
Manufacturing

NISTIR 4626
June, 1991

United States Department of Commerce
National Institute of Standards and Technology

Manufacturing Engineering Laboratory
Gaithersburg, MD 20899

Control Entity
Interface Document

M. K. Senehi

Sarah Wallace

Ed Barkmeyer

Steven Ray

Evan K. Wallace

Systems
Integration

Manufacturing

NISTIR 4626
June, 1991

United States Department of Commerce

National Institute of Standards and Technology

John W. Lyons, Director

Control Entity
Interface Document

M. K. Senehi

Sarah Wallace

Ed Barkmeyer

Steven Ray

Evan K. Wallace

Systems
Integration

Robert A. Mosbacher,
Secretary of Commerce

U
N

ITED STATES OF AMER
IC

A

D
E

P
A

R
TM

ENT OF COMM
E

R
C

E

i

Table Of Contents
List Of Figures ... ii

List of Tables .. iii

1.0 Introduction.. 1

1.1 Project Direction and Goals ..1

2.0 Background... 2

2.1 Common Memory Environment ...2
2.2 Architecture ..2
2.3 Administrative Hierarchy ...2
2.4 Controller Tasking ..4

2.4.1 Production Plans
2.4.2 Task Execution

2.5 Error Recovery ..7

3.0 Supervisory Interface .. 8

3.1 System States ..8
3.2 Supervisory Interface Commands ...10
3.3 Supervisory Interface Exchange Conventions ..15

4.0 Guardian Interface .. 16

5.0 Task Interface... 18

5.1 Task Commands ...18
5.2 Conventions ..19

6.0 Status Reports .. 19

6.1 System Status ..20
6.2 Task Status ..20
6.3 Guardian Status ...21

7.0 Notes .. 22

A Administrative And Task Message Formats Used in 1990 23

B Guardian Message Formats Used in 1990 28

C Scenario of Commands to Controllers ... 34

D Glossary... 38

ii

List Of Figures

Figure 1 External Interfaces of an MSI Control Entity.3

Figure 2 Task Decomposition and the Task Client/Server Model.5

Figure 3 A Sample Control Hierarchy (Administrative and Task).6

Figure 4 Administrative State Diagram for an MSI Control Entity......9

iii

List Of Tables

Table 1 Administrative State Definitions... 10

Table 2 Administrative Command Definitions. 11

Table 3 Administrative State Tables. ... 11

1

1. Introduction

A major activity of the National Institute of Standards and Technology (NIST) Manufacturing
Systems Integration (MSI) project1 is the development of a system architecture that incorporates
an integrated production planning and control environment. This document is concerned with de-
fining the details of interfaces for controllers which are incorporated into an integrated system that
conforms to the NIST MSI architectural model. A description of the NIST MSI architectural mod-
el can be found in “Manufacturing Systems Integration Initial Architecture Document” [Senehi,
forthcoming]. The purpose of this document is two fold: to document the progress and current sta-
tus of the MSI Architecture’s Control Entity Interfaces and implementation, and to provide de-
signers and implementors with specifications for an MSI Architecture compliant controller. This
document was developed by the MSI Architecture Committee2 and incorporates the consensus of
that committee as of July 1990. This work is partially supported by funding from the Navy Manu-
facturing Technology Program and NIST’s Standards Technology and Research Services (STRS).

The first section of this document gives information on pertinent aspects of the MSI architecture
and on the assumptions which have been made concerning the environment in which the system is
operating. The balance of the document contains a detailed description of the state tables for con-
trollers; commands and exchange conventions for the shutting down, starting up, emergency shut-
down, etc. of controllers; commands and protocols for the initiation, execution and termination of
tasks by controllers and details of required status reports. In the summer of 1990, the Factory Au-
tomation Systems Division at NIST developed a prototype MSI Architecture compliant controller
using the control entity interfaces defined in this document and the specific message formats
found in Appendices A–B on pages 23–33. Appendix C on page 34 presents an example scenerio
of commands and responses between control entities. The final section of this document discusses
areas to be addressed as a result of this implementation. Appendix D on page 38 contains a glos-
sary of relevant terms.

1.1 Project Direction and Goals

The goal of the MSI project is to attack the problem of incompatible data and control processes
within a manufacturing enterprise. Despite years of development of excellent products, this prob-
lem still prevents American industry from easily building truly integrated manufacturing systems.
In particular, the sharing of information between engineering, production management and con-
trol systems is still difficult, and there are no standards specifying the interactions among control,
planning and scheduling systems. To address these problems of integration, the MSI team is de-
veloping a testbed environment which allows experimentation with integrated production man-
agement and control systems. A critical feature of this testbed is the specification of an
architecture and interfaces which allow the incorporation of commercial products and academic
systems supporting production engineering and control. The validation of this architecture will be
via a demonstration of the production of selected parts, using either actual or emulated shop floor
equipment or any combination of both. Ultimately, the architecture and interface specifications
will be submitted as candidate standards to the relevant national and international standards orga-

1This document was prepared by United States Government employees as part of their official duties and is,
therefore, a work of the U.S. Government and not subject to copyright.
2In 1990, the Architecture Committee members were Ed Barkmeyer, Mark Luce, Steven Ray, M.K.
Senehi, Evan Wallace, and Sarah Wallace.

2

nizations.

2. Background

2.1 Common Memory Environment

This interface specification assumes a pure common memory [Libes, 1990] interface between su-
pervisor and subordinate. This means that the common memory command and status mailboxes
are persistent across process restarts. Processes have no direct means of determining the death or
restart of the supervisor or subordinate: the status of the supervisor or subordinate must be in-
ferred from the messages in the common memory mailboxes.

Common memory is an imperfect communication mechanism, meaning that not necessarily will
every mailgram inserted in a mailbox be seen by all intended recipients [Rybczynski, 1988]. What
is guaranteed is that a process reading the mailbox will see the most recently deposited mailgram.
Therefore, incremental status reporting will not work reliably when using common memory for
communication. The status report of an arbitrary manufacturing control process (controller) must
be complete, i.e. it must contain all the information pertinent to the current state of the controlled
subsystem, so that the supervisory process can miss any number of status reports and still get the
complete picture when it finally reads one. Similarly, the supervisor must be assured that the sub-
ordinate has seen the command last written in the command mailbox before it issues a new one.

As a general principle, any mailgram must contain:

• the name of the subsystem which wrote it,

• a timestamp, reflecting the time at which the mailgram was written,

• a distinct serial number (possibly provided by the Common Memory service).

Timestamps are included as tools for aiding the human operators in monitoring and debugging the
system. The synchronization of clocks across multiple systems to finer accuracy than that required
by shop level scheduling is not addressed in the MSI architecture. Fine clock synchronization is
technically difficult, and without it, a comparison of timestamps from two distinct systems may be
insufficient to determine the sequence of communication events. Therefore, the mailgram times-
tamps are not used as a message identifier in the control entity interface protocols.

2.2 Architecture

In MSI terminology, a controller is a software entity which instructs hardware or software to per-
form tasks. In order to accommodate as many types of controllers as possible, the MSI project has
identified a limited set of compatibility requirements for interfacing controllers. Integrating a con-
troller into the MSI architecture requires two types of interfaces: Supervisory (command and sta-
tus) and Task (service request and response). A third type of interface, the Guardian (console)
interface is optional and highly recommended. The possible interfaces of a control entity are
shown in Figure 1. on page 3. The following sections describe the requirements which the MSI ar-
chitecture places upon controllers in broad terms.

2.3 Administrative Hierarchy

In the MSI architecture, a controller is required to exist within an administrative hierarchy. The

3

 Server

Administrative

Administrative

 Server
Administrative

CMD /
STS

CMD /
STS

REQ /
RSP

REQ /
RSP

Subordinate

Subordinate

Supervisor

MSI Control Entity

Administration

 Server

Tasks

Guardian

 Client
 Client

 Client

Figure 1. External Interfaces of an MSI Control Entity.

