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Abstract

We report on the development of a knowledge representation model, which is based on the
SHARED object model reported in [33, 34]. Our current model is implemented as a layered
scheme, that incorporates both an evolving artifact and its associated design process. To rep-
resent artifacts as they evolve, we define objects recursively without a pre-defined granularity
on this recursive decomposition. This eliminates the need for translations between levels of
abstraction in the design process. The SHARED model extends traditional OOP in three
ways: 1) by allowing explicit relationship classes with inheritance hierarchies, 2) by permitting
constraints to be associated with objects and relationships, and 3) by comparing “similar” ob-
jects at three different levels (form, function and behavior). Five primitive objects define the
design process: goal, plan, specification, decision and context. Goal objects achieve function,
introduce constraints, introduce new artifacts or modify existing ones, and create subgoals.
Plan objects order goals and link a product hierarchy to a process hierarchy. Specification
objects define user inputs as constraints. Decision objects relate goals to user decisions and
context objects describe the design context. Operators that are applied to design objects
collectively form a representation of the design process for a given context. The representa-
tion is robust enough to effectively model four design paradigms (described in Reference [9]):
top-down decomposition, step-wise refinement, bottom-up composition and constraint prop-
agation. To demonstrate this, we represent the designs of two TV remote controllers in the
SHARED architecture. The example reveals that certain aspects of artifact knowledge are
essentially context-independent and that this representation can be a foundation for robust
knowledge-based systems in design.

Key Words: Design, knowledge-base, object-oriented model, design process, ontology, repre-
sentation

1 Introduction: The Comprehensive Design Knowledge-Base

Researchers have been exploring ways to represent design as a synthesis procedure for more than
a quarter century [19], [21]. Early research on computer support for engineering design concen-
trated on problem-solving techniques (see Reference [27] for descriptions of various problem solving
techniques). These techniques are relatively mature now, and design researchers realize that even
good techniques operating on a weak representational research foundation must necessarily be in-
adequate to support engineering design. Consequently, recent trends have seen a shift in paradigm
to an emphasis on representation issues; a recent issue (Volume 10, Number 4, September 1996) of
the journal Artificial Intelligence in Engineering Design, Analysis and Manufacturing is dedicated
to papers on representing function and behavior in design. The nature of engineering design and
the diversity and complexity of engineering knowledge require knowledge representation schemas to
be as flexible and robust as possible.

The search for a flexible and a robust knoweldge representation is inherently related to the view
design researchers seek to model. Tong and Sriram [29] cite numerous definitions of design. One of
which, by Tomiyama and Yoshikawa [28], is the “mapping of a point in function space onto a point
in attribute space.” Such a definition, and others like it, provides an indication that researchers
focus on either representing design processes or the products these processes operate on. The
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design research literature reflects this by exhibiting a dichotomy between process representation
and product representation.

Process-based approaches usually model top-down functional decomposition of design, organizing
the design product elements as functional primitives. In contrast, an alternate view holds design to
be a bottom-up synthesis of component elements to constitute the whole, with the complex interplay
and interconnections among these components serving to provide the overall system function. Kamal
et al. [13] and Kim and Bekey [14] propose generic decision-based representations, while Ullman
et al. [30] propose a mechanical design process model based on empirical data. Several papers
in [29] describe other research in functional decomposition; additional references on design process
modeling are provided by Braha and Maimon [3].

Product representation presents several additional research issues, and these have been well-documented.
Object-oriented approaches to design have enabled a natural decomposition and hierarchical struc-
turing of design product knowledge. The dynamically evolving nature of the composition hierarchies,
evolving form descriptions, multiple functional and geometric abstractions and multiple levels of
constraints have all been identified as crucial issues for product representation [34]. The represen-
tation must provide not only for the evolutionary nature of design process enaction, but also for the
evolutionary nature of the domain description itself (as in development of comprehensive knowledge
bases).

To represent generic routine design, Gero [8] developed conceptual schema that includes form, func-
tion and behavior within a single situation framework. Alberts et al. [2] extend this to innovative
design by developing generic components that represent the bottom-up element of design. These
are based on physical theory, and could represent combinations of basic components that implement
commonly used behaviors. However, neither of these works incorporates the representation of an
evolving design.

