature is calculated as a function of the current temperature
using the adaptive method suggested by  Huang et al. (1986):

T T enew current

Tcurrent

  
( )

*  

.  

=
−

0 7

σ
. (4)

    Number       of       Iterations       at       a        Temperature.     Each of annealing
the schedules run at a given temperature until their temperature
reduction criteria are met:
 • GC:  Reaching a fixed number of allowable iterations at a

temperature.
 • CR:  Achieving a specified number (either 50 or 100) of

consecutive rejections of new states at a temperature,
(referred to as the CR-50 and the CR-100 schedules).

 • EC:  Satisfying the “equilibrium condition” proposed by
Huang et al. (1986).

 • DPS:  Lack of detection of productive search as described in
Section 4.2.
In contrast to the other schedules, the number of iterations

at a temperature is fixed a priori for the GC annealing schedule.
In order to “tune” the algorithm, an initial set of runs was done
with a 500 iteration limit to determine a good value for the
multiplier, M.  Of the three values, the value of .986 produced
the best results so additional sets of runs were done using that
value.

Although the CR, EC and DPS annealing schedules have
temperature reduction criteria, in any simulated annealing algo-
rithm, it is good practice to include an iteration limit for each

                                                                                      
standard deviations.  As the simulated annealing algorithm iterates, counters
keep track of whether points are inside or outside of the band.  Whenever the
“outside” target is met, both counters are reset and iteration continues.  The
temperature is reduced when the “inside” counter reaches its target.  Further
details are omitted for reasons of brevity but can be found in the referenced
paper.

temperature that automatically causes a temperature reduction
when exceeded.  This limit is often reached in the early portion
of the simulated annealing process because the high initial
temperature results in high a probability of accepting uphill
steps, which reduces the probability of convergence.  Thus,
with any of these three annealing schedules a temperature reduc-
tion can also be triggered by exceeding the iteration limit.

For all four annealing schedules, a set of runs was per-
formed with three different maximum iteration limits at every
temperature: 1000, 2500 and 5000.

    Algorithm         Termination         Condition.     What differentiates
simulated annealing from downhill search techniques is the
probability of accepting inferior steps.  Once the temperature
becomes sufficiently low, the probability of accepting inferior
steps becomes so small that the algorithm behaves just as a
downhill search would, performing a purely local search.  At
this point the simulated annealing algorithm is no longer effec-
tive for global optimization and should be halted.  The termina-
tion condition used in all annealing algorithm scenarios ends the
algorithm optimization when three consecutive temperatures
pass during which the algorithm accepts no inferior solutions.

    5       . 3            Optimization        Results
Simulated annealing is a stochastic search technique likely

to produce different solutions to the same problem each time it
is run.  A set of ten runs seeking to find the minimum tour
length for the traveling salesman problem was generated for the
GC, CR, EC and DPS annealing algorithms described in Sec-
tion 5.2.  Performance parameters of interest in determining
algorithm efficiency are: converged tour length, overall number
of iterations and average iterations per temperature.  Mean per-
formance parameters are calculated for each annealing run set and
displayed in Table 1.  These results are elaborated upon with
accompanying figures below and discussed in greater detail in
Section 5.4.

The best solution to the posed TSP found in our experi-
mentation was a tour valued at length 23,276.  It was generated
during a GC-.986 (2500 iteration limit) annealing schedule run
that converged after 1,752,500 iterations.  The DPS schedule
best solution was a tour of length 24,423 generated during a run
of 344,277 iterations.  Given that the average randomly-
generated tour has a length of about 170,000, these values are
on par with one another.  Neither tour is a good as the pub-
lished TSP solution of 21,282 cited earlier, but recall that the
published solution required iterative iteration between a human
and a computer.  These experiments indicate that the annealing
schedules are operating properly and that the results can be used
to make valid comparisons between the schedules.