4

primary function of the administrative hierarchy is to provide reliable channels for directing the
start up and shut down of controllers. A controller may have at most one administrative supervi-
sor; it may have any number of administrative subordinates, or none at all. A subsystem consists
of a subsystem controller and all of its administrative subordinates, if any.

Currently the Administrative hierarchy of the MSI architecture consists of three logical levels:
Equipment, Workcell and Shop.

• The Equipment level is the lowest level to which the MSI architecture applies. Within
this level, there is a software complex which drives the physical equipment systems.
An equipment controller is responsible for the execution of tasks by an individual de-
vice or unit. It may have internal subordinate software elements which perform the
primitive control tasks, but the characteristics of these internal interfaces are not spec-
ified by the MSI architecture.

• A Workcell is a subsystem consisting of a collection of equipment viewed as a func-
tional unit. It is coordinated by a single supervisory controller designated the Workcell
controller. The grouping of equipment into workcells is based upon many factors and
is highly facility dependent. A workcell controller may control equipment controllers
directly, or may control any number of layers of workcell level controllers.

• The top level controller is the Shop Controller. The subsystem it controls consists of a
set of workcells in the manufacturing shop which are currently configured to be avail-
able. At present, the MSI project is limited to a single shop, and there is only one con-
troller at this level.

 Figure 3. on page 6 shows an example of a control hierarchy. The administrative hierarchy is de-
fined by the dashed arrows. It should be noted that the administrative hierarchy remains un-
changed during the manufacturing of tasks.

2.4 Controller Tasking

The primary function of a controller is to perform manufacturing tasks. In the MSI architecture,
controller tasking is based upon a client/server model (see Figure 2. on page 5). A client requests
tasks to be performed; the server may accept or reject tasks based on its administrative state and
its current task capabilities. As a result of this tasking model, task control is not required to follow
the administrative control paths. Figure 3. on page 6 shows an example of a control hierarchy.
The task hierarchy is defined by the solid arrows. The underlying administrative hierarchy is de-
fined by the dashed arrows. It should be noted that although the administrative hierarchy remains
unchanged during the manufacturing of tasks, the task hierarchy will be continually redefined de-
pending on which tasks are outstanding. The task interface provides for requesting new tasks and
for coordinating the activities of each controller with those of the Shop as a whole. Related details
and assumptions are explained in the following sections.

2.4.1 Production Plans

The tasks which controllers are directed to perform are specified in production plans. A produc-
tion plan is a set of time sequenced instructions for making a specific item with specific equip-
ment at specific times. MSI production plans are generated by the Production Planner from MSI
process plans by choosing appropriate branches of the process plan, selecting proper equipment

5

Task Servers

Task

Task Decomposition

subtasks and work elements

Control Entity

Plan

Task Client

Figure 2. Task Decomposition and the Task Client/Server Model.

6

example Administrative Hierarchy

snapshot example Task Hierarchy Shop Level Controller

Workcell
Level

Workcell

Controller
Level

Workcell

Controller
Level

Controller

Workcell

Controller
Level

Workcell

Controller
Level

Workcell

Controller
Level

Equipment Equipment Equipment Equipment Equipment EquipmentEquipment Equipment

Equipment

Controller
Level

Equipment

Controller
Level

Equipment

Controller
Level

Equipment

Controller
Level

Equipment

Controller
Level

Equipment

Controller
Level

Equipment

Controller
Level

Equipment

Controller
Level

Figure 3. A Sample Control Hierarchy (Administrative and Task).

7

and scheduling production. Production plans are hierarchical and may exist for Shop, Workcell
and Equipment levels. While the MSI architecture specifies a representation for production plans,
it permits workcell and equipment level plans to be in varying formats based on the needs of the
individual workcell and equipment controllers. In fact, a workcell is permitted to generate its pro-
duction plans on-line.

The MSI architecture requires that the workcell controller understand the notion of checkpoint to
facilitate error handling. A checkpoint is a step in the production plan where the manufacturing
process may be halted in a safe manner without damaging either the equipment or the workpiece
and later replaced or resumed. Obviously, the start and end of a production plan will be check-
points. A less trivial example of a checkpoint would be a machining step which drills a hole. After
the hole is completed and the spindle is withdrawn, it would be safe to stop the plan at this step
and resume at a later time.

2.4.2 Task Execution

The execution of Shop level production plans is directed and monitored by independent software
agents, called Shop Level Executives (SLE). A Shop Level Executive requests tasks of workcell
controllers in accordance with its production plan. The SLE’s are responsible for ensuring that the
production plan is performed. It is not the responsibility of an SLE to monitor the health of the
controllers executing its production plan.

Lower level production plans (i.e. workcell and equipment) are executed by lower level control-
lers. The internal structure of lower level controllers is not mandated by the architecture. In order
to be included in the MSI architecture, a controller is characterized as being in one of three cate-
gories. The categories are based upon the controller’s ability to queue and schedule tasks:

(1) The subsystem accepts only one task at a time, and initiates the task as soon after re-
ceipt as possible. It reports status only on the last task received.

(2) The subsystem accepts and queues tasks as received, and treats a task as eligible for
initiation on receipt, but actually initiates tasks according to its own schedule. The
subsystem does not understand MSI production plans and schedules per se. For each
client, it reports status on all of that client’s task requests whenever an event relevant
to that client occurs.

(3) The subsystem accepts and queues tasks as received, and understands tasks as de-
scribed by MSI production plans and schedules. For each client, it reports status on
all of that client’s task requests whenever an event relevant to that client occurs, in-
cluding violation of the schedule.

2.5 Error Recovery

Although no attempt will be made here to describe error handling extensively, the MSI architec-
ture has considered the impact of errors upon the operation of the system. Two main types of er-
rors have been addressed: task failure and controller impairment.

Task failure occurs when a task fails to complete. If the failure cannot be handled locally, it is re-
ported in the task status report to the task client. Ultimately, it will be brought to the attention of
the Shop Level Controller. When appropriate, the Shop Level Controller alerts the Production
Planner to the need for replanning.The Production Planner is responsible for adjusting the sched-

8

ule. If contingency plans are required, new production plans may be generated from existing alter-
native process plans or from new process plans generated on-line by the process planner.

When a controller becomes impaired (i.e., its capabilities are diminished) it may be necessary to
intervene in ways which are not provided by the administrative supervisory path. Either the inter-
nals of the equipment or controller need to be accessed, or a subordinate of a controller needs to
be removed and replaced. The MSI architecture provides for a special interface called the Guard-
ian which accommodates these needs. From this interface it is possible to remove a (dysfunction-
al) subordinate from the system or to add a new subordinate. Upon the option of the implementor,
a Guardian may provide system specific access to the internals of the controller. This interface re-
places the front panel or console interface, with the advantage that the operator may be human,
but is not required to be, and may be an automated expert system, or a human with computer as-
sistance.

3. Supervisory Interface

The supervisory interface is administrative: it deals exclusively with subsystem states, transition
control and task service control, using an enhanced form of the UVA model described below (see
Figure 4. on page 9) [O’Halloran, 1986].

3.1 System States

 Table 1. on page 10 enumerates and defines the possible subsystem states for the purpose of the
administrative supervisory interface The initial state of a subsystem, when the highest level con-
troller has been started, and the command mailbox has not yet been examined, is Down.The tran-
sitions permitted by the administrative control protocol are indicated in the corresponding state
diagram, Figure 4. on page 9. It should be noted that the administrative state diagram does not ful-
ly describe all possible causes for state transitions. In particular, external events may cause chang-
es in the administrative state.