This paper addresses this very issue. More specifically, we address the issue of how to flexibly
represent design knowledge in such a way that it supports layered development and step-wise re-
finement of comprehensive engineering knowledge bases. While our primary focus is on modeling
the design products (artifacts), we believe that modeling the design process is at least as impor-
tant for automating design processes and representating design histories. We present an integrated
approach to modeling the design enterprise as a whole. This approach forms the basis for a con-
ceptual design shell called CONGEN [9], which is a domain-independent knowledge-based design
support framework, implemented as an application over a layered architecture in a modular, object-
oriented manner. CONGEN supports design as a synthesis process, involving the arrangement of
pre-defined “building blocks” to compose a design. The synthesis is based on an integration of
four problem-solving approaches: process-based hierarchical decomposition (or alternately stated,
top-down functional decomposition), step-wise refinement, product-oriented bottom-up models, and
constraint propagation approaches. Details of these problem solving models are presented in Ref-
erences [9] and [27].

In developing comprehensive engineering knowledge bases, many different kinds of knowledge need
to be represented. These include: knowledge about various objects, their properties, behavior,
shape, and interrelationships among objects, as well as causal knowledge relating objects through
physical phenomena, either quantitatively or qualitatively. This latter knowledge type sometimes
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assumes the form of empirical observations and heuristics; this is what we often refer to as “expe-
rience.” Whatever the form, most engineering knowledge is built upon layers of related knowledge,
from the most basic physical principles through highly domain specific situational principles, in-
cluding commonly used assemblies of physical systems. Our approach to developing comprehensive
engineering knowledge bases is based on exploiting this layered structure. The comprehensive
knowledge base represents standard design products at the domain level, and this representation
draws upon descriptions of function, form and behavior from lower levels of the layered structure.
The proposed representation scheme is geared to accommodate current and future ISO STEP-based
standards [1].

The paper is organized as follows: Section 2 presents an object model, which forms a basis for our
product-process representation. Based on this object model, we describe a representation scheme
for design artifacts in Section 3. In Section 4, we describe a related scheme for representing design
processes; we also present an integration of the two schemes, illustrated with an example. A
discussion follows in Section 5, after which we present our summary and conclusions in Section 6.

2 An Object Model For Design Knowledge Representation

In this section, we present an object model that forms the basis for our design knowledge repre-
sentation. Our model is based on the SHARED object model, which extends the object-oriented
methodology [33] in three ways:

1. Instead of using only attribute references to objects, the model provides explicit relationship
entities with associated semantics and constraints. These relationships are associated with
relationship classes which can be arranged in inheritance hierarchies as with object classes.

2. The model associates constraints with objects and relationships. The knowledge representa-
tion scheme uses constraints to maintain the consistency and integrity of a product model.

3. The model provides a mechanism for comparing “similar” (i.e. interchangeable) objects in a
meaningful way.

Below, we provide a brief overview of the SHARED object model.

2.1 Definition of Objects

A SHARED object, o, is defined as a unique, identifiable entity in the following form:

o = (oid,vid,A,M,R,C)
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• oid is a unique identifier of an object (o); in this paper we will use various symbolic
names for oids instead of long computer generated numbers. The set of all unique
object identifiers is denoted by soid.

• vid is a non-unique identifier similar to the object identifier. It is used to refer to
a set of similar objects which can be used to replace one another in relationships.
These similar objects have the same vid. Typically, we use this concept to model
alternatives or versions.1 Thes set of all vids is svid.

• A is a set of three-tuples, (t, a, v). Each a is called an attribute of o and is
represented by a symbol which is unique in A. Associated with each attribute is a
type, t and a value, v. Each t has an associated domain, domain(t), such that v
∈ (domain(t) ∪ {nil}).

• M is a set of tuples, (m, tc1, tc2, ..., tcn, tc). Each element of M is a method
signature which uniquely identifies a method. The symbol m represents a method
name; methods define operations on objects. The symbols tci, i = 1, ..., n, specify
the argument type and tc specifies the returned value type.

• R is a set of relationships among o and other objects. Each relationship is identified
by its unique identifier, rid. We discuss relationships again in Section 2.2.

• C is a set of constraints that are exerted on o or that exist between o and other ob-
jects. Each constraint within the set is defined by (cname, code), where cname is
a unique identifier for the constraint, and code is its description, in an appropriate
language. A constraint is often a boolean function that returns either TRUE or
FALSE, indicating whether the constraint is met or not. Constraints may be used
to restrict ranges of attributes; they can also be used to define complex expressions
relating object attributes or rules which are to be satisfied. This component of the
SHARED object model is an extension of other object-oriented representations.

As a simple, yet demonstrative example, consider the SHARED object shown in Table 1 which is
formally specified as:

(can-opener 1, nil, {(real, weight, 7.2), (string, purpose,“open cans”), (char, material, steel)},
{(check constraint(), ..., boolean), (assemble part(),...,TRUE)}, {has part 123}, {(c1, (< weight
10)), (c2, (= material (one-of steel aluminum)))}).