Figure 2 displays means and 95% confidence intervals for
the mean tour length for each of the annealing schedules.  For
example, there is a 95% probability that another set of 10 runs
of the DPS annealing schedule using a maximum iteration limit
of 2500 would have a mean converged value in the range from
about 26,000 to 29,000.  As can be seen in Figure 2, the three
schedules EC, DPS and GC-.986 produced comparable results.
Overlapping confidence intervals indicate that there is statisti-
cally significant difference in results.  

The shortest tour lengths were obtained from the GC-.986
with 2500 and 5000 iteration limits (see Table 1 and Figure 2).
The figure exhibits a trend that as the iteration limit increases,
the quality of final results improves, as would be expected.  For
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Table 1. Mean Performance Data for 10 Runs of Annealing Schedules
on the Traveling Salesman Problem.

Annealing Iteration
10-Run Mean Values of Algorithm

Performance Parameters
Run

Scenario
Limit per

Temperature
Converged

Tour Length
Number of
Iterations

Iterations per
Temperature

GC-.8 500 42,205 25,200 500

GC-.9 500 38,536 49,450 500

GC-.986 500 30,917 327,650 500

GC-.986 1000 28,965 676,500 1000

GC-.986 2500 25,693 1,803,500 2500

GC-.986 5000 25,471 3,794,500 5000

CR-50 1000 42,695 56,847 543

CR-50 2500 43,218 116,340 1109

CR-50 5000 42,934 202,758 2203

CR-100 1000 34,261 100,787 696
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EC 5000 27,079 6,354,698 4480
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Figure 3. Iterations Until Convergence for the Three Best Annealing Schedules
(DPS, GC-.986, and EC).  Note: Y Axis is on a Log Scale.

the remainder of this section, discussions will focus on the
results of the EC, DPS and GC-.986 schedules, and not the
poorer performing schedules.

Figure 3 plots the number of algorithm iterations to con-
vergence for each of the ten runs using the EC, DPS and GC-
.986 schedules (with the Y axis on a log scale).  On average,
the DPS required fewer iterations than the EC or GC-.986
schedules to converge regardless of the iteration limit.  In some
cases, the effect on run length was tremendous.  The quality of
solutions for the EC and DPS schedules was about the same,
but the DPS schedule performed better with regards to number
of iterations.  For the 5000 iteration limit, the tuned GC-.986
schedule had better final tour lengths than the DPS schedule,
but at the cost of many iterations: that schedule required almost

8 times as many iterations (the EC schedule required over 13
times as many).

Figure 4 contains a plot of the average number of iterations
per temperature for each EC, DPS and GC-.986 schedule run.
The GC schedule will always use 100% of the maximum al-
lowable iterations per temperature.  The EC schedule can reduce
the temperature before reaching the iteration limit.  Table 1
shows that the EC schedule uses about 90% of the allowable
iterations, irrespective of the iteration limit.  The performance
of the DPS schedule is noticeably different, using 75% of the
allowable iterations for the 1000 iteration limit algorithm, all
the way down to less than 30% for the 5000 iteration limit
algorithm.  The following section contains a more qualitative
discussion of some of these results.
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Figure 4. Average Number of Iterations Per Temperature for the
Three Best Annealing Schedules (DPS, GC-.986, and EC).
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    5 . 4           Discussion          on         the          D P S                   Approac        h         t o
    D        e       tection        of        Productive        Search

Iterations required for simulated annealing optimization run
convergence is of primary importance because each iteration
corresponds to a possibly complex objective function evalua-
tion.  Each of the schedules exhibited a trend of improved qual-
ity with increased iterations.  However, the steep slopes of
iteration increase in overall iterations for the EC and GC-.986
schedules are contrasted by the gentle slope displayed for the
DPS schedule in Figure 3.