In addition, a subsystem will have acapability index, which indicates whether the subsystem has
all capabilities to be expected from the baseline (initial) configuration or some different set of ca-
pabilities. The administrative supervisor does not understand the capabilities of the subsystem: it
interprets a change in the capability index to mean that the subsystem capabilities have changed in
such a way as to require replanning for its use. The capability index has no other intrinsic seman-
tics. Because the supervisor may miss individual changes in the subsystem capability index, it is
necessary for each value of the capability index to be distinguishable from all previous values
which have occurred since the initial state of the controller. For convenience, an integer value will
be used for this index. The capability index is initialized to zero when the subsystem is Synchro-
nized (goes from Down to Idle) and is increased by one each time any of the following occurs:

(1) a configured subordinate becomes unavailable (is deconfigured by a Detach or Ignore
command from the Guardian, or by a controller decision after a failure),

(2) a new subordinate becomes available (is Attached by command, and has successfully
started, reaching a Ready or Active state),

(3) the capability index of a subordinate changes and the subsystem controller determines
that the capabilities of the whole subsystem are thereby affected.

9

Synchro–
nizing

Down Idle

Starting

Ready

Termin–
ating Pausing

Active

Paused

Pause

B
eg

in

Finishing

Shutting_
Down

Aborting
Sync

BeginExit

ServiceSystem

Sync Start up

Shut
Down

Terminate

Terminate

Finish

Emergency Stop

Begin

Terminate

Te
rm

in
at

e

Begin

Terminal State

Transitional State

Figure 4. Administrative State Diagram for an MSI Control Entity.

10

.

There will be other circumstances, unrelated to administrative control per se, which will also re-
quire the subsystem controller to change the capability index, e.g. cutter breakage. In any case, a
change in the capability index is always preceded by updates to the facility database which reflect
the actual capability changes.

3.2 Supervisory Interface Commands

The administrative command set provides for two step start up and shutdown of subsystems (to

Down

Synchronizing

Idle

Starting

Ready

Shutting_down

Active

Pausing

Paused

Finishing

Terminating

Aborting

State Definition

The subsystem controller has exited or has just restarted cold.

The subsystem controller has received a Sync command, but has not yet synchronized
with its subordinates. This is a transition state.

The subsystem is synchronized as configured, but inactive.

The subsystem was Idle, has received a Start_up command, but has not yet started all of its
configured subordinates. This is a transition state.

The subsystem is up: the controller and all of its configured subordinates have successfully
executed the Startup, but it is not accepting or processing any task requests, and it has no
tasks outstanding.

The subsystem has received a Sync or Shutdown command, but has not yet shutdown all
of its subordinates. This is a transition state.

The subsystem is up, accepting and processing task requests.

The subsystem is up and accepting tasks, but it is not initiating new tasks, only bringing
running tasks to the next checkpoint. Note that for tasks which have not started, the initial
node is the checkpoint, hence they will not be permitted to start. This is a transition state.

The subsystem is up. All tasks are stalled at a checkpoint and cannot resume until the
subsystem is again Active.

The subsystem is up, but it is not accepting any new tasks. It is completing all tasks previ-
ously issued. This is a transition state.

The subsystem is up, but it is not accepting any new tasks, and any outstanding tasks will
be terminated at the next checkpoint. This is a transition state.

The subsystem is going to the Idle state. It is not accepting any new tasks, and any out-
standing tasks are being aborted. This is a transition state.

Table 1. Administrative State Definitions.

11

prevent accidental misalignment due to persistent information in the common memory). Table 2.
on page 11 describes the administrative commands. Table 3. on page 12 defines, for each admin-
istrative state, the valid commands that a controller can receive, the action to be performed when
that command is received, the next state for that command, and the final state the controller
should be in at the completion of that command. It should be noted that ‘—’ designates no change
of state, and a final state is only specified when there is an intermediate transition state necessary
to perform the required action associated with a command.

An MSI Architecture compliant controller must support all administrative commands except
Pause. Appendix A on page 23 contains the description of the command message formats for the
administrative interface used in the 1990 MSI Architecture prototype controller.

Report

Sync

Start_up

Shutdown

Exit

Emergency_Stop

Begin

Finish

Pause

Terminate

Command Definition

Acknowledge this command and report status. This command is a No–Op used by the
supervisor to set the last command number, and in non common memory environments
to force a status report.

Synchronize all configured subordinates and attempt to return the subsystem to an Idle
state. This command is used by the supervisor to initialize a Down subsystem, and to re-
initialize a running system. A controller which has finished cold start does not attempt to
synchronize wit its configured subordinates until it receives a Sync.

Bring the subsystem up to a Ready state, startup all configured subordinates.

Bring the subsystem down to an Idle state, shutdown all configured subordinates, bring
equipment to a safe state.

Exit the control process in an orderly fashion.

Save the equipment and get out fast. Emergency shutdown all subordinates, move

Begin/resume accepting task requests.

Complete all existing tasks, but stop accepting new task requests.

Stop accepting new tasks, stop each outstanding task at the next (or current)
checkpoint, and treat it as terminated.

Continue accepting Task requests, but don’t initiate new tasks, and pause all out-
standing tasks at the next checkpoint. Then pause all configured subordinates. The
object is to get activity in the subsystem to cease temporarily

equipment to save and power down if possible, (optionally) go to Down, and exit.

Table 2. Administrative Command Definitions.

12

Down
Command Next State Comments

Report — No change, always acknowledge.

Sync

Final State

Synchronizing
Issue Sync to subordinates, and go to Idle when all

Idle

Emergency_Stop Down
Emergency shutdown all subordinates, move equipment to
save and power down if possible. Optionally go to Down,
and exit.

subordinates are Idle.

Idle
Command Next State Comments

Report — No change, always acknowledge.

Start_up

Final State

Starting
Issue Start_up to subordinates, and go to Ready when all

Ready

Emergency_Stop Down
Emergency shutdown all subordinates, move equipment to
save and power down if possible. Optionally go to Down,
and exit.

subordinates are Ready.

Sync — Acknowledge Only.

Exit Down Go to Down optionally, and exit.

Synchronizing
Command Next State Comments

Report — No change, always acknowledge.

Sync

Final State

— Acknowledge Only.

Emergency_Stop Down
Emergency shutdown all subordinates, move equipment to
save and power down if possible. Optionally go to Down,
and exit.

Shutdown — Acknowledge Only.

Starting
Command Next State Comments

Report — No change, always acknowledge.

Final State

Emergency_Stop Down
Emergency shutdown all subordinates, move equipment to
save and power down if possible. Optionally go to Down,
and exit.

Start_up — Acknowledge Only.

Sync Shutting_Down
Issue Sync to all subordinates, and go to Idle when all
subordinates are Idle. Idle

Table 3. Administrative State Tables.

13

Ready
Command Next State Comments

Report — No change, always acknowledge.

Begin

Final State

Active Do not remove any tasks in the task queue.

Emergency_Stop Down
Emergency shutdown all subordinates, move equipment
to save and power down if possible. Optionally go to
Down, and exit.

Start_up — Acknowledge Only.

Finish — Acknowledge Only.

Terminate — Acknowledge Only.

Shutdown Shutting_Down Shutdown all subordinates, and go to Idle when all
subordinates are Idle. Idle

Sync Shutting_Down Shutdown all subordinates, and go to Idle when all
subordinates are Idle. Idle

Active
Command Next State Comments

Report — No change, always acknowledge.

Final State

Emergency_Stop Down
Emergency shutdown all subordinates, move equipment
to save and power down if possible. Optionally go to
Down, and exit.

Begin — Acknowledge Only.

Terminate Terminating
Stop accepting new tasks, stop each outstanding task at

Pause Pausing
Continue accepting task requests, but don’t initiate new
tasks. Pause all outstanding tasks at the next checkpoint. Paused

Sync Aborting
Abort all tasks, then go to Shutting_Down, shutdown all
subordinates, go to Idle when all subordinates are Idle. Idle

the next checkpoint. Go to Ready when there are no
more outstanding tasks.