In this example, can-opener 1 is a unique identifier, real, char, string are primitive data types,
and has part is a relationship. There is no vid because this is not a replaceable object. c1 is an
identifier for a constraint which specifies that the weight should be less than 10 newtons (N), while
c2 represents the constraint the material is either steel or aluminum.

1Alternatives or versions can be represented using relationships (e.g., by defining instances of alternative of re-
lationships among instantiated objects). Our view is that the concepts of alternatives and versions are used very
frequently during design and deserve a more explicit representation and more direct access.
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Table 1: A simple SHARED object.
Object oid can-opener 1
instance of can-opener derived from Artifact class
vid nil type int
A purpose “open cans” type string

weight 10 type real
material steel type char[]

M check constraints() constraint checker
assemble part() ..

R has part 123 part relationship with parents
C (c1, (< weight 10)) constraint on weight

(c2, (= material (one-of steel aluminum))) constraint on material type

2.2 Relationships

The SHARED model explicitly represents relationships among objects. This aids in the design
process described later. All objects have either an instance of or a subclass of (depicted by is a)
relationship. In the following discussions these two relationships are shown separately from R.

Typical types of relationships include ones that are compositional (such as part of/has part),
functional (such as satisfies/satisfied by, has subfunction/subfunction of), spatial (such as
connected to) and configurational (such as has version/version of). We define a generic SHARED
relationship as follows:

r = (rid,RO,A,M,C)

where

• rid is a unique identifier of the relationship r. The set of all unique relationship
identifiers is denoted by srid.

• RO is a set of three-tuples, (t, ro, v).
Each tuple (or element) of RO is called a role of the relationship. ro is the name of
the role and v is the value of the role and t is the type of v; note that v ∈ domain(t),
where domain(t) is some non-empty subset of subsets of svid ∪ soid. As expected,
there must be at least two objects partaking in the roles of a relationship. For a
relationship between a particular set of objects to be valid, each of the objects must
be identified by some role in the relationship and each of the objects must include
the particular relationship in the relationship set R of the object’s definition.

• A is a set of attributes of a relationship, defined in a manner similar to the set A
of a SHARED object.
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• M is a set of methods, defined in a manner similar to the set M of a SHARED
object. The methods define operations on the roles and attributes of the relation-
ships.

• C is a set of constraints on objects associated with the roles of the relationship
and its attributes. It includes constraints on cardinality of roles. It is defined in
the same way as the set C of a SHARED object.

A simple instance of part of/has part relationship is illustrated in Table 2 and in Figure 1, where
can-opener is a composite part of type System. Set System denotes another class (namely, a
set of System objects), and cutter, gear, and lever are identifiers of objects which constitute this
set (see Figure 1). This object represents a relation between a composite object (of type System)
made of three subsystems (of an aggregate type of Set System). The method get subsystem,
which has no arguments, is an access function that returns the subsystems.

Table 2: A simple SHARED relationship.
Relationship rid has part 123
instance of has part
RO composite can-opener type System

components cutter, gear, lever type Set System
A description “can-opener has 3 subsystems” type string
M get subsystem() components selector
C nil

can-opener

cutter

gear

lever

has_part_123

Figure 1: An instance of a has part relationship object (notation used is from [20]).
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2.3 Classes

Classes and relationship classes are defined on the objects and relationships defined above, as
abstraction mechanisms to make common properties and semantics explicit. A SHARED object,
o, is classified as an instance of a class, c, if o inherits all attributes, relationships, methods and
constraints of the class c. For a more complete definition of a class in the SHARED object model
see [33]. Similarly, a relationship r, is classified as an instance of a relationship class, rc, if r inherits
all roles, attributes, methods and constraints of that relationship class, rc.

Generalization and specialization are also defined in terms of the class abstractions. These define
a partial order on the set of all classes (i.e. they are reflexive, antisymmetric, and transitive).
Generalization is also used as an implementation mechanism for sharing code and data types among
more specialized classes. That is, a specialized class can inherit properties of a number of more
general classes, in a process known as multiple inheritance.

This brief overview highlights the extensions to the traditional object-oriented model we made
in SHARED; Wong and Sriram describe the model in detail in [34]. In the next two sections,
we illustrate a representation scheme for design artifacts and their design processes based on the
SHARED object model. Our example uses two TV remote controller designs, shown in photographs
in Figure 2 and Figure 3.

3 Product Description

We define an artifact to essentially consist of function, form, and behavior. These three com-
ponents of an artifact are represented explicitly as required attributes in the SHARED model with
the usual notions of relationships, constraints, and methods (or rules).