The ability of the DPS approach to control search can also
be observed by comparing changes in the average number of
iterations per temperature for each schedule (Table 1 and Figure
4).  There is little to be said concerning the GC-.986 schedule;
because it is a fixed schedule that runs for a constant number of
iterations at each temperature.  The EC schedule uses 90% of
the run’s maximum iteration limit.  The EC schedule’s depend-
ence on the iteration limit for stopping search at a temperature,
and not on its own ability to detect the end of productive search.
In contrast, the percentage of maximum iterations used decreases
for the DPS schedule as the maximum limit increases, indicat-
ing that the approach is very efficient in its use of additional
allowable iterations.  The DPS schedule can make use of addi-
tional available iterations when search is productive, but in-
creases in the maximum iteration limit are not reflected by
equivalent increases in the average iterations per temperature.

Recall that productive search is defined as search where the
objective function is changing rapidly, meaning that the opti-
mization algorithm is being effective.  To illustrate the detec-
tion of productive search graphically, Figure 5 shows a plot for
the DPS schedule that is similar to the plot in Figure 1; the
upper curve is the objective function value at each temperature,
Ti, and the lower curve is the number of iterations done at each
temperature.

Contrasting Figures 1 and 5 highlights the significant ef-
fect of detection of productive search.  In Figure 1, there was no
relationship between the number of iterations done at a tempera-
ture and the productivity of search.  In Figure 5, the relationship
is quite visible; the algorithm reaches the maximum allowable
iteration limit very often in the region where search is most
productive.  As search becomes less productive, the number of
iterations drops off and the DPS schedule always decreases the
temperature before the algorithm reaches the maximum allow-
able number of iterations.  It should be noted that the peaks in
number of iterations (lower curve) seen in the second half of the
optimization correspond to small spurts of productive search
that lead to a greater number of iterations at a temperature.

From this perspective, it becomes apparent that the fixed
GC schedule, having a fixed number of iterations at each tem-
perature, is an inherently inefficient one.  If one were to imag-
ine a plot similar to the one shown in Figure 1 for this sched-
ule, the iteration curve would be a straight line, meaning that
many iterations are done during the less-productive phases of the
optimization.  Although the GC-.986 schedule produced the
best results for the traveling salesman problem, this was a
result of sheer brute force.  The DPS schedule demonstrated a
many-fold reduction in computation at the expense of only a
few percent in terms of quality.

In realistic engineering problems, it is generally not possi-
ble to create an objective function that encompasses every de-
sign objective.  Thus, “within a few percent of an optimum” is
often acceptable in optimization algorithms.  Furthermore,
depending on how time-consuming the objective function
evaluations are, the reduced number of iterations may make the
difference between being able to apply simulated annealing to a
problem and not being able to.

Figure 5. Illustration of Detection of Productive Search.

i

Final objective
function value at Ti

Number of
iterations at Ti
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6 CONCLUSIONS
As simulated annealing becomes more popular in engineer-

ing design, the demand increases for improved algorithms.
Increasing the efficiency of the search is a key issue for making
the algorithm applicable to a broader range of computationally
intensive problems.  This paper proposes an approach toward
increasing the algorithm efficiency by monitoring productive
search and describes a new annealing schedule which reduced
wasted computation and produced good results on a 100-city
traveling salesman problem.  The DPS approach also frees the
user from the burden of tuning the schedule through experimen-
tation, which is required for many other annealing schedules.
Because the DPS schedule presented in this paper is relatively
simple, it is quite likely that more sophisticated means of con-
trolling annealing schedule parameters will lead to even better
results.

Work in progress focuses on the application of the DPS
schedule to an engineering design problem.  Future work in-
cludes adapting SPC methods for use with autocorrelated data.
Two possible methods for investigation are CuSum charting,
and applying estimates of within-group variance in calculating
charting limits (Wetherill and Brown, 1991).  CuSum control
charts seem particularly relevant because they are designed for
monitoring systems having dynamic process means.  Finally,
the approach to detection of productive search described in this
paper addresses only one of the components of the annealing
schedule for the simulated annealing algorithm, that is, the
number of iterations at a given temperature.  The development
of methods for controlling other parameters in the annealing
schedule, such as the amount of temperature reduction, is an-
other area of research that holds promise for additional im-
provements to the algorithm.
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