Ready

Finish Finishing
Complete all outstanding tasks if possible and then go
to Ready when there are no more outstanding tasks. Ready

Go to Paused. Then pause all configured subordinates.

Finishing
Command Next State Comments

Report — No change, always acknowledge.

Final State

Emergency_Stop Down
Emergency shutdown all subordinates, move equipment
to save and power down if possible. Optionally go to
Down, and exit.

Begin Active Do not remove any tasks in t he task queue.

Terminate Terminating
Stop accepting new tasks, stop each outstanding task at

Sync Aborting
Abort all tasks, then go to Shutting_Down, shutdown all
subordinates, go to Idle when all subordinates are Idle. Idle

the next checkpoint. Go to Ready when there are no more
outstanding tasks.

Ready

Finish Finishing Acknowledge Only. Ready

Table 3. continued.

14

Terminating
Command Next State Comments

Report — No change, always acknowledge.

Final State

Emergency_Stop Down
Emergency shutdown all subordinates, move equipment to
save and power down if possible. Optionally go to Down,
and exit.

Terminate —

Sync Aborting
Abort all tasks, then go to Shutting_Down, shutdown all
subordinates, go to Idle when all subordinates are Idle. Idle

Acknowledge Only.

Pausing
Command Next State Comments

Report — No change, always acknowledge.

Final State

Emergency_Stop Down
Emergency shutdown all subordinates, move equipment to
save and power down if possible. Optionally go to Down,
and exit.

Begin Active Do not remove any tasks in the task queue.

Terminate Terminating
Stop accepting new tasks, stop each outstanding task at the

Pause — Acknowledge Only.

Sync Aborting
Abort all tasks, then go to Shutting_Down, shutdown all
subordinates, go to Idle when all subordinates are Idle. Idle

next checkpoint. Go to Ready when there are no more
outstanding tasks.

Ready

Paused
Command Next State Comments

Report — No change, always acknowledge.

Final State

Emergency_Stop Down
Emergency shutdown all subordinates, move equipment to
save and power down if possible. Optionally go to Down,
and exit.

Begin Active Do not remove any tasks in the task queue.

Terminate Terminating
Stop accepting new tasks, stop each outstanding task at the

Pause — Acknowledge Only.

Sync Aborting
Abort all tasks, then go to Shutting_Down, shutdown all
subordinates, go to Idle when all subordinates are Idle. Idle

next checkpoint. Go to Ready when there are no more
outstanding tasks.

Ready

Table 3. continued.

15

3.3 Supervisory Interface Exchange Conventions

The supervisory interface is operated one command at a time, that is, the supervisor does not issue
the next command until the subordinate’s system status report shows that it has received the cur-
rent command (by having the correctlast command identifier). The subordinate responds to each
command on receipt (i.e., accepts or rejects the command after examining the state tables). The
transition states are provided to enable the subordinate to report receipt of and reaction to a com-
mand without having reached the desired final state (completion of the command). Once an ad-
ministrative command is accepted, it is not logically possible for it to fail subsequently, although
it may never complete.

Example: A subsystem in an Idle state receives and accepts a Start_up command and enters the
Starting state. It remains in the Starting state until all of its configured subordinates reach Ready.
If one of the subordinates fails to reach Ready, the subsystem stays in the Starting state indefinite-
ly. If the subsystem controller is told or determines that the still un–Ready subsystem should be
treated as Unavailable, it deconfigures the offending subordinate and thereby becomes Ready, it
updates the database to reflect the loss of the subordinate, and changes the capability index. Nei-
ther the endless Starting state, nor the transition to Ready with a change in the capability index, is
a failure of the Start_up command from the point of view of the subordinate. The supervisor may
make some qualitative judgement of these situations, but there is no formal failure of the com-
mand.

The supervisor does not interpret the state of the subsystem as it appears in the status report until
the last command identifier reflects the last command issued by the supervisor. This avoids misin-
terpretation of intermediate states which result from asynchronous generation of commands and

Shutting_Down
Command Next State Comments

Report — No change, always acknowledge.

Sync

Final State

— Acknowledge Only.

Emergency_Stop Down
Emergency shutdown all subordinates, move equipment to
save and power down if possible. Optionally go to Down,
and exit.

Shutdown — Acknowledge Only.

Aborting
Command Next State Comments

Report — No change, always acknowledge.

Sync

Final State

— Acknowledge Only.

Emergency_Stop Down
Emergency shutdown all subordinates, move equipment to
save and power down if possible. Optionally go to Down,
and exit.

Table 3. continued.

16

status reports.

There are three exceptions to the rule that the supervisor never sends a new command until the
previous command has been acknowledged:

(1) The initial command from the supervisor may be, and usually is, sent without any con-
cern for prior commands; the initial command should be Report or Sync.

(2) A Sync command, the function of which is to force the subordinate into an Idle state
regardless of its current state, is not in any way dependent on the supervisor correctly
understanding the previous state of the subordinate, and may be issued at any time,
whether or not the subordinate has acknowledged the previous command.

(3) An Emergency_stop command should never be delayed for any reason.

4. Guardian Interface

The Guardian interface provides the console interface to a control entity, allowing external moni-
toring and intervention in the otherwise automatic operation of the control entity.

The Guardian interface includes all capabilities of the supervisory interface, including all admin-
istrative commands, and the Guardian exchange conventions are identical to that of the superviso-
ry interface. The Guardian has priority over the supervisory interface, to allow external override
of the automatic transition control. This capability should never by exercised while the supervisor
is still functioning.

The Guardian interface also includes two additional command sets: the configuration control
command set, given below, and a private command set to change parameters and modes of opera-
tion for a particular kind of subsystem. The status portion of the Guardian interface is described in
section 6.3 on page 21. Appendix B on page 28 contains the description of the command and sta-
tus message formats for the Guardian interface used in the 1990 MSI Architecture prototype con-
troller.

Configuration commands:

The configuration command set permits the Guardian to direct the subsystem to add and delete
subordinate control entities, in order to facilitate recovery of failing components and continuation
without them. When a configuration change takes place in response to a Guardian command, the
capability index is incremented and this is reported through the supervisory interface.

Ignore (subordinate, location) — deconfigure an existing subordinate and disconnect from
it immediately. This command allows the Guardian to direct a subsystem to recov-
er from a hung state caused by a defunct subordinate.

• From Down, reject: protocol violation.

• From any other state, if the named subordinate is not configured, reject: no
such subordinate.

• From Synchronizing, deconfigure the named subordinate, update the capability
index, disconnect the command path and remain Synchronizing until all re-

17

maining configured subordinates are Idle.

• From Idle or Ready, deconfigure the named subordinate, update the capability
index, disconnect the command path and do not change state.

• From Starting, deconfigure the named subordinate, disconnect the command
path, update the capability index and remain Starting until all remaining con-
figured subordinates are Ready.

• From Shutting_Down, deconfigure the named subordinate, update the capabil-
ity index, disconnect the command path and remain Shutting_Down until all
remaining configured subordinates are Idle.

• From any other state, abort any tasks which involve the named subordinate,
deconfigure it, update the capability index and disconnect the command path,
and do not change state.

Attach (subordinate, location) — configure a new subordinate.

• From Down, Synchronizing or Shutting_Down, reject: protocol violation.

• From any other state, if the named subordinate is already configured, acknowl-
edge only.

• From Idle, if the named subordinate is new, configure the named subordinate,
and synchronize with it, and remain Idle until the newly configured subordi-
nate is Idle.

• From Starting, if the named subordinate is new, configure the named subordi-
nate, synchronize with it, and attempt to Start it when it is Idle, remain Starting
until all configured subordinates, including the new one, are Ready.