An artifact as a SHARED tuple:

Artifact = (oid,vid,Afun ∪ Aform ∪ Abeh,M,R,C)

where the attributes A of the shared object model now represent the triples: function
Afun, form Aform, and behavior Abeh of the artifact, respectively. Further, Afun is a set
of triples (Function, function, value), Aform is a singleton comprising the triple (Form,
form, value), and Abeh is a set of triples (Behavior, behavior, value). Note that the
value is a pointer to an object whose type will be a subclass of the appropriate type. For
ease of notation we will use: Afun = {(Function, function)}, Aform = (Form, form),
and Abeh = {(Behavior, behavior)}.
As defined earlier, M is a set of methods, R is a set of the various relationships, and C is a
set of constraints. Representative elements of R are: introduces, modifies, has part.
These and other relationships for encoding design rationale are described by Peña-Mora
[17]. Figure 4 shows a hierarchy of classes for the remote control system example. Table
3 shows an example of two replaceable (i.e., same vid) artifact representations at their
highest levels.
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Figure 2: Two different television remote controls.

Figure 3: Components of the smaller and larger remote controls in Figure 2. Although the overall
design structures are similar, there are many distinctions, including size, features, and mating types.
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Artifact

Remote_control Power_system Signal_system Input_system Housing_system

Function Behavior

Remote_form

Battery_form

Input_mechanism_form

Housing_form

Remote_function

Power_source_function

Signal_source_function

Input_function

Remote_behavior

Power_control_behavior

Volume_control_behavior

Mute_control_behavior

is_a

Form

Figure 4: The class hierarchy (by is a relationship) of the representation of the remote control
system example in Tables 3-6. Only object classes are shown in this figure. Instances (not shown)
are postfixed with a “ number,” such as remote form 1; Tables 3-6 display specific examples.

The function, form, and behavior objects are further described below.

1. Function objects, as exemplified in Table 4, are used to capture the intended functional
requirements of a design problem. The various elements of our object model are as follows:
oid and vid are identifiers; A is now {(String, description, value)} or simply {(String,
description)}, description is a required textual description – this attribute can be alternatively
expressed by pre-defined domain-specific functional vocabularies – of the function object, M
is a set of methods (e.g., consistency checks on pre-conditions for the function to be satisfied)
and R is a set of relationships. Typical relationship classes used among function objects and
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Table 3: High level representation of one remote control system system, remote control 1. The
other remote control, remote control 2, has a similar representation; the instance of, vid and the
methods are the same, but the relationship and the attributes are different. For example, in place of
a name such as remote form 1, there is remote form 2. The artifact is represented by three aspects:
function, form, and behavior, which are also objects. The relationship, has part 1, identifies four
subsystems of the remote control 1, and the constraint, interface spec 1, places a restriction on
choices of certain subsystems, in this case, a keypad system as a user input mechanism. Constraints,
relations and other attributes of the objects are generated and changed dynamically during the
design process.

Object oid remote control 1
instance of Remote control derived from Artifact class
vid vid 56 belongs to group of replaceable objects
A Function remote function 1

Form remote form 1
Behavior remote behavior 1

M make part() method for instantiation
get subsystem() method for retrieving its subsystems
check constraint() general method for checking constraints

R has part 1 must specify subsystems
C (interface spec 1 ...) this remote control model should

(...) have keypad as its input system
Relationship rid has part 1
instance of Has part
RO composite remote control 1

components power system 1, signal system 1,
input system 1, housing system 1

description “remote has 4 subsystems”

other types of objects (e.g., behavior, form) include:

achieves/achieved by (between function and behavior),
satisfies/satisfied by (between function and artifact),
requires/required by, and
has subfunction/subfunction of (among function objects).

A function object must have either a satisfies/satisfied by relationship with another object
or have a has subfunction/subfunction of relationship to other lower level functions. C
is a set of constraints.

2. Form objects represent physical properties such as structure, geometric shape, and mate-
rial. The various terms of our object model have the following connotations: oid and vid
are identifiers, A is now {(Space, space, value), (Property, property, value)} or simply
{(Space, space), (Property, property)}. (Space, space) represents spatial information such
as envelope volume, position, orientation, and spatial relationships and (Property, prop-
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Table 4: Lower level functional objects for representing the remote control system. The function
object (remote function 1) is broken down further into four subfunctions forming an hierarchy
(by subfunc 1 relation). One of the subfunctions, power source function 1, is satisfied by
an artifact object, called power system 1.

Object oid remote function 1
instance of Remote function derived from Function class
vid vid 2 belongs to group of replaceable Function objects
A description “remotely control television

functions: power, volume and channel”
R has subfunction 1 must specify subsystems
Relationship rid has subfunction 1
instance of Has subfunction
RO function remote function 1

subfunction power source function 1,
signal source function 1,
input function 1, housing function 1

description “remote has 4 subfunctions”
Object oid power source function 1
instance of Power source function derived from Function class
vid vid 9
A description “provide 6 Volt of electric power”
R has subfunction 1, satisfied by 1
Relationship rid satisfied by 1
instance of Satisfied by
RO function power source function 1

artifact power system 1
A description “power source is satisfied by

a separate subsystem”

erty) represents a set of non-geometric attributes such as material requirements, assembly
hierarchy, and surface finish. M is a set of access methods including queries about spatial
relationships and physical properties, geometric transformations, and display selection opera-
tors. This set can include an accumulation method, which accumulates properties of objects
related through composition relationships, and also includes a top-level method for propagat-
ing operations through relationships. R is a set of relationships, and C is a set of spatial
consistency constraints (e.g., 3D abstraction should enclose lower level abstractions). Table 5
presents an example of the form object for the remote control devices.

3. Behavior objects specify the response of an artifact to input conditions or behavioral states
(or both). Using a predefined set of domain-dependent vocabularies that describes various ac-
tions and behavioral states, we represent behavior with input and output relationships among
processes, states and actions. Iwasaki and Chandrasekaran [12] and Vescovi et al [32] present
similar specifications for engineering behavior. The various terms of our object model have the
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Table 5: Two lower level structural objects for representing the remote control system. The form
object (remote form 1) consists of four components. The constraint, material spec 1, specifies
that one of the components, input mechanism form 1, be made of rubber. This constraint looks
for a particular type of form (in this case, that of class Input mechanism form) and tests if its
attribute material has a value rubber.
Object oid remote form 1
instance of Remote form derived from Form class
vid vid 67 group of replaceable Form objects
A space 3D geometry remote control 1.sld 3D solid CAD file

position (100, 50, 200)
orientation (0, 0, 0)
size (1, 1, 1)

property material nil this is an assembly
component power system form 1,

signal source form 1,
input mechanism form 1,
housing form 1

M get bounding box(),
get total weight()

C (material spec 1, (equal (get value input mechanism must be made
(find form parent.component of rubber
Input mechanism form)) material))

Object oid input mechanism form 1
instance of Input mechanism form derived from Form class
vid vid 45 group of replaceable Form objects
A space 3D geometry keypad.sld 3D solid CAD file

position (80, 50, 100)
orientation (0, 0, 0)
size (1, 1, 1)

property material rubber
M get bounding box()

following connotations: oid, vid are identifiers; A is now {(Input, input, value), (Output,
output, value), (String, description, value)} or simply {(Input, input), (Output, output);
(String, description)}; input represents input actions and conditions; output represents the
resulting behavioral states and actions in response to the input conditions, description is a
textual description of the behavior of the object; M is a set of methods for computing the
output behaviors of components or deriving required input conditions of a given output state;
R is a set of relationships with other objects (e.g., function and form) for which this behav-
ior is binding; and C is a set of behavioral constraints. See Table 6 for an object description
of remote control behavior.

Each of these objects may be a composite object, at various levels of abstraction relevant to the
granularity of the system description, e.g., behavior objects may be represented at various levels
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by qualitative descriptions, by approximate models or by exact equations. Similarly, space objects
represent the many levels of geometric abstraction that may be relevant to a description of the
physical existence of an artifact: 3D, wire-frame, symbolic (engineering idealizations), and sectional
views, for example. In general, the constraints and lower dimensional abstractions must be enclosed
within the 3D geometry abstraction [33]. The examples in Tables 3-6 illustrate a partial view of
the overall object model of the remote control system.

So far, we have presented an object-oriented representation scheme for an artifact, and illustrated it
with snapshots of the artifact in three respects (i.e., form, function, and behavior); the representation
is implementated in a commercial object-oriented database management system and is described
by Murdock et al. [16]. Now we turn to representing the design process.

4 Representing Design Processes

Describing a design process requires knowledge about artifact synthesis. Activities often associated
with design processes include setting and achieving goals, satisfying specifications, making decisions
and following a plan of action. Based on these generic activities, and others, we created a set of
objects to capture design process. The following sections describe these process objects and design
operators.

4.1 Process Objects

We now describe primitive objects relevant to representing a process. Like SHARED objects for
representating products, process objects have five basic components: oid, vid, type-attribute-
value triplets (A), a set of methods (M), a set of relationships (R), and a set of constraints (C).
Beyond these basic components, process objects contain five entities: Goal, Plan, Specification,
Decision, Context. Each is described below.

(a) As indicated in Figure 5, Goal objects act as central decision points for tasks in the design
process, and are the links between product and process models. A goal may achieve a function
in the functional hierarchy, and the function may serve as a reference into the product world
descriptions in the domain knowledge (product) database. More generally, a goal introduces
a constraint, modifies an artifact, introduces a new artifact, or creates further subgoals. Al-
ternately, we may pursue the subgoals, which constitute moves within the process hierarchy.
These moves are further dictated by two considerations: testing of alternatives specified for
the goal, and selections made by the user from a set of valid alternatives.