• From any other state, if the named subordinate is new, configure the named
subordinate, synchronize with it, and attempt to Start it when Idle, and incre-
ment the capability index when all configured subordinates, including the new
one, are Ready.

Detach (subordinate, location) — deconfigure an existing subordinate and disconnect
from it in an orderly way.

• From Idle or Ready, if the named subordinate is not configured, reject: no such
subordinate.

• From Idle, deconfigure the named subordinate, disconnect the command path,
update the capability index, and remain Idle.

• From Ready, deconfigure the named subordinate, disconnect the command
path, update the capability index, and remain Ready.

• From any other state, reject: protocol violation.

18

5. Task Interface

The task interface deals with the delivery and execution of actual subsystem tasks, or what was
called manufacturing control in the AMRF [Albus, 1981]. The associated aspect of the status re-
port is the Task status. An MSI controller considers all task requests to be instances of the single
Execute command below. However, it abides by the protocol type selected for the particular sub-
ordinate, and interprets the plan accordingly. The execution of tasks may be serial or parallel, de-
pending on the ability of the controller to schedule and execute tasks. See section 2.4.2 on page 7
for details of the protocols. Appendix A on page 23 contains the description of the command and
status message formats for the task interface used in the 1990 MSI Architecture prototype control-
ler.

5.1 Task Commands

Report

Acknowledge this command and report task status for the requesting client. This
command is a No–Op used by the client to force a task status report.

Execute (task–id, task–activity, node–name, parameter–list)

Used to initiate any new task. The parameters are:

• task–id = an identifier for the task invented by the supervisor, guaranteed
unique within the context of this session of client/server communication, and
used to refer to the task in status reports and subsequent commands.

• task–activity = either a work element or an ordered pair consisting of plan–id
and plan–version.
A work element is a type of task which is meaningful to the subordinate, and
possibly to the supervisor. The ordered pair {plan–id, plan–version} consists of
the database keys for the detailed task description, nominally an ALPS (A Lan-
guage for Process Specification) production plan, but could be any form used
by the subsystem, including a process plan for a system which does dynamic
production planning [Catron, 1991].

• node–name = a descriptive name attached to the task by the Production Planner
and used by human operators for monitoring and debugging.

• parameter–list = names and values of information units which are known only
at execution time. In the case of dynamic production planning this would in-
clude quantities, workpiece ids, tooling parameters, etc. In the case of previ-
ously defined production plans, parameters might include material handling
information.

Drop_report (task–id)

Remove the designated task from the status report. This should only be used for
plans which have reached a terminal state.

Pause (task–id)

19

Used to stall operations, for example during replanning. The task should be paused
at the next Checkpoint.

Resume (task–id)

Used to resume a previously suspended task.

Terminate (task–id)

Stop and treat the plan as finished at the next Checkpoint.

Abort (task–id)

Stop the plan as soon as possible without damaging the equipment; damaging the
workpiece is acceptable. To be used to recover from some anomalous situations, in
particular hung tasks.

5.2 Conventions

When a subordinate receives an Execute command, it always creates a new task, and adds it to the
task status report. If the task is unacceptable to the subsystem, the state of the task is rejected,
which is a terminal state. Otherwise, the task goes into one of the nonterminal states while the
subordinate begins planning and executing the task. Thereafter, the subordinate autonomously
changes the state of the task as it executes it, until the task reaches a terminal state.

The combination (source, task–id) must always be unique in the subordinate. Once created, a task
is current in the subordinate, regardless of state, until the subordinate receives a Drop_ report
command for that task.

All other task management commands —Pause, Resume, Terminate, Abort, Drop_report —affect
only tasks which have been previously created by an Execute command from the same source.
Each of these commands only affects the state of the named task and the further handling of that
task in the subsystem. If a subordinate receives a task management command for an unknown
task–id, it must add the task to the task status report with a task status of rejected, and rewrites its
current task status in the status mailbox.

Unlike supervisory commands, task commands can (potentially) come from more than one
source, and task commands do not get explicit responses. The effect of a task command is to
change some element of the subordinate’s task status report (see Section 6.2). The task source
therefore deduces receipt of the command by the change in the status report. In particular,

• the source determines receipt of Execute by appearance of the task in the status report.

• the source determines receipt of Drop_report by disappearance of the task from the
status report.

• the source determines receipt of Pause, Resume, Terminate, Abort by a change in the
value of the task management state.

6. Status Reports

The complete status of a subsystem consists of three logically distinct classes of information: sys-

20

tem status elements, task status elements, and operational status elements. Every subsystem gen-
erates:

• a Guardian status report, comprising all of the above

• an administrative status report, consisting only of the system status elements

• one task status report for each client, comprising the task status elements for all tasks
originated by that client.

The remainder of this section describes the individual status elements by type. Appendices A and
B contain a description of the command and status message formats for the administrative, task
and Guardian interfaces used in the 1990 MSI Architecture prototype controller.

6.1 System Status

These elements describe the administrative state of the subsystem. They include:

Subsystem state (see Section 3.1)

Capability index: number of changes made to the capabilities since subsystem start up

Last command: for last administrative command received from the supervisor/Guardian
— command identifier (sequence number)
— response code (accepted, or rejection code).

The last command information in the administrative status report refers to the last command from
the supervisor, while the last command in the Guardian status report refers to the last command
from the Guardian.

6.2 Task Status

These elements describe the tasks which have been given to the subsystem and their current state
of execution. For each task in the subsystem, the information units include:

Task source, name of system supplying the task

Task identifier, as given by the source

Management state of task, one of:

• Normal — last management command for this task was Execute or Resume
task

• Pausing — last management command for this task was Pause task

• Terminating — last management command for this task was Terminate task

• Aborting — last management command for this task was Abort task

On schedule (yes/no/unknown)

Nominal/actual initiation time

21

Nominal/actual completion time

Last checkpoint reached, if applicable

Current state of task, one of:

• rejected = task is unacceptable to the subsystem (terminal).

• activated = task is currently executing (nonterminal).

• suspended = task is waiting at a checkpoint for a resource, an external event, or
a Resume task (nonterminal).

• completed = task is finished and no errors occurred (terminal).

• terminated = task is terminated at a checkpoint, stopped by supervisor com-
mand or a problem detected in the subsystem, even though it did not finish (ter-
minal).

• aborted = task was terminated as expediently as possible by direction of super-
visor, or unrecoverable problem in the subsystem (terminal).

 Output parameters, if applicable.

6.3 Guardian Status

The Guardian status contains all the elements of the administrative status and task status report.
The task status component contains three additional fields:

Detail Codes: one or more codes for the detailed status of the task, include failure codes,
holding codes, event/resource identification codes, etc.

Messages: one or more optional console display messages corresponding to the codes

Assigned resources: names of immediate subordinates involved in the task.

Additionally, the Guardian status contains information describing the status of elements of the
particular subsystem which are only meaningful in the context of this (kind of) subsystem and re-
quire knowledge of the internal functions of the subsystem to be useful. (This type of information
is known as operational status and is often useful for console display.) There are two kinds of ele-
ments in an operational status report: configuration elements and specialized elements.

Configuration elements include for each configured subordinate:

• the subsystem name,

• the subsystem state, as perceived by the supervisor, and

• the timestamp of the last received status report.

Specialized elements (sometimes called front panel information) are defined by the subsystem, al-
though some MSI Architecture standards may be developed for elements to be included for a giv-
en subsystem type. For a machine tool, this includes such information as coolant levels, current
spindle speed, feed rate, tool in the spindle, tools in the drum/carriage, etc. For a robot, this in-
cludes joint positions, gripper configuration, current end of arm coordinates, current goal coordi-

22

nates, etc. It may also include detailed information about position and operation in the local form
of process plan, e.g. numerical code, robot programs, etc.