We represent goals this way to have a set of methods that relates to retrieving and matching
procedures (discussed in Section 4.2). A goal has relationships that associate it to a parent
plan in the process hierarchy and also to other entities, as shown in Figure 5. A goal is also
related to the artifact by relationship classes, creates and modifies. Constraints control the
interactions among conflicting goal objects. Fromont and Sriram, and Gorti et al. [7, 11]
describe similar constraint processing algorithms.

14



Table 6: Objects for representing remote control system behavior. The behavior objects (re-
mote behavior 1) and (remote behavior 2) are each composed of one relationship, and one
method, which computes the overal behavior object from its component subbehaviors. One al-
ternative, has subbehavior 1, has three relationship roles, or subbehaviors, associated with it
(power control, volume control and channel control), while the other alternative ha four (an addi-
tional mute control signal). One of the subbehaviors, volume control behavior 1, specifies the
input and output relations using predefined and domain dependent vocabularies (e.g., in the input
event of press 1, the resulting state is a “volume” signal.)

Object oid remote behavior 1
instance of Remote behavior derived from Behavior class
vid vid 89 group of replaceable behavior objects
A description “emit signals: power, volume, channel”
M calc composite behavior() calculate behavior (not implemented)
R has subbehavior 1
Object oid remote behavior 2
instance of Remote behavior derived from Behavior class
vid vid 89 group of replaceable behavior objects
A description “emit signals: power, volume, channel and mute”
M calc composite behavior() calculate behavior
R has subbehavior 2
Relationship rid has subbehavior 1
instance of Has subbehavior
RO behavior remote behavior 1

subbehavior power control behavior 1,
volume control behavior 1,
channel control behavior 1

A description “3 subbehaviors”
Relationship rid has subbehavior 2
instance of Has subbehavior
RO behavior remote behavior 2

subbehavior power control behavior 1,
volume control behavior 1,
mute control behavior 1,
channel control behavior 1

A description “4 subbehaviors”
Object oid volume control behavior 1
instance of Remote behavior derived from Behavior class
vid vid 17 group of replaceable behavior objects
A input press 1 input action (predefined vocabulary)

output { volume up signal volume down signal } output states
description “emit signals which means volume up or down”

R has subbehavior 1
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(b) Plan objects prioritize goal objects in a meaningful way. Plan objects are also associated
with artifacts and link the product into the process hierarchy; the reverse link, from the
process to the product is through goal objects. A plan may be associated with a set of
planning rules, which set priorities on the subgoals.

The methods of a plan object set the schedule for task achievement as an ordering on the
goal objects. We define planning rule bases to achieve this ordering based on the current
design context conditions. Plan objects have relationships that associate themselves to their
parent goal objects or artifact objects in the process hierarchy, depending on whether the
move being pursued is a refinement of the function or a product decomposition.

(c) Specification objects represent user inputs that involve important bottom-up elements of
the design process. They are formally specified and defined as constraints on relationships
and attribute values.

(d) Decision objects refer to all user decisions that govern choices for further expansion of a goal.
Therefore, they have relationships to the relevant goal objects and attributes for providing
textual rationale information. A goal, as we stated above, represents a decision point, and the
decision objects record the alternatives chosen for a goal within a given design context. Each
new decision spurs a new design context (potentially an entirely different design alternative),
and we allow the designer to pursue multiple design alternatives simultaneously. Decision
objects further capture the justifications for validity of each alternative as generated by the
system, and also the rationale for the choice by the user.

(e) Context describes the design context that represents a particular design alternative. A con-
text thus consists of the design tasks (goal objects) relevant to the current design alternative,
the user specifications (or constraints), the decisions that have been made, and relevant prod-
uct information. Contexts aid in managing multiple design alternatives.

These entities are related as shown in the class abstractions in Figure 5. Further details of these
classes can be found in [9]. The product-process interactions are shown as links between the process
objects and design objects.

4.2 Design Operators (Methods)

4.2.1 Design Process

As shown in Figure 6, we view a design process as a sequence of mappings from one design state to
another until one or more acceptable artifacts are found; the design operators responsible for the
mappings are applied to design objects.

The design flow proceeds from describing a function to describing an artifact, and includes selecting a
form for the product. However, we require neither the functional hierarchy to be fully pre-specified
nor the product hierarchy to be pre-specified. This implies that the further decomposition of a
chosen artifact may well determine the further functional or product hierarchy. Form determination
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introduces

Input Objective Constraint
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Figure 5: CONGEN class abstractions (from[9] with permission).

at any stage includes specifying the topological connectivity of the components and their structural
relationships, while details of geometry of the components are relegated to the next stage. Behavior
cannot be examined in isolation of the structural configurations. But determining form allows us
to analyze behavior, and to examine the feasibility of the form chosen to satisfy a given function.

4.2.2 Goal Execution

There are two categories of methods by which a goal is satisfied. These are: making design changes
or further expanding a goal:
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Design Operator: satisfy_goal (g2, C1)

Current Context

New Updated Context

Artifact’
 - Function
 - Form’
 - Behavor

Artifact
 - Function
 - Form
 - Behavior
C1
Plan = {(g1 g2)}

C1
Plan = {(g1)}

Figure 6: A model of one design process. By satisfying design goals and carrying out design plans,
design operators update design contexts. In this figure, a goal, g2, is selected from the current plan,
Plan, and a design operator is applied to satisfy g2, that results in a new form, called Form’ and
an updated context.

satisfy goal(G,CT) → (modify(G,CT) | expand goal(G,CT)) & verify constraints(Set CTI)

→ Set CTnew

where G is the selected goal for the current context, CT, Set CTI is a set of new interim contexts
and Set CTnew is the final set of new contexts.

This operator represents the pursuit of a design task that may lead to a set of potential alternatives.
In both cases, a set of new contexts, representing new design alternatives, is generated.

Even when a given goal is satisfied, it is still subject to a verification for constraint violations. In
general, modifying an artifact, or expanding into further subgoals entails a set of newly generated
constraints. To complete a goal satisfaction operator, the verify constraints operator must
return a TRUE value for the newly generated context.

Modifying the current context can occur by one of the following: (1) changing the attribute values of
artifact-related objects (such as form, function, and behavior); (2) establishing a new relationship
or deleting an existing relationship among existing artifact-related objects; or (3) deleting existing
objects, creating new design objects, or retrieving design objects from a database. Form, function,
or behavior snippets can be used for retrieval, as described in Reference [27], Chapter 6. Context
changes can be made either automatically or by user intervention.
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modify(G,CT) → change attribute value(G,CT) |
establish relationship(G,CT) |
delete relationship(G,CT) |
delete object(G,CT) |
create object(G,CT) |
find object(G,CT)

where G is the selected goal of a given context, CT. The expand goal operator generates new
subgoals, and attaches them to the existing plan for reordering.

expand goal(G,CT) → Set Gnew & update plan(Set Gnew,Pnew) & order plan(Pnew)

where Set Gnew is a set of new subgoals and Pnew is the newly formed plan.

4.2.3 Design Decision

Attempting to satisfy a design goal may result in multiple design contexts for a user to pursue.
To reduce this number, a design decision must be made to pursue or abandon a particular design
thread. The following operators represent this notion.

pursue context(CTselected) → CTcurrent

pursue goal(Gselected) → Gcurrent

where CTselected, CTcurrent, Gselected, Gcurrent each represents the user-selected and current contexts
and goals, respectively.

Figure 7 illustrates an evolution and generation of design contexts (left side) and a description of
its process (right side). Initially, the context starts with an artifact, A=remote, and an initial
top-level goal, Ginitial= “design remote control.” To satisfy Ginitial, a modify operator executes an
expand goal operator, which expands the initial goal into two alternative plans (i.e., G1 then G2,
or G2 then G1). Also, the constraints (not shown) are verified. The user in this example chooses to
pursue G2, the goal to find the power system. To satisfy the goal, a find object operator locates
two possible components for the power system, namely, a 9V battery or two AA batteries. This
creates a new design context (or alternative), C2, which is pursued in both context and process,
and a decision is made to pursue C2 and a rationale for justifying this decision is created. Figures
8 and 9 show two possible conceptual geometric solutions to the power-system problem.

19



modify (Ginitial , C1 )

expand_goal (Ginitial , C1 )

Context Process

A = remote P = { Ginitial }

Ginitial = “design remote control” verify_constraints ( C1)

Gcurrent = Ginitial

pursue_goal ( G2 )

C1

A = { remote, power_system, ...}

R = { R1, ... }

P = { (G1, G2), (G2, G1) } C1

A = { remote, power_system, ...}

R = { R1, ... }

P = { (G1, G2), (G2, G1) }

C1

Gcurrent = G2

G2 = “find power_system”

modify ( G2, C1)
= find_object ( )
= { 9v_battery,  2aa_battery}

verify_constraints (  C1 )

A = { remote, power_system,
         2aa_battery ... }

C1

A = { remote, power_system,
         9v_battery ... }

C2

pursue_context ( C2 )
create_object ( )
= specification-1
= “user_spec: use 9v battery”

Figure 7: Representation of the remote control system artifact and its associated design process.