7. Notes

1. A subsystem cannot do anything about a failed supervisor. It is therefore pointless for a sub-
system to attempt to diagnose the health of the supervisor, whether by meaningless commands,
protocol violations, or time-outs. The subsystem’s job is to keep its own house in order, no matter
what it gets, or doesn’t get, in the command mailbox.

2. A subsystem can and should diagnose the health of its configured subordinates, and it is appro-
priate to time-out responses when running in real time. Unfortunately, this creates some problems
when running in rapid simulated time. This problem still needs to be researched.

8. Issues to Be Addressed in the Future

In 1990, the Factory Automation Systems Division at the National Institute of Standards and
Technology developed a prototype MSI Architecture compliant controller using the control entity
interfaces defined in this document. As a result of this prototype, several issues with the interfaces
were discovered. The resolution of these issues is a primary focus of continuing work within the
MSI project.

• Within the task command interface, there is no way for a task server to reject an in-
valid request pertaining to an active task. There is no way for a task server to reject a
Resume request for a task that is not currently in the Suspended state. There is also no
way for a task server to reject a Drop_report request for a task that is not currently in a
terminal state.

• There does not currently exist an automated way to normally or abnormally shutdown
a control hierarchy (or subsystem). This is so because neither the Terminate nor the
Finish commands propagate to subordinate controllers, yet those are the only valid
transitions from the Active to the Ready state. As a result, each controller must be in-
dividually and explicitly issued a Terminate or Finish command to transition to Ready.
Only then can a Shutdown command (which does propagate) be issued to bring the
control hierarchy to the Idle state. It should be noted that allowing the Terminate and
Finish commands to propagate to subordinates is not an adequate solution: consider
the case where in order to Finish or Terminate a task at one level in the hierarchy, a
task request must be issued to a subordinate that has already Finished or Terminated its
outstanding tasks and is no longer accepting new ones.

• The notion of checkpoint is not well defined. A checkpoint is defined as a step in the
production plan where the manufacturing process may be halted in a safe manner
without damaging either the equipment or the workpiece and later replaced or re-
sumed. A task server is required to checkpoint a task upon receiving the task com-
mands Pause or Terminate or upon receiving the administrative commands Pause or
Terminate. Checkpointing a task at a lower level in the control hierarchy necessarily
means that a higher level controller (namely the task client) is in the middle of a man-
ufacturing step, and is not considered checkpointed on that task. The current meaning
of checkpoint is not well defined for any level other than the Equipment Level.

23

Appendix A
 Administrative And Task Message Formats Used in 1990

The format of an MSI message in a mailbox is an ASCII string where curly braces surround mes-
sage objects and elements within these objects are delimited with commas. These elements may
themselves be compound objects with their own elements. Spaces may be used for readability
only directly following commas.

All messages have the form:

{originating subsystem name, timestamp, mailgram sequence number, {data}}

Where:

originating subsystem name is the MSI name for the source controller,

timestamp is a string in the following form:

4 digit year, 2 digit month, 2 digit day, 2 digit hour, 2 digit minute, and 2 digit second, all
concatenated together in one string (all digits are decimal).

mailgram sequence numberis an ascii representation of an unsigned hexadecimal num-
ber less than 232 or 10000000016.

The following sections describe thedata portion of the above message format.

Administrative commands

Administrative commands have the following format:

{command id, command}

Where:

command id is an ascii representation of an unsigned hexadecimal number less than 232 or
10000000016,

command is one of the following:

REPORT

SYNC

START_UP

BEGIN

PAUSE

FINISH

TERMINATE

24

SHUT_DOWN

EXIT

ESTOP

An example of an administrative command is {45, SYNC}.

Administrative status

Administrative status messages have the following format:

{admin state, last cmd id, response code, capability index}

Where:

admin state is one of the following:

DOWN

SYNCHRONIZING

IDLE

STARTING

READY

ACTIVE

PAUSING

PAUSED

TERMINATING

FINISHING

SHUTTING_DOWN

ABORTING

last command id is an ascii representation of an unsigned hexadecimal number less than
232 or 10000000016.

response code is zero when the last command is accepted, and some nonzero 8 byte hexa-
decimal number response code otherwise.

capability index is an unsigned 8 byte hexadecimal value representing a number of less
than 232.

An example of an administrative status message is {SYNCHRONIZING, 0, 45, 0}.

Task requests

Task requests have the following format:

25

{task command, task id, list of parameters which vary with command}

Where:

task command is one of the following:

REPORT

EXECUTE

DROP_REPORT

PAUSE

RESUME

TERMINATE

ABORT

task id is an unsigned hexadecimal value representing a number of less than 232. It is
unique only for a given task requestor.

parameter lists for their respective task commands are as follows:

REPORT— NULL

EXECUTE—{task activity, node name, parameter list}

Where:

task activity is either awork element or a compound object of the form{plan–id,
plan–version}, wherework element is a primitive command, only specified when
the task server is a primitive equipment controller.plan–id is a string which identi-
fies a process or production plan to be used by the task server, andplan–version is
a number indicating the version of the plan identified byplan–id. The compound
element{plan–id, plan–version} is specified when the task server is a category 2 or
category 3 controller (i.e., understands the MSI notion of process plan).

node name is a string passed by task requester for human task tracking purposes.

parameter list is a variable length data object supplying parameters for the speci-
fied plan or work element. This list is an alternating sequence of parameter name,
parameter object where parameter object could be a list.

DROP_REPORT— NULL

PAUSE— NULL

RESUME— NULL

TERMINATE— NULL

ABORT— NULL

Examples of task requests are:

{EXECUTE, 1, {{shuttle_plan,1}, Make Shuttle, {PARTS, {8,27}}}}

{EXECUTE, 2, {{block_plan,1}, Make Block, {PARTS, {2,38}}}}

26

{REPORT,1,NULL}

{DROP_REPORT,1,NULL}

{PAUSE,1,NULL}

{RESUME,1,NULL}

{TERMINATE,2,NULL}

{ABORT,1,NULL}

Task responses

Task response messages have the following format:

{{task source, task id, task state, management state, on schedule flag, {nom. starting
time, actual starting time, nom. completion time, actual completion time}, last check-
point, additional parameters}, {next task report in same form}}

Where:

task source is the name of the task requester from the originating subsystem name in the
basic mailgram format.

task id is an unsigned hexadecimal value representing a number of less than 232. It is
unique only for a given task requestor.

task state is one of the following:

REJECTED

ACTIVATED

SUSPENDED

COMPLETED

TERMINATED

ABORTED

task management state is one of the following:

NORMAL

PAUSING

TERMINATING

ABORTING

on schedule flag is encoded as a 0 for yes, a 1 for no, and NULL for unknown, and desig-
nates whether the task is currently on schedule or not.

nominal starting time, actual starting time, nominal completion time, actual completion
timeare of the following format:

27

4 digit year, 2 digit month, 2 digit day, 2 digit hour, 2 digit minute, and 2 digit sec-
ond, all concatenated together in one string (all digits are decimal). Any time field
can be NULL if that field is currently unknown. If all fields are unknown, then the
entire compound time object is NULL.

last checkpoint is the string representation of the node number of the last completed node
in the process or production plan that is a valid checkpoint node. The node numbers within
the process or production plan are specified by the process planner.

additional parameters is an optional compound object which contains a parameter list in
the alternating name, value form, providing any return values associated with a plan as
well as messages for debugging at the next level. This field is NULL if there are no param-
eters.

Additional reports in the above response form would be included in a task report when there is
more than one task being serviced for a given requestor.

An example of a ONE response report is: {SLE3, 1, ACTIVATED, NORMAL,
0,{19900721130000, 19900721130500, 19900721131000, NULL}, 3, NULL}.

An example of a TWO response report is: {{VWS01, 1, ACTIVATED, NORMAL, 0,
{19900721130000, 19900721130500, 19900721131000, NULL}, NULL}, {VWS01, 3, ACTI-
VATED, NORMAL, 0, {19900721130500, NULL, 19900721131500, NULL}, 0, NULL}}.

28

Appendix B
 Guardian Message Formats Used in 1990

The format of an MSI message in a mailbox is an ASCII string where curly braces surround mes-
sage objects and elements within these objects are delimited with commas. These elements may
themselves be compound objects with their own elements. Spaces may be used for readability
only directly following commas.

All messages have the form:

{originating subsystem name, time stamp, mailgram sequence number, {data}}

Where:

originating subsystem name is the MSI name for the source controller,

time stamp is a string in the following form:

4 digit year, 2 digit month, 2 digit day, 2 digit hour, 2 digit minute, and 2 digit sec-
ond, all concatenated together in one string (all digits are decimal).

mailgram sequence numberis an ascii representation of an unsigned hexadecimal num-
ber less than 232 or 10000000016.

The following sections describe thedata portion of the above message format.

Guardian commands

Guardian commands have the following format:

{command id, guardian command, parameter list}

Where:

command id is an ascii representation of an unsigned hexadecimal number less than 232 or
10000000016

command is one of the following:

REPORT

SYNC

START_UP

BEGIN

PAUSE

FINISH

TERMINATE

29

SHUT_DOWN

EXIT

ESTOP

IGNORE <configuration command>

ATTACH <configuration command>

DETACH <configuration command>

parameter list is used for configuration commands only and is a list of subordinates by
subsystem name, otherwiseparameter list is NULL.

Examples of Guardian commands are:

{45, IGNORE, {VWS01, MHS01}}

{8e, ATTACH, {VWS02, MHS02}}

{13, SYNC, NULL}

Guardian Status

Guardian status messages have the following format:

{admin state, last guardian command id, response code, {subordinate list}, {task re-
sponse list}, {operational status list}}

Where:

admin state is one of the following:

DOWN

SYNCHRONIZING

IDLE

STARTING

READY

ACTIVE

PAUSING

PAUSED

TERMINATING

FINISHING

SHUTTING_DOWN

ABORTING

last guardian command id is an ascii representation of an unsigned hexadecimal number
less than 232 or 10000000016.

30

response code is zero when the last command is accepted, and some nonzero 8 byte hexa-
decimal number response code otherwise.

subordinate list is a compound element containing the following information for each
subordinate:{subordinate name, subordinate state, time stamp of last status}

Where:

subordinate name is the MSI name for the subordinate.

subordinate state is one of the same list as admin state above.

timestamp is of the following format:

4 digit year, 2 digit month, 2 digit day, 2 digit hour, 2 digit minute, and 2 digit sec-
ond, all concatenated together in one string (all digits are decimal).

task response list is a compound element having the following format:{{task source, task
id, task state, management state, on schedule flag, {nom. starting time, actual starting
time, nom. completion time, actual completion time}, last checkpoint, additional param-
eters}, {next task report in same form}}

Where:

task source is the name of the task requester from the originating subsystem name
in the basic mailgram format.

task id is an unsigned hexadecimal value representing a number of less than 232. It
is unique only for a given task requestor.

task state is one of the following:

REJECTED

ACTIVATED

SUSPENDED

COMPLETED

TERMINATED

ABORTED

task management state is one of the following:

NORMAL

PAUSING

TERMINATING

ABORTING

on schedule flag is encoded as a 0 for yes, a 1 for no, and NULL for unknown, and
designates whether the task is currently on schedule or not.

nominal starting time, actual starting time, nominal completion time, actual

31

completion timeare of the following format:

4 digit year, 2 digit month, 2 digit day, 2 digit hour, 2 digit minute, and 2 digit sec-
ond, all concatenated together in one string (all digits are decimal). Any time field
can be NULL if that field is currently unknown. If all fields are unknown, then the
entire compound time object is NULL.

last checkpoint is the string representation of the node number of the last complet-
ed node in the process or production plan that is a valid checkpoint node. The node
numbers within the process or production plan are specified by the process planner.

additional parameters is an optional compound object which contains a parameter
list in the alternating name, value form, providing any return values associated
with a plan as well as messages for debugging at the next level. This field is NULL
if there are no parameters.

Additional reports in the above response form would be included in a task report when there is
more than one task being serviced for a given requestor.

operational status list is a compound element containing an alternating sequence of type and val-
ue, reporting details of the internals of a subsystem. This is the means by which front panels are
exposed to a human operator.

The one known operational status type is a “task_list”. The elements in a task_list are formatted as
follows: {task source, task id, task activity, {node list}}.

Where:

task source is the task client associated with this task.

task id is the identifier used by the client for this task.

task activity is the “task” requested by the client with the EXECUTE command. Its value
is the node name element from the EXECUTE command. It is a human readable/under-
standable element.

node list is a compound element describing the status of each currently active step in the
process or production plan. It has the following format:{node number, node name, node
status, {subtask}}

Where:

node number is decimal number uniquely identifying a node (step) in the process
or production plan being executed by the subsystem.

node name is a name for the node just enumerated.

node status is a character string indicating the state of the activity associated with
the node. Its value is one of the following:

NEW

SLEEPING

WAITING

32

BUSY

DONE

subtask is a compound element describing a subordinate task if there is one associ-
ated with this node. It has the following format:{task server, task id, task status,
management status}.

Where:

task server is the MSI name of the subordinate executing the task.

task id is the identifier used by the controller executing the node for this
task requested from its subordinate.

task status is the status returned by the subordinate, and is one of the fol-
lowing:

REJECTED

ACTIVATED

COMPLETED

TERMINATED

PAUSED

ABORTED

management status is the management status returned by the subordinate
for the task, and is one of the following:

NORMAL

PAUSING

TERMINATING

ABORTING

Examples of Guardian status reports are:

{ACTIVE, 0, 0, {{MHS01, ACTIVE, 19901002131412}, {CDWS01, ACTIVE,
19901002131413}, {VWS01, ACTIVE, 19901002131415}}, {{shop–oversight, 110,
COMPLETED, NORMAL, 0, {19901002090000, 19901002090000, 19901002131600,
19901002131905}, 18, NULL}, {shop–oversight, 112, COMPLETED, NORMAL, 1,
{19901002110000, 19901002110000, 19901002151500, 19901002144959}, 12, NULL},
{shop–oversight, 120, COMPLETED, NORMAL, 1, {19901002130000,
19901002131520, 19901002162000, 19901002161642}, 10, NULL}, {shop–oversight,
122, ACTIVATED, NORMAL, 1, {19901002015000, 19901002150107,
199010020170000, NULL}, 6, NULL}}, {task_list, {{shop–oversight, 122, {make–shut-
tle}, {{10, machine–second–cut, NEW, NULL}}}}}}

{ACTIVE, 0, 0, {{VMILLC01, ACTIVE, 19901004170855},{VWSU4K01, ACTIVE,
19901004180000}}, {{VWSU4K01, 197, COMPLETED, NORMAL, 0, NULL, 3,

33

NULL}}}

{ACTIVE, 0, 0, {{VMILLC01, ACTIVE, 19901004170855},{VWSU4K01, ACTIVE,
19901004180000}}, NULL, NULL}

{DOWN, 0, 0, NULL, NULL, NULL}}

{ACTIVE, 0, 0, {{VWS01, ACTIVE, 19901004170329}, {MHS01, ACTIVE,
19901004171256}, {CDWS01, ACTIVE, 19901004171100}}, {{shop–oversight, 110,
ACTIVATED, NORMAL, 0, {19901004142000, 19901004142210, 19901004200000,
NULL}, 14, NULL}, {shop–oversight, 112, ACTIVATED, NORMAL, 1,
{19901004170000, 19901004170000, 19901004191600, NULL}, 7, NULL}, {shop–
oversight, 114, ACTIVATED, NORMAL, 1, {19901004182000, 19901004181815,
19901004195600, NULL}, 2, NULL}}, {task_list, {{shop–oversight, 110, {make–shuttle,
1}, {{6, machine–first–cut, BUSY, {VWS01, 197, ACTIVATED, N ORMAL}}, {13, de-
liver–lru, WAITING, {MHS01, 225, SUSPENDED, NORMAL}}, {14, Join, BUSY,
NULL}}}, {shop–oversight, 112, {make–block, 1}, {{4, Deburr–block, BUSY,
{CDWS01, 158, ACTIVATED, NORMAL}}}}, {shop–oversight, 114, {make–shuttle,
1}, {{2, machine–second–cut, WAITING, {VWS01, 118, SUSPENDED, NOR-
MAL}}}}}}