5 Discussion

A product is the physical result of a practical design process, a mapping from an abstract functional
description to tangible entities. Function often implies physical behavior, and decisions on sub-
systems directly impact the mechanisms chosen for achieving the behavior to realize a given function.
That the form relationships between the sub-systems affect the behavior of the overall system further
complicates the problem. We thus realize that a robust, flexible representation must necessarily
view function, form and behavior from an integrated viewpoint. We make an important conceptual
distinction between representation of structure and structural relationships versus behavior and
behavioral relationships. However the behavior of a device cannot be examined in isolation to its
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Figure 8: A possible battery configuration in context, C1 (a conceptual geometric model).
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Figure 9: A possible battery configuration in context, C2 (a conceptual geometric model).
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structural configuration, and the causal patterns encode this knowledge. The behavioral description
of a device states only what the device does, not how it is achieved, and this is consistent with recent
object-oriented design approaches. Causality is linked directly to the components of the device, and
this is an important conclusion with ramifications for design synthesis.

In our case, function is dependent on context, while behavior is dependent on form relationships, and
as such is context-independent. Context encompasses viewpoint in this case, and contains design-
specific information. We speak of function being view-dependent, and make a case for a separation
of context-dependent and context-independent information. In other words, an object can have
multiple behaviors independent of the context as its inherent property. However, certain of these
behaviors are normally instantiated in a particular context, manifested in one or more functions.
We exploit this clear separation of context-dependent and context-independent representational
elements to support the goal of comprehensive knowledge bases. Thus the context-independent
knowledge is comprised of artifacts (akin to the concepts represented by generic components in
[2]) whereas the context information provides the knowledge required to combine these concepts in
functionally useful ways.

This allows making the components truly generic, as argued by Alberts et al. [2]. Yet, the rep-
resentation of function is a compromise that we make for allowing evolution of the comprehensive
knowledge bases. While we argue that function representation is legitimately a part of the design
process, and as such function-form mapping is generally through a set of expected behaviors, rou-
tine design incorporates the notion of a direct function-form mapping. If each artifact description
introduced into the knowledge base were to encapsulate the functions, routine design would thus
be facilitated without an extensive re-haul of the existing process knowledge. This compromise
comes from a realization that a representation tailored to be flexible must still not be cumbersome
from a routine design standpoint. Additional rationalization for the above arguments is provided
in Reference [10].

The generic components proposed by Alberts et al. are similar to our own definition of artifacts, and
are complementary to the design prototypes of Gero [8] in a manner similar to our design processes
and products being complementary. Our approach differs in allowing an evolving representation
of an artifact, obviating the need for translations between so-called “technology-based” layers,
which represent levels of abstraction in the design process [2]. Our artifacts are recursively defined
to consist of further artifacts, and we place no pre-defined granularity limits on this recursive
decomposition. Related work on ontologies and design representation can be found at the following
web sites: http://www.ksl.stanford.edu/; and http://www.ie.utoronto.ca/EIL/eil.html

6 Summary and Conclusions

In our representation model, we capture two separate aspects of design: artifact description (where
the basic constructs to model the problem are defined), and subsequent design process enaction
(which operates on these constructs to lend coherence and overall structure to the design). The
process enaction stage must follow from the model description stage, and to a large extent, flexibility
afforded by the model description governs the innovation in the process. Our approach to model
description aims to encapsulate the physical principles inherently involved in engineering design,
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through a structured approach to knowledge encoding. This approach forces the structure of design
knowledge at various levels, from knowledge of physical principles common to engineering problems
through domain-specific heuristic knowledge. The comprehensive knowledge bases thus capture
“deep” knowledge about the design products in the form of physical behavior, and provide the
basis for knowledge-based design support systems. The underlying theme in each one of these
descriptions is the motivation to support development of comprehensive engineering knowledge
bases.

In our layered representation, design operators update and transform design contexts, and support a
range of automation, extending from purely manual design (in which the designer uses knowledge in
an explicitly modeled process) all the way to automated design (with reasoning mechanisms). Our
current implementation uses rules and constraints, coupled with human intervention, in decision
making. The design concepts are separated into context-dependent and context-independent parts,
representing the bottom-up and top-down knowledge respectively. Artifact knowledge is identified as
being essentially context-independent. The granularity of the artifact descriptions governs, in part,
the innovativeness of the design. The model formulation and behavior verification phases allow for
physical principles to drive the process of retrieval. The representation schema thus forms the basis
for a second-generation knowledge based design support framework. We have not yet completely
addressed the problems of schema integration invariably associated with a common comprehensive
product model for a collaborative enterprise: research on this issue is currently being pursued.
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