34

Appendix C
 Scenario of Commands to Controllers

System_status message format:
{admin state, last cmd id, response code,
capability index}

{DOWN, 0,0,0}

{100, SYNC}

{SYNCHRONIZING,100,0,0}

{IDLE,100,0,0}

{101, START_UP}

{STARTING, 101,0,0}

{READY, 101,0,0}

{102, BEGIN}
{ACTIVE, 102,0,0}

Task requests have the following format:
{task command, task id, list of parameters
which vary with command}

{EXECUTE, 34, {{Get–shuttle–1–data, 01},
get–shuttle–data, {PARTS, {AC443, AQ972,
A42176}}}}

Task response messages have the following
format:

Shop Level Administrative Supervisor Workcell Controller

The following example illustrates the normal initialization procedure.

Shop Level Executive Workcell Controller

The following example illustrates the normal tasking procedure.

35

{{task source, task id, task state,
management state, on schedule flag, {nom.
starting time, actual starting time, nom.
completion time, actual completion time},
last checkpoint, additional parameters},
{next task report in same form}}

{{SLE1,34,ACTIVATED,NORMAL,0,
{19901101120000,19901101120100,
19901101120500,NULL},1,NULL}}

 This task status report acknowledges the receipt of the get_data command for the shuttle.

At this point, other execute_task commands are eligible to be issued by the SLE, assuming a type
2 or type 3 controller.

{EXECUTE, 35, {{Get–anc–101–data, 01},
get–anc–data, {PARTS, {AC4Q43, AQ972,
A42176}}}}

{{SLE1,34,COMPLETED,NORMAL,0,
{19901101120000,19901101120100,
19901101120500,19901101120300},2,
NULL},
{SLE1,35,ACTIVATED,NORMAL,0,
{19901101120400,NULL,
19901101120600,NULL},1,NULL}}

This status report communicates the completion of the get_data command for the shuttle and the
receipt of the get_data command for anc.

{EXECUTE, 37, {{Make–shuttle–1, 01},
make–shuttle, {PARTS, {AC4Q43, AQ972,
A42176}}}}

{{SLE1,34,COMPLETED,NORMAL,0,
{19901101120000,19901101120100,
19901101120500,19901101120300},2,
NULL},
{SLE1,35,ACTIVATED,NORMAL,0,
{19901101120400,19901101120400,
19901101120600,NULL},1,NULL},
{SLE1,37,ACTIVATED,NORMAL,0,
{19901101120500,NULL,
19901101120700,NULL},1,NULL}}

36

{DROP_REPORT,34,NULL}

This command allows the subordinate to stop reporting on the finished get_data task for the shut-
tle.

{{SLE1,35,ACTIVATED,NORMAL,0,
{19901101120400,19901101120400,
19901101120600,NULL},1,NULL},
{SLE1,37,ACTIVATED,NORMAL,0,
{19901101120500,NULL,
19901101120700,NULL},1,NULL}}

The SLE determines receipt of the DROP_REPORT request by the removal of the task information
related to that task from the task status report.

Spontaneous reports are generated when task fields change.

{{SLE1,35,COMPLETED,NORMAL,1,
{19901101120400,19901101120400,
19901101120600,19901101120600},1,
NULL},
{SLE1,37,ACTIVATED,NORMAL,1,
{19901101120500,19901101120600,
19901101120700,NULL},1,NULL}}

The workcell controller will issue a status report for each command received from the task super-
visor. In addition, status reports will be spontaneously generated by the workcell at the start, com-
pletion, and checkpoints of a task.

{{SLE1,35,COMPLETED,NORMAL,1,
{19901101120400,19901101120400,
19901101120600,19901101120600},1,
NULL},
{SLE1,37,ACTIVATED,NORMAL,1,
{19901101120500,19901101120600,
19901101120700,NULL},2,
NULL}}

{DROP_REPORT,35,NULL}

This command allows the subordinate to stop reporting on the finished get_data task for anc.

37

{{SLE1,37,ACTIVATED,NORMAL,1,
{19901101120500,19901101120600,
19901101120700,NULL},2,
NULL}}

{{SLE1,37,COMPLETED,NORMAL,0,
{19901101120500,19901101120600,
19901101120700,19901101120700},3,
NULL}}

38

Appendix D
 Glossary

baseline configuration
1. The process of specifying the initial configuration of the system.

2. The result of the process in 1, (i.e., the specification of the initial configuration of the
system.)

capability index
A value which indicates whether a subsystem has all capabilities to be expected from the
baseline (initial) configuration or some different set of capabilities.

checkpoint
A step in a production plan where the manufacturing process may be halted in a safe man-
ner without damaging either the equipment or the workpiece and later replaced or re-
sumed.

configuration
The collection of resources in a given facility and their physical and logical relationships
to one another.

control entity
A decision making agent which directs the execution of tasks or executes tasks.

controller
1. A synonym for control entity.

2. The implementation of a control entity on a particular hardware platform which controls
a physical piece of equipment.

3. When prefixed by “equipment,” “workcell” or “shop”, the term refers to a particular
control entity, type of control entity, or implementation of control entity which performs a
precise function in a particular manner.

equipment level
The lowest level of control specified by the MSI architecture. A controller at this level has
an interface to its supervisor which conforms to the MSI architecture, but may have a non-
standard interface to its subordinates

executive
A component of a control entity responsible for directing the execution of assigned tasks.

guardian
That entity described in the MSI architecture which monitors and intervenes in a control
activity.

39

process plan
A specification of tasks, or operations, to accomplish a given goal — typically the manu-
facture of a product. In contrast to a production plan, a process plan serves as a template,
or recipe, for the accomplishment of the tasks.

production plan
A specification of tasks, or operations, to accomplish a specific goal, using specific re-
sources at specific times. (cf. process plan)

shop level
The highest level of control in the MSI architecture.

work element
1. A discrete activity for any control level in a manufacturing environment.

2. The collection of information which describes 1.

workcell level
An intermediate level of control which is responsible for the coordination of activities by
subordinates. The workcell level presents interfaces which comply with the MSI architec-
ture toward both its supervisor and subordinate controllers.

40

Reference List

Albus, J., Barbera, A., Nagel, R., “Theory and Practice of Hierarchical Control”, Twenty–third
IEEE Computer Society International Conference, Sept. 1981.

Catron, Bryan and Ray, Steven, “ALPS — A Language for Process Specification”, International
Journal of Computer Integrated Manufacturing, Vol. 4, number 3, 1991.

Libes, Don, “NIST Network Common Memory User Manual,” NISTIR 90–4233, PB90–183260/
AS, January 1990.

O’Halloran, D. R. and Reynolds, P. F.,”A Model for AMRF Initialization, Restart, Reconfigura-
tion and Shutdown”, NBS/GCR 88–546 May 23, 1986.

Rybczynski, S., et al. “AMRF Network Communications,” NISTIR 88–3816, pp. II–1 – II–9,
June 30, 1988.

Senehi, M. K., et al., “Manufacturing Systems Integration Initial Architecture Document”, NIS-
TIR, National Institute of Standards and Technology, Gaithersburg, MD, forthcoming